Physics 101 P
Gencal Physics I
Problem Sessions - Wech 2
A.W. Jachura Willian \& Mary

Motion
Kinenfics is the Indy f motion (withal regards for its cause)

$$
\begin{array}{ll}
\vec{v}=\frac{d \vec{r}}{d t} & \text { velocity } \\
\vec{u}=\frac{d \vec{v}}{d t} & \text { acceleration }
\end{array}
$$

Example
The position f a pontide is given by

$$
x(t)=A e^{B t}+C t
$$

where A, B, C are known constants.
(a) what are the dimensions f

$$
A, B, \& \subset ?
$$

(b) why is the patides velocity?
(c) whet is the patides acceleration?

Solvion
(a) know, $[x]=L,[t]=T$

Also, $\left[e^{B t}\right]=1 \Rightarrow[B][t]=1$

$$
\Rightarrow[B]=\frac{1}{T}
$$

Then,

$$
\begin{aligned}
& {[x]=[A] \cdot 1+[C] \cdot T } \\
\Rightarrow & {[A]=L } \\
& {[C]=\frac{L}{T} }
\end{aligned}
$$

(b) Recall $v(t)=\frac{d x}{d t}$

$$
\prod^{v}=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}
$$

Useful derivatives to know:
if $a=\cos s$ as

$$
\begin{aligned}
& -\frac{d a}{d x}=0 \\
& -\frac{d}{d x}\left(a x^{n}\right)=a n x^{n-1} \\
& -\frac{d}{d x}\left(e^{a x}\right)=a e^{a x} \\
& -\frac{d}{d x}(\sin (a x))=a \cos (a x) \\
& -\frac{d}{d x}(\cos (a x))=-a \sin (a x) \\
& -\frac{d}{d x}(\ln (a x))=\frac{1}{x}
\end{aligned}
$$

Sot

$$
\begin{aligned}
& v=\frac{d x}{d t} \\
&=\frac{d}{d t}\left(A e^{B t}+C t\right) \\
&=\frac{d}{d t}\left(A e^{B t}\right)+\frac{d}{d t}(C t) \\
&=A B e^{B t}+C \\
& \Rightarrow v(t)=A B e^{B t}+C
\end{aligned}
$$

(C)

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
& =\frac{d}{d t}\left(A B e^{B t}+C\right) \\
& =\frac{d}{d t}\left(A B e^{B t}\right)+\frac{d}{d t} C \\
& =A B^{2} e^{B t} \\
& \Rightarrow a(t)=A B^{2} e^{B t}
\end{aligned}
$$

Exumple
The accelestion f a poitide is consint,

$$
a=A .
$$

If the patide sians fren the oryin aे regे, why is its velocity \& position as a function f time?

Solvion
if $a=A=$ consent we wor to inven $a=\frac{d v}{d t}$ \& $v=\frac{d x}{d t}$ for $v \& x$
Subject to the constent $\begin{array}{ll} & x(t=0)=x_{3}=0 \\ & v(t=0)=v_{0}=0\end{array}$ $v(t=0)=v_{0}=0$

$$
a=\frac{d v}{d t} \Rightarrow d v=a d t
$$

INegrace! $\quad \int_{v .}^{v} d v=\int_{0}^{t} a d t$

Usful integrals:
if $a=\operatorname{censta}$,

$$
\begin{aligned}
& -\int_{x_{1}}^{x_{2}} a d x=\left.a x\right|_{x_{1}} ^{x_{2}}=a\left(x_{2}-x_{1}\right) \\
& -\int_{x_{1}}^{x_{2}} a x^{n} d x=\left.\frac{a x^{n+1}}{n+1}\right|_{x_{1}} ^{x_{2}}=\frac{a}{n+1}\left(x_{2}^{n+1}-x_{1}^{n+1}\right) \\
& -\int_{x_{1}}^{x_{2}} \frac{1}{x} d x=\left.h(x)\right|_{x_{1}} ^{x_{2}}=h\left(\frac{x_{2}}{x_{1}}\right)
\end{aligned}
$$

So, since $a=$ constas,

$$
\int_{v_{0}}^{v} d v=A t \Rightarrow v(t)=A t
$$

Sirilaily, $\frac{d x}{d t}=v \Rightarrow d x=v d t$

$$
\begin{aligned}
\Rightarrow \int_{x_{0}}^{x} d x & =\int_{0}^{t} v(t) d t \\
& =\int_{0}^{t} A t d t=\frac{A t^{2}}{2}
\end{aligned}
$$

