Physics 101 P
Geneal Physics I
Problem Sessions - Weak 3
A.W. Jackura William \& Mary

Newtan's Laws f Motion
NI: An cbijet It nest an trawding do miforn mation will reman ge res or traveling a miform motion unless and uitil an extenal farce is appied.

$$
\vec{F}_{\text {wut }}=\sum_{i} \vec{F}_{i}=\overrightarrow{0} \Rightarrow \begin{aligned}
& \vec{v}=\operatorname{cons} \boldsymbol{y} \\
& (\vec{v}=\overrightarrow{0} \text { is speci) cuc })
\end{aligned}
$$

Nar: $\vec{F}_{\text {Nod }}$ is Net face on ospert

$$
\begin{aligned}
\vec{F}_{\text {Net }} & =\sum_{i=0}^{N} \vec{F}_{i} \quad \text { (supepasition) } \\
& =\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\cdots+\vec{F}_{N}
\end{aligned}
$$

NII: The acceleation f a body is dreotly propostional to the net fonce ading on it, in the direstion f the applied farce, and chuasel, prapuation? to the mass f the objes.

$$
\vec{F}_{\nu a t}=\sum_{i} \vec{F}_{i} \neq \dot{O}
$$

$$
\begin{aligned}
& \text { Nut Fune } \\
& \text { on obje9 } \\
& \begin{array}{ll}
\rightarrow \quad m \\
\text { acceloation }
\end{array} \\
& \text { f objed } \\
& \text { "chage } 1 \\
& \text { 「 mass fobjed }
\end{aligned}
$$

$$
\vec{a}=\frac{d \vec{v}}{d t}, \vec{v}=\frac{d \vec{v}}{d t}
$$

NIII: Far every adion there is an equal and opposite reaction

$$
\vec{F}_{A \sim B}=-\vec{F}_{B \sim A}
$$

And,sis with Newtoi's Laws
Solving problems with mitiple foces/ orjeds

1. Draw a singified version f objed. Need 1 Free-body Diagran (FBD) for each object.
2. ST up coordnate sysem
3. 1devify all farces on arject
D. Not indude fares exoted BY Objed an other objets
4. Draw vedar arrows represcining all frices an objed
5. Find corporests f fores, sum to find resnlat
6. Apply NII \Rightarrow Deternine mation

Example
Two farces, 80 N and 100 N acing of cm angle $f 60^{\circ}$ with each other, pall an objet.
whit single farce (the resutiont) would replace the two farces?

Sobion
SO up a coordinge syn zn

$$
\begin{aligned}
& \quad \vec{F}_{1}=\vec{F}_{1} \cos \theta \hat{\imath}+F_{1} \sin \theta \hat{\jmath} \\
& \vec{F}_{2}=F_{2} \hat{\imath}
\end{aligned}
$$

$$
F_{1 y}=F_{1} s \lambda \theta
$$

$$
\begin{aligned}
& \cos 60^{\circ}=\frac{1}{2} \\
& \sin 60^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
F_{1 x}=F_{1} \cos \theta
$$

Told (Net) farce

$$
\begin{aligned}
\vec{F} & =\vec{F}_{1}+\vec{F}_{2} \\
& =\left(F_{1} \cos \theta+F_{2}\right) \hat{\imath}+F_{1} \sin \hat{\jmath} \\
& =\left(\frac{1}{2} F_{1}+F_{2}\right) \hat{\imath}+\frac{\sqrt{3}}{2} F_{1} \hat{\jmath} \\
& =140 N \hat{\imath}+40 \sqrt{3} N \hat{\jmath} \\
& \simeq 140 N \hat{\imath}+69 N \hat{\jmath} \\
\vec{F} & =140 N \hat{\imath}+69 N \hat{\jmath}
\end{aligned}
$$

Magnitude f reswlat furce

$$
\begin{aligned}
F & =\sqrt{F_{x}^{2}+F_{y}^{2}} \\
& =\sqrt{(140 \mathrm{~N})^{2}+(40 \sqrt{3} \mathrm{~N})^{2}} \\
& \simeq 156 \mathrm{~N}
\end{aligned}
$$

