Physics 101 P
Genoal Physics I
Problem Sessions - Wech 4
A.W. Jachura -Willian \& Mary

Dynamics

$$
\begin{array}{ll}
\text { NI: } & \text { if } \vec{F}_{N O}=\overrightarrow{0} \Rightarrow \vec{v}=\text { cost } \\
N \text { II: } & \vec{F}_{N O}=m \vec{C} \\
N \text { III: } & \vec{F}_{A \rightarrow B}=-\vec{F}_{B \rightarrow A}
\end{array}
$$

Motion: $\quad \vec{a}=\frac{d \vec{v}}{d t}, \quad \vec{v}=\frac{d \vec{r}}{d t}$

Example
You we Sanding on a bathroom sade in an elcuater. The elevator is moving upuad at a conga speed of $3 \mathrm{~m} / \mathrm{s}$. If you mass is 70 ng , LT does the sade rad?

Solution

If $v=$ cento, plays
no role

$$
\begin{aligned}
\Rightarrow \sum F & =m c \\
y: F_{N}-\omega & =0 \\
\Rightarrow F_{N} & =m y \\
& \simeq 2000
\end{aligned}
$$

Example
You are Standing on a bathroom Scale in an elcuater. The elevator is moving upuad at a conga speed ff $3 \mathrm{~m} / \mathrm{s}$. Then, the elevator slows down It a rte $f \quad 1.5 \mathrm{~m} / \mathrm{s}^{2}$.

If yow mass is 70 kg , LTO does the sade rad?

Solution

$$
\begin{aligned}
& \downarrow^{a} \quad \text { MF } F=m a \\
& F_{N}-m_{g}=-r a \\
& \Rightarrow F_{N}=m(g-a) \\
& =581 \sim
\end{aligned}
$$

Example
You are Standing on a bathroom scale in an elcuater. Siddent, the elevter cable is cit \& the safety devices fall, so the the elevider is is free fall. In your final moments, yon look I the scale and see you weight what would you read off the batwoon scale?

Solbian

$$
\begin{aligned}
& \begin{array}{ll}
\downarrow g & \frac{\Sigma F}{}=m a \\
& \\
F_{N}-\omega=m(-g) \\
& \Rightarrow F_{N}=\omega-m g
\end{array} \\
& B O, \omega=m g \\
& \Rightarrow \quad F_{N}=m g-m g \\
& =0
\end{aligned}
$$

Example
A block wo mass $m_{1}=6.0 \mathrm{gg}$ ens on a hanzatal surface a distance $x_{0}=40 \mathrm{~cm}$ from a ideal pulley. The cooption of winder friction is $\mu_{k}=0.22$. The bloch is comectal b, m ideal string passing our the pulley to a hanging mass mr $m_{2}=3.0 \mathrm{bg}$. When the stan is released, the haggis mass begin falling to the ground. Whit is the accelentin of the having mass, \& the basion of the rope. What speed does the block how whin it reads the pulley?

solsiton

So,

$$
\begin{aligned}
N & =m_{1} g \\
F_{f_{6}} & =\mu_{m} N \\
& =\mu_{L} m_{i g} \\
T-F_{f_{6}} & =m_{1} a \\
T-r_{2 g} & =-m_{2} a
\end{aligned}
$$

solv,

$$
\begin{aligned}
&-f_{t_{4}}+r_{2 g}=r_{1}+r_{2} c \\
& \Rightarrow a=\frac{1}{m_{1}+m_{2}}\left(m_{2 g}-\mu_{4} m_{1 g}\right) \\
&=g \frac{\left(m_{2}-\mu_{4} n_{1}\right)}{m_{1}+m_{2}} \\
& \simeq 1.83 \mathrm{r} / s^{2}
\end{aligned}
$$

$$
\begin{aligned}
T & =m_{2} g-r_{2 n} \\
& =\frac{m_{1} m_{2}}{r_{1}+m_{2}} g\left(1+\mu_{n}\right) \\
& \simeq 23.9 \mathrm{~N}
\end{aligned}
$$

Sperd?

$$
\begin{aligned}
v^{2} & =v_{0}^{2}+2 a \Delta x_{0} \\
& =2 a x_{0} \\
\Rightarrow v & =\sqrt{2 a x_{0}} \\
& \simeq 1.2 \mathrm{~ms}
\end{aligned}
$$

Exunple
A 560 g squimel with surfece arec $f 930 \mathrm{~cm}^{2}$ falls from a 5.0 m tree 1. the ground. Estirle its tormal velocity, using a dray codficing $C=1.0$. Wh' is the velocity f a 56-ug pusa littly the ground in such a shod ditance, cssung no dray?
Solsion

$$
\begin{aligned}
& \frac{\sum F=m a}{F_{D}-m g}=0 \\
& F_{D}=\frac{1}{2} C_{\rho} A v^{2} \\
& \Rightarrow v=\sqrt{\frac{2 m g}{C_{\rho} A}}
\end{aligned}
$$

Dosity fair,

$$
\rho=1.21 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, C=1.0, \begin{aligned}
m & =0.560 \mathrm{~kg} \\
A & =930 \mathrm{cr}^{2}\left(\frac{1 \mathrm{n}}{100 \mathrm{cn}}\right)^{2} \\
& =0.0930 \mathrm{~m}^{2}
\end{aligned}
$$

So, $v \simeq 9.87 \mathrm{r} \pm$

For pusen,

$$
\begin{aligned}
& v^{2}=2 g h \\
& \Rightarrow v=\sqrt{2 g 4} \\
& \simeq 9.89 \mathrm{rs}
\end{aligned}
$$

N, rass, wh?

$$
\sum F=m a \quad \Rightarrow \quad m g=m a \quad \Rightarrow a=0!
$$

