Physics 101 P
Gencal Phyics I
Problem Sessions - Wech 1
A.W. Jachura Willian \& Mary

Genoral Info
Inडिcador: Andrew W. Jachura Erail: awjacluwa © wom.edu office: Small 326 B

Office hows: Wad, F_{r} - 1pm $-2 \rho m$ \& b) upgoivtat \& oper door policy
Website
ajackura. github. io / cowses/physlolp-fall -2023.htm 1

Paniciption
Be engaged!

- Show up to discussions
- Ask quegians to instrada
- Ansurer quctions from MItado
- Tall w/ neighburs abo 9 physics
$\Rightarrow 2 \%$ Engongerest boans

Problem Solving on Physics
Solving physics problems aten requires using different fields f mathematics (egg., algebra, trigonometry, calculus) as well physical attrition from ow coy day experiences.

Our your in these discussions is to compliment the lectures by applying physics concepts to exercises.

Dimensions \& Units
Physical quantities hove two features
Dimensions - basic nature f physical quality egg., Time

Units - s, stem f measwere for physical quality
e.y., seconds

Three fundamental dimensions

- Time (T)
- Length (L)
- Mass (M)

Natation
Far any physical quality Q, the dimension $f Q$ is dented $[Q]$
eeg. $[$ Distance $]=L$

$$
\begin{aligned}
& {[\text { speed }]=L, T} \\
& {[\text { Density }]=M / L^{3}}
\end{aligned}
$$

SI wits systeme' internationale d^{\prime} mite's

Each dimension has an associate wit

$$
\begin{aligned}
& \text { Time - second (s) } \\
& \text { Length - mote (m) } \\
& \text { Mass - kilogram (kg) }
\end{aligned}
$$

Unit Prefixes
useful for working we longe / small numbers

Tetra -	$\times 10^{12}$	T
Giga	$\times 10^{9}$	G
Mega -	$\times 10^{6}$	M
lilo	$\times 10^{3}$	l
cent -	$\times 10^{-2}$	c
mill: -	$\times 10^{-3}$	m
micro -	$\times 10^{-6}$	μ
nano -	$\times 10^{-9}$	n
fico -	$\times 10^{-12}$	ρ
ferito -	$\times 10^{-15}$	f

Any physical quantity con be multiplied b) 1 withon changing its value.

$$
\text { e.g: } \quad \begin{aligned}
1 \mathrm{~min} & =60 \mathrm{~s} \\
& \Rightarrow 1=\frac{60 \mathrm{~s}}{1 \mathrm{~min}} \\
1 \mathrm{ft} & =12 \mathrm{in} . \\
& \Rightarrow 1=1 \frac{\mathrm{ft}}{12 \mathrm{in} .}
\end{aligned}
$$

Example
How many seconds we in 10 minutes?
Solution

$$
1=\frac{60 \mathrm{~s}}{1 \mathrm{nin}}
$$

$$
10 \mathrm{~min}=10 \mathrm{~mm} \cdot 1
$$

$$
=10 \mathrm{~m} \cdot\left(\frac{60 \mathrm{~s}}{1 \mathrm{n} k}\right)
$$

$$
=10.60 \mathrm{~s}=600 \mathrm{~s}
$$

Example
Alice is Qriving at $55 \mathrm{~m} / \mathrm{hr}$ what is her speed on mours per secad?

Solvion
convusion fadars:

$$
\begin{aligned}
& 1 \mathrm{mi}=1609 \mathrm{~m} \Rightarrow 1=\frac{1609 \mathrm{~m}}{1 \mathrm{mi}} \\
& 1 \mathrm{hr}=3600 \mathrm{~s} \Rightarrow 1=\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Speed } & =55 \frac{\text { mi }}{h_{r}} \\
& =55 \frac{\text { mi }}{h_{r}} \cdot 1 \cdot 1 \\
& =55 \frac{\text { mi }}{h_{r}} \cdot\left(\frac{1609 \mathrm{~m}}{1 \mathrm{hm}}\right) \cdot\left(\frac{1 h_{r}}{3600 \mathrm{~s}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Speed } & =\frac{55.1609}{3600} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& =24.587944 \ldots \mathrm{~m}_{\mathrm{s}}
\end{aligned}
$$

个
No all these digits are memiful. stanted w/ 2 sig.figs. (55 milur) sor W's repoने 2 sig. figs.

$$
\Rightarrow \text { Speed }=25 \mathrm{~m} / \mathrm{s}
$$

N.B. Speed of ligh $\sim 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$!

Example
Alice is 22 y old. How may seconds has she lived?