Agle writ. x-axis (av \vec{F}_{2})

$$
\begin{aligned}
\varphi & =\tan ^{-1}\left(\frac{F_{4}}{F_{x}}\right) \\
& =\tan ^{-1}\left(\frac{40 \sqrt{3}}{140}\right) \\
& \simeq 26.3^{\circ}
\end{aligned}
$$

$$
F=156 \mathrm{~N}
$$

$$
\varphi=26.3^{\circ}
$$

Example
A cor whose weigh is 3000 lbs is on a rare which makes an angle 20° to the hodizantal.
(a) What is the mass f the car in kg?
(b) How large a perpendicer farce mut the rap withstand if it is nat to breale under the cos weight?
S.डิim
(4) wight $\omega=\operatorname{mg}$

Now, 1 lbs $\simeq 4.45 \mathrm{~N}$

$$
\begin{aligned}
\Rightarrow W & =3000 \mathrm{lss} \\
& =3000 \mathrm{lbs}\left(\frac{4.45 \mathrm{~N}}{11 \mathrm{ss}}\right) \\
& =13350 \mathrm{~N} \\
& \simeq 1.34 \times 10^{4} \mathrm{~N}
\end{aligned}
$$

Now,

$$
\begin{aligned}
m & =\frac{w}{g} \\
& =\frac{1.34 \times 10^{4} \mathrm{~N}}{9.8 \mathrm{~m}^{2}} \\
& \simeq 1400 \mathrm{~kg} \\
\Rightarrow m & =1400 \mathrm{~kg}
\end{aligned}
$$

$$
1 N=1 \mathrm{~kg} \cdot{\underset{\mathrm{~s}}{ }}^{2}
$$

(b)

So,

$$
\begin{aligned}
\omega_{\perp} & =\omega \cos \theta \\
& =3000 \mathrm{ls} \cos \left(20^{\circ}\right) \\
& \simeq 2819 \mathrm{lbs} \\
\omega_{\perp} & =2819 \mathrm{lds}
\end{aligned}
$$

Example
What is the ref farce (in Newtons) regained to Stop a 1500 un can moving with a speed $f 55 \mathrm{mph}$ within a distance f $200 \mathrm{ft}(61 \mathrm{~m})$?

Solution

wat $\vec{F}=m \vec{a}$, whit is a?
Recall $v^{2}=v_{0}^{2}+2 a \Delta x$
$B S, v=0 \Rightarrow a=\frac{-v_{0}^{2}}{2 \Delta x}$
Nov,

$$
\begin{aligned}
v_{0} & =55 \frac{\mathrm{~m}}{\mathrm{~h}} \cdot\left(\frac{1609 \mathrm{~m}}{7 \mathrm{ri}}\right) \cdot\left(\frac{14}{3600 \mathrm{~s}}\right) \\
& =24.6 \mathrm{~m} \mathrm{~m}
\end{aligned}
$$

So

$$
\begin{aligned}
a & =-\frac{v_{0}^{2}}{2 \Delta x} \\
& =-\frac{(24.6 \mathrm{mr})^{2}}{2(61 \mathrm{r})} \\
& =-4.96 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Tharefore, farce is

$$
\begin{aligned}
F & =m a \\
& =(1500 \mathrm{~g})\left(-4.96 \mathrm{~m}-s^{2}\right) \\
& =-7440 \mathrm{~N}
\end{aligned}
$$

Fore is rocgative, why? Farce goes againt rotion, which is $+x$ in our cordiule syyen.

$$
F=-7440 \mathrm{~N}
$$

N B. $\quad v^{2}=v_{0}^{2}+2 a \Delta x$, denvion

$$
\begin{aligned}
& a=\frac{d v}{d t}, b 9 \quad \frac{d x}{d t}=v \\
& \Rightarrow \quad v \cdot a=v \frac{d v}{d t} \\
& \Rightarrow \frac{d x}{d t} \cdot a=v \cdot \frac{d v}{d t}=\frac{1}{2} \frac{d v^{2}}{d t} \\
& a=\cos 9 . \quad a \frac{d x}{d t}=\frac{d}{d t}(a x)
\end{aligned}
$$

So, $\frac{d(a x)}{d t}=\frac{d}{d t}\left(\frac{v^{3}}{2}\right)$
inegrle $\Rightarrow a \int_{x_{0}}^{x} d x=\frac{1}{2} \int_{v_{0}^{2}}^{v^{2}} d v^{2}$

$$
\begin{gathered}
\Rightarrow \quad \underbrace{a\left(x-x_{0}\right)}_{\Delta x}=\frac{1}{2}\left(v^{2}-v_{0}^{2}\right) \\
\Rightarrow \quad v^{2}=v_{0}^{2}+2 a \Delta x
\end{gathered}
$$

Example
A friend has given you a specie gift, a box f mass 10.0 kg with a my होur Surprise cuside. The box is resting an a smooth (froticuless) harizuta) surface f a table.
(a) Determine the weight f the box and the roornal force exerted on it L the table.
(b) Now yow friend pushes down an the box with a face $f 40.0 \mathrm{~N}$. Depone the snared force exetad an the box by the table.
(c) If you friend puls upward an the lox with a farce of 40.0 N , why now is the normal face exerted on the box by the table?
(d) Why would happen if a person pulls upward on the box with a force f 100.0 N ?