Sol

$$
\begin{aligned}
& x=x_{0}+\frac{1}{2} A t^{2} \\
& \text { so, } x_{0}=0 \\
& \Rightarrow x(t)=\frac{1}{2} A t^{2}
\end{aligned}
$$

so, for $a=A=$ cons

$$
\& \quad x=0, v=0 @ t=0 \text {, }
$$

$$
\begin{aligned}
& v(t)=A t \\
& x(t)=\frac{1}{2} A t^{2}
\end{aligned}
$$

Recall in yeses) for constant acceleration motion,

$$
\begin{aligned}
& a=\operatorname{con} \operatorname{s} \theta \\
& v=v_{0}+a t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Example
A car moves 72 km to the right, \& then reverses direction \& travels 120 um to the left.
(a) What is the displacement of the cor?
(b) What is the distance traveled by the car?

Solution
(a) S origin a stating point f the cur.

$$
\begin{aligned}
& \Delta x_{1}=x_{1}-x_{0}=72 \mathrm{~km} \\
& \Delta x_{2}=x_{2}-x_{1}=-120 \mathrm{~km}
\end{aligned}
$$

Total displacenent

$$
\begin{aligned}
\Delta x & =x_{2}-x_{0} \\
& =x_{2}-x_{1}+x_{1}-x_{0} \\
& =\Delta x_{2}+\Delta x_{1} \\
& =-120 \mathrm{kn}+72 \mathrm{kr} \\
& =-48 \mathrm{kr} \\
\Delta x & =-48 \mathrm{kr}
\end{aligned}
$$

(b) Tota distance $=d$

$$
\begin{aligned}
d & =1 \Delta x_{1} \mid+1 \Delta x_{2} 1 \\
& =72 \mathrm{~km}+120 \mathrm{kn} \\
& =192 \mathrm{~km} \\
d & =192 \mathrm{~km}
\end{aligned}
$$

N.B. $\quad d \neq(\Delta x)$

Exarple
A buy travels ch a quater circle f radius R. Find the displacemet \& the distance traveled by the bug.

Solvion
Displacenen

$$
\begin{align*}
\Delta \vec{r}^{\prime} & \vec{r}_{f}-\vec{r}_{i} \\
\vec{r}_{i}=R \hat{\imath} & \text { (initia) } \tag{initid}\\
\vec{r}_{f}=R \hat{\jmath} & (\text { find }) \\
\Rightarrow & \Delta \vec{r}=-R(\hat{\imath}-\hat{\jmath})
\end{align*}
$$

Pistance $=d=\frac{C}{4}$ - circinference f crcle

$$
C=2 \pi R
$$

$$
\Rightarrow \quad d=\frac{\pi R}{4}
$$

Can dso express displacerent as

$$
\begin{aligned}
&|\Delta \vec{r}|=\sqrt{R^{2}+R^{2}} \\
&=\sqrt{2} R \\
& \varphi=\tan ^{-1}\left(\frac{R}{-R}\right)=135^{\circ}
\end{aligned}
$$

$$
\tan \varphi=\frac{b}{a}
$$

N.B. $\quad|\Delta \vec{r}| \neq d \quad$!

$$
|\Delta \vec{r}|=\sqrt{2} R, \quad d=\frac{\pi R}{2}
$$

Example
Alice throws a ball ff a building a height h. She throws at an angle θ_{0}, and hits a traget which is a distance d from the base f the building.

At what speed v, maul Alice throw the bull to wit the target?

solvion
Bracle motion wito $x \& y$ diredions

$$
\begin{aligned}
& x=x,+v_{0_{x}} t+\frac{1}{2} a_{x} t^{2} \\
& y=y_{0}+v_{a_{4}} t+\frac{1}{2} a_{y} t^{2}
\end{aligned}
$$

in $x: \quad x,=0$

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos \theta_{0} \\
& a_{x}=0
\end{aligned}
$$

du 7 : $\quad y_{0}=h$

$$
\begin{aligned}
& v_{0,}=v_{0} \sin \theta_{0} \\
& a_{7}=-y \\
& \Rightarrow\left\{\begin{array}{l}
x=v_{0} \cos \theta_{0} t \\
y=h+v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2}
\end{array}\right.
\end{aligned}
$$

Noy, want vo such the $y=0, x=d$ (Alice hits the targ $\boldsymbol{\theta}$).