Solvion
Let $T=$ Alices age

$$
=224
$$

Conuasion falters:

$$
\begin{aligned}
& 1 \mathrm{y}=365 \mathrm{~d} \Rightarrow 1=\frac{365 \mathrm{l}}{1 \mathrm{y}} \\
& 1 d=24 \mathrm{hr} \Rightarrow 1=\frac{24 \mathrm{hr}}{1 \mathrm{~d}} \\
& 1 \mathrm{hr}=3600 \mathrm{~s} \Rightarrow 1=\frac{3600 \mathrm{~s}}{1 \mathrm{hr}}
\end{aligned}
$$

So,

$$
\begin{aligned}
T & =22, \ell^{y+d} d \% \text { ur } \\
& =22>1 \cdot 1 \cdot 1
\end{aligned}
$$

$$
\begin{aligned}
T & =22 \% \cdot\left(\frac{365 d}{1 \% 7}\right) \cdot\left(\frac{24 \mathrm{~h}}{2 d}\right) \cdot\left(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\right) \\
& =(22 \cdot 365 \cdot 24 \cdot 3600) \mathrm{s} \\
& =6.93792 \ldots \times 10^{8} \mathrm{~s} \\
& \hat{\gamma} \Rightarrow 2 \text { sig.figs. } \\
\Rightarrow & T=6.9 \times 10^{8} \mathrm{~s}
\end{aligned}
$$

N.B. Age f mivere $\sim 5 \times 10^{17} \mathrm{~s}$ I

Example
Bobs cor hods 16 gallons f gas. Whit is the tank volume in cubic cefiretos?
solution
(T's say we hare $1 \mathrm{gal}=231 \mathrm{in}^{3}$.
we also know $2.54 \mathrm{ch}=1 \mathrm{~d}$.
So, we have

$$
\begin{aligned}
& \text { volume }=16 \mathrm{gal} \quad \quad^{\mathrm{gat}}+\mathrm{om}^{3} \\
& =16 \mathrm{gal} \cdot 1-1 \leftarrow \mathrm{~d}^{3}+\mathrm{cm}^{3} \\
& =16 \mathrm{gat}^{2} \cdot\left(\frac{231 \mathrm{~cm}^{3}}{1 \mathrm{gat}^{4}}\right) \cdot\left(\frac{2.54 \mathrm{~cm}}{2 \mathrm{~m}}\right)^{\frac{3}{2}} \begin{array}{l}
\text { to inset } \\
3 \\
8 \text { copies } \\
8 \text { converin }
\end{array} \\
& =\left(16 \cdot 231 \cdot(2.54)^{3}\right) \mathrm{cm}^{3} \\
& =60566.588 \ldots \mathrm{~cm}^{3}\left(\mathrm{c}^{\text {al) }} 2\right. \text { sig. figs }
\end{aligned}
$$

$$
\text { volume }=6.1 \times 10^{4} \mathrm{~cm}^{3}
$$

Example
Tob's resting heart ate is 71.5 beds $/ \mathrm{min}$. How many times does Bobs head bed in a day?
Solution

$$
\text { Le } \begin{aligned}
R & =\text { Bob's heat rate } \\
& =71.5 \text { bets } / \mathrm{min} .
\end{aligned}
$$

The number f begs is then

$$
N=R \cdot T
$$

h can race

$$
\begin{aligned}
T & =1 \mathrm{day}=1 \mathrm{dm} \cdot\left(\frac{24}{1 d / 7}\right) \cdot\left(\frac{60 \mathrm{mi}}{1 \mathrm{mf}}\right) \\
& =24.60 \mathrm{~min} \\
& =1440 \mathrm{~min}
\end{aligned}
$$

So,

$$
\begin{aligned}
N & =R \cdot T \\
& =\left(71.5 \frac{\text { bass }}{n \rightarrow 4}\right) \cdot(1440 \mathrm{~m}) \\
& =(71.8 \cdot 1440) \text { beats } \\
& =102960 \text { begs }
\end{aligned}
$$

- 3 sig. figs. fro 71.5

$$
\Rightarrow \quad N=1.03 \times 10^{5} \text { bats }
$$

Example
Alice wads to calcule the weal f an 8.5 in. $\times 11$ in. piece of paper. Why? is the area in cm^{2} ?

SoTO:

$$
\begin{aligned}
1 \mathrm{in} & =2.54 \mathrm{~cm} \\
L \text { O } L & =\text { Length }=11 \mathrm{~m} \\
\omega & =\text { width }=8.5 \mathrm{in} \\
\Rightarrow \quad L & =11 \mathrm{~h} \cdot\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{~m}}\right) \\
& =27.9 \mathrm{~cm} \\
\omega & =8.5 \mathrm{~m} \cdot\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{~m}}\right) \\
& =21.6 \mathrm{~cm}
\end{aligned}
$$

Area fa resurge

$$
A=L \cdot W
$$

So,

$$
\begin{aligned}
A & =L \cdot W \\
& =(27.9 \mathrm{~cm}) \cdot(21.6 \mathrm{~cm}) \\
& =602.64 \mathrm{~cm}^{2}
\end{aligned}
$$

round t. 3 sig. figs.

$$
\Rightarrow \quad A=603 \mathrm{~cm}^{2}
$$

Example
Bob wods to measme the thichress δ an $8.5 \ldots \times 11 \mathrm{~d}$ picae f paper.

Bob measures 80 shits ad finds 1.27 cm . What is the thichness?

Solvion
LI $D=$ thichness $f 80$ slets

$$
=1.27 \mathrm{~cm}
$$

し
$d=$ thichness f sugle sheet.

$$
N=\text { Numbr } f \text { sheIs }=80
$$

So,

$$
\begin{aligned}
& D=N \cdot d \Rightarrow d=\frac{D}{N} \\
& d=\frac{1.27 \mathrm{~cm}}{80}=0.015875 \mathrm{~cm}\left(\begin{array}{c}
\text { sig. figs } \\
\text { since 8o e is } \\
\text { exad ! }
\end{array}\right) \\
& \Rightarrow d=0.159 \mathrm{mn}
\end{aligned}
$$