Solsion
(a)

$$
\begin{aligned}
\omega=m g & =(10.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =98 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F=m a \\
& F_{N}-W=0 \\
& \Rightarrow F_{N}=\omega \\
&=98 \mathrm{~N}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \sum F=m a \\
& F_{N}-w-F=0 \\
& \Rightarrow F_{N}=F+\omega \\
&=138 \mathrm{~N}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sum F & =m a \\
F_{N}-w+F & =0 \\
\Rightarrow F_{N} & =\omega-F \\
& =58 \mathrm{~N}
\end{aligned}
$$

(d) if $F=100 \mathrm{~N}, F>w$
\Rightarrow Box will be lifted
\Rightarrow wo conto with table!

$$
\begin{aligned}
\sum F & =m a \\
F-w & =m a \\
\Rightarrow a & =\frac{F-w}{m} \\
& =\frac{100 \mathrm{~N}-98 \mathrm{~N}}{10 \mathrm{cg}} \\
& =0.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example
You are Standing on a bathroom Scale in an elevator. Suddenly, the elcular cable is cit \& the safety devices farl, so the the elevator is is free fall. In your final moment, yon look It the scale and see you weight whit would you read off the bathroom scale?

Solution

$$
\begin{aligned}
& \downarrow g \\
& \Sigma F=m a \\
& F_{N}-\omega=m(-g) \\
& \Rightarrow F_{N}=w-m g \\
& \text { BO, } \omega=m g \\
& \Rightarrow \quad F_{N}=m g-m g \\
& =0
\end{aligned}
$$

Example
Two leis are pulling a 20 ky box an a frgianless harizouta) floor, as shown. One hid puls with a farce $f 150 \mathrm{~N}$ at 30° above harizand, while the other child palls with a face 60N I 45° from hanizont. Find the konizont accordion and serial force f the box.

Solvim

$$
\begin{aligned}
& \sum \vec{F}=m \vec{a} \\
& x: F_{1} \cos \partial_{1}+F_{2} \cos \partial_{2}=m a \\
& y: F_{1} \operatorname{si} \partial_{1}+F_{2} \sin \theta_{2}+\vec{F}_{N}-m g=0
\end{aligned}
$$

Two equctin, two mbnowns (a, F_{0})

$$
\begin{aligned}
\Rightarrow a & =\frac{F_{1} \cos \theta_{1}+F_{2} \cos \theta_{2}}{m} \\
& =\frac{150 \sim \cos 30+60 \mathrm{ocos}+5^{\circ}}{20 \mathrm{hg}} \\
& =8.6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow F_{N} & =m g-F_{1} \operatorname{sil} \theta_{1}-F_{2} \sin \theta_{2} \\
& =(20 \mathrm{c})\left(9.8-13^{2}\right)-1500 \sin 70^{\circ}-60 \mathrm{Nsin} 45^{\circ} \\
& =78.6 \mathrm{~N}
\end{aligned}
$$

Example
Two boxes, A and B, are canected by a lightweight card and are hanging from the ceiling. The bores have masses of $m_{A}=12.0 \mathrm{~kg}$ \& $m_{B}=10.0 \mathrm{~kg}$. You pull the lower box (box B) with a farce of 40 N . Find the fusion in the two pieces f rope.
Solution
Free body diagrams

$$
\sum F=m a
$$

A: $T_{2}-T_{1}-w_{A}=0$ ("); $w_{A}=m_{A} g$
B: $\quad T_{1}-\omega_{B}-F=0 \quad$ (2) $; \quad \omega_{B}=m_{B} y$
By (2) ,

$$
\begin{aligned}
T_{1} & =F+\omega_{B} \\
& =40 N+(10 \operatorname{cs})\left(3.8 \pi_{s}^{2}\right) \\
& =138 \mathrm{~N}
\end{aligned}
$$

for (1),

$$
\begin{aligned}
T_{2} & =T_{1}+w_{A} \\
& =\left(m_{A}+m_{B}\right) g+F \\
& =\left(12 \mathrm{~h}_{7}+10 \mathrm{~g}\right)\left(9.8 \mathrm{mrs}^{2}\right)+40 \mathrm{~N} \\
& \simeq 256 \mathrm{~N}
\end{aligned}
$$