Le) $t=T$ be the tire when ball hits.

$$
\left\{\begin{array}{l}
d=v_{0} \cos \theta_{0} T \tag{2}\\
0=u+v_{0} \sin \theta_{0} T-\frac{1}{2} g T^{2}
\end{array}\right.
$$

two equations, two culunoms $(v, \& T)$
solve for v_{0} !
from (1), $T=\frac{d}{v, \cos \theta .}$

Sub (1*) Wo (2)

$$
\begin{aligned}
\rightarrow 0 & =h+v_{0} \sin \theta_{0}\left(\frac{d}{v_{0} \cos \theta_{2}}\right)-\frac{1}{2} J \frac{l^{2}}{v_{0}^{2} c-s^{2} \theta_{0}} \\
& =h+d \tan \theta_{0}-\frac{g d^{2}}{2 v_{0}^{2} \cos ^{2} \theta_{0}}
\end{aligned}
$$

Solve for v_{0}

$$
\Rightarrow \frac{y d^{2}}{2 v_{s}^{2} \cos ^{2} \theta}=h+d \tan \theta
$$

$$
\begin{aligned}
& \frac{2 v_{0}^{2} \cos ^{2} \theta_{0}}{g d^{2}}=\frac{1}{h+d \tan \theta_{0}} \\
& \Rightarrow v_{0}^{2}=\frac{d^{2}}{\cos ^{2} \theta_{0}}\left(\frac{y}{2\left(h+d \tan \theta_{0}\right)}\right) \\
& s_{0} \quad v_{0}=\frac{d}{\cos ^{2} \theta_{0}} \sqrt{\frac{g}{2\left(h+d \tan \theta_{0}\right)}}
\end{aligned}
$$

why not negtive sign?

Example
Trying to escape his pursuers, sect ages Alice skis off a slope dined at 30° below the havizantal It $60 \mathrm{~km} / \mathrm{h}$. To swuive and land on the snow 100 m below, She mus clear a gorge 60 m wide. Does she rale it?

Solution

$$
\begin{aligned}
29 v_{0} & =60 \mathrm{kn} / \mathrm{h} \\
\theta_{0} & =30^{\circ} \\
h & =100 \mathrm{~m} \\
D & =60 \mathrm{~m}
\end{aligned}
$$

wars to know if trijety is sud the $x>D$. Set coordine system It point before take off"

So,

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos \theta_{0} \\
& v_{07}=-v_{0} \sin \theta_{1}
\end{aligned}
$$

Eqions f ration

$$
\begin{aligned}
& x=v_{0 x} t \\
& y=v_{1 y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

ser solus for t when $y=-h$

$$
\begin{aligned}
&-h=v_{0,} t-\frac{1}{2} g t^{2} \\
& \Rightarrow \frac{1}{2} g t^{2}-v_{0,} t-4=0 \\
& t=\frac{+v_{0 y} \pm \sqrt{v_{1,}^{2}-4\left(\frac{1}{2} g\right)(-L)^{2}}}{2\left(\frac{1}{2} g\right)} \\
&=v_{0,} \pm \sqrt{v_{0,7}^{2}+2 g h}
\end{aligned}
$$

Non, $v_{-}=-v_{0} \sin \theta_{0}$

$$
\begin{aligned}
v_{1} & =60 \frac{4-}{4}=60 \times 10^{3} \frac{1}{4} \cdot\left(\frac{14}{3600 s}\right) \\
& =16.7 \mathrm{~ms} \\
\Rightarrow v_{0} & =-8.35 \mathrm{~m}
\end{aligned}
$$

Therefore, $t=3.75 \mathrm{~s}$ an -5.45 s

So

$$
\begin{aligned}
\left.x\right|_{t=t_{\text {Lit }}} & =v_{-x} \cos \theta t_{\text {Lit }} \\
& \simeq 54.2 \mathrm{~h}
\end{aligned}
$$

\Rightarrow Alice does io make it $\dot{\mathrm{i}}$