Example
After a mishap, a 76 kg circus perform es clings to a trapeze, which is being pulled to the side by mother circus artist, as shown. Calculate the fusion in the two ropes if the person is moneñuly motionless.
solution
Let $\theta_{1}=15^{\circ}$

$$
\sigma_{2}=10^{\circ}
$$

Resolve $T_{1} \& T_{2}$

$$
\begin{aligned}
& T_{1 x}=T_{1} \sin \theta_{1} \\
& T_{1 y}=T_{1} \cos \theta_{1} \\
& T_{2 x}=T_{2} \cos \theta_{2} \\
& T_{2 y}=T_{2} \sin \theta_{2}
\end{aligned}
$$

$$
\begin{align*}
& \sum \vec{F}=m \vec{a} \\
& x: T_{2} \cos \theta_{2}-T_{1} \sin \theta_{1}=0 \tag{1}\\
& y: T_{2} \sin \theta_{2}+T_{1} \cos \theta_{1}-\omega=0 \tag{2}
\end{align*}
$$

and $\omega=m g$
From (1), $T_{2}=T_{1} \frac{\sin \theta_{1}}{\cos \theta_{2}}$
fron (2),

$$
\begin{aligned}
& T_{1} \frac{\sin \theta_{1} \sin \theta_{2}+T_{1} \cos \theta_{1}}{\cos \theta_{2}} \\
\Rightarrow \quad T_{1} & =\frac{m g}{\cos \theta_{1}+\sin \theta_{1} \tan \theta_{2}} \\
& =736.3 \mathrm{~N}
\end{aligned}
$$

Buch to (1)

$$
\begin{aligned}
T_{2} & =T_{1} \frac{\sin \theta_{1}}{\cos \theta_{2}} \\
& =193.5 \mathrm{~N}
\end{aligned}
$$

Exarple
Two cans we caneded by a cand tho passes our a small fritionless palley. Eack ca万t rolls Freely with reyljible frition. coiculde the acceliction of the cans ands the tansion in the coard.

Solजिien
Note thit $37^{\circ}+53^{\circ}=40^{\circ}$
\Rightarrow Con choose convering coordinge syden

Non

$$
\sum_{x}^{y}
$$

$$
\begin{aligned}
& g_{x}=g \cos \theta_{2} \\
& g_{y}=g \sin \theta_{2}
\end{aligned}
$$

Now, FBD's

Bol 1

$\sum \vec{F}=m \vec{a}$
(1) $x: \omega_{1 x}-T=m_{1} a$

$$
y: \quad N_{1}-w_{17}=0
$$

(1)

Assure diredion f "a if naglive, goes other way
(2)

$$
\begin{align*}
& x: \omega_{2 x}-N_{2}=0 \tag{3}\\
& y: T-\omega_{2 y}=r_{2} a \tag{4}
\end{align*}
$$

$$
\begin{array}{llll}
\omega_{1 x}-T=m_{1} a & \text { (1) } & \Rightarrow & m_{1} g \cos \theta_{2}-T=m_{1} a \\
N_{1}-w_{1 y}=0 & \text { (r) } & \Rightarrow & N_{1}-m_{1} g \sin \theta_{2}=0 \\
\omega_{2 x}-N_{2}=0 & \text { (3) } & \Rightarrow & m_{2 g} \cos \theta_{2}-N_{2}=0 \\
T-\omega_{2 y}=m_{2} a & \text { (4) } & \Rightarrow & T-m_{2} g \sin \theta_{2}=m_{2} a
\end{array}
$$

Combine (1) \& (2), solve fa " a "

$$
\begin{aligned}
m_{1} g \cos \theta_{2}-m_{2} c-r_{2} g \sin \theta_{2} & =m_{1} c \\
\Rightarrow \quad a & =\frac{g}{m_{1}+r_{2}}\left(m_{1} \cos \theta_{2}-m_{2} \sin \theta_{2}\right) \\
& \simeq-2.3 m_{s^{2}}
\end{aligned}
$$

Sus"a"ino (1)

$$
\begin{aligned}
T & =m_{1} g \cos \Theta_{2}-m_{1} a \\
& \simeq 82.3 \mathrm{~N}
\end{aligned}
$$

N.B. $\cos \left(\theta_{2}\right)=\cos \left(\frac{\pi}{2}-\theta_{1}\right)=\sin \theta_{1}$

$$
\begin{aligned}
& \Rightarrow \quad a=\frac{g}{r_{1}+m_{2}}\left(m_{1} \sin \theta_{1}-m_{2} \sin \theta_{2}\right) \\
& \& \quad T=m_{1} g \sin \theta_{1}-m_{1} a
\end{aligned}
$$

Example
Two blocks we camested by a masses rope as shown. The mass of the block on the table is 4.0 kg and the having mass is 1.0 kg . The table ad the pulley are fritiales. (a) Fid the accelobion f the sh ter. (b) find the fusion in the rope. (c) Find the speed with which the haying mass hits the flow if it stats from rest ad is initial looted 1.0 n from the floor.

Soصिion
Free Thol, Digras

Bol 1

$\rightarrow a_{1}$

Boch 2

Now rope is inextudsle, $\Rightarrow a_{1}=a_{2} \equiv a$
(1)

$$
\begin{array}{ll}
x: & T=m_{1} a \\
y: & F_{N}-w_{1}=0
\end{array}
$$

(2) $x: 0=0$

$$
\begin{align*}
& y: T-w_{2}=-m_{2} a \\
\therefore \quad & T=m_{1} a \\
F_{N} & =m_{1} g \tag{2}\\
& T-r_{2} g=-m_{2} a
\end{align*}
$$

pat (1) wo (3)

$$
\begin{aligned}
m_{1} a-m_{2} y & =-m_{2} a \\
\Rightarrow \quad a & =\frac{m_{2} g}{m_{1}+m_{2}} \\
& =1.96 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Teasin from c,

$$
\begin{aligned}
T & =m_{1} a \\
& =\frac{m_{1} m_{2} g}{m_{1}+m_{2}} \\
& =7.84 \mathrm{~N}
\end{aligned}
$$

If

$$
\begin{aligned}
y_{0} & =1.0 \mathrm{~m}, y=0 \\
v_{0} & =0, v=? \\
v^{2} & =-2 a\left(y-y_{0}\right) \\
& =\frac{2 m_{2} g}{m_{1}+m_{2}} y_{0} \\
\Rightarrow v & =1.98 \mathrm{~m}_{\mathrm{s}}
\end{aligned}
$$

$$
a \downarrow m_{2}
$$

$$
m_{2}
$$

Example
A ship suts sail from Rotterdam, heading due north $977.00 \mathrm{~m} / \mathrm{s}$ relative to the water. The local ocean carnet is 1.50 ms in a direction 40.0° north f eat.
why is the velocity f the ship relative t. Eat?

Sol sian

$$
v_{s}=7.00 \mathrm{rrs}
$$

$\rightarrow V=1.50 \mathrm{~ms}$
(N)

Earth

$$
\vec{v}_{s / w}+\vec{V}_{w / E}=\vec{V}_{s / \epsilon}
$$

Mebocith f slip
 Let wat

Naw,

$$
\begin{aligned}
\vec{V}_{L / E} & =1.50 \mathrm{rs} \cos 40^{\circ} \hat{\imath}+1.50 \mathrm{res} \operatorname{sit} 40^{\circ} \hat{\jmath} \\
& =1.15 \mathrm{mrs} \hat{\imath}+0.96 \mathrm{rs} \hat{\jmath}
\end{aligned}
$$

So,

$$
\begin{aligned}
\vec{v}_{s / E} & =\vec{v}_{s / \omega}+\vec{V}_{w / E} \\
& =\left(7.00 \mathrm{rs}_{s} \hat{\jmath}+(1.15 \mathrm{~m} \hat{\imath}+0.96 \mathrm{~ms} \hat{\jmath})\right. \\
& =1.15 \mathrm{~ms} \hat{\imath}+7.96 \mathrm{~ms} \hat{\jmath} \\
& \simeq 8.04 \mathrm{r}_{s} \\
v_{s / E} & =\sqrt{v_{s / E}{ }^{2}+v_{s / \varepsilon}^{2}} \\
\theta_{s / \epsilon} & =\tan ^{-1}\left(\frac{v_{s / E}}{v_{s / E}}\right) \\
& =81.8
\end{aligned}
$$

