Physics 101 P
Geneal Physics I
Problem Sessions - Week 5
A.W. Jackura William \& Mary

Circular Motion
niform circalur mation

Conripot face

$$
\begin{aligned}
F_{c} & =m u_{c} \\
& =\frac{m v^{2}}{R}
\end{aligned}
$$

Wark \& Eneys

$$
\begin{aligned}
\omega & =\int_{A B A \rightarrow B} \vec{F} \cdot d \vec{r} \\
& =K_{B}-K_{A} \\
& =-\left(U_{B}-U_{A}\right)
\end{aligned}
$$

Conserusion f Enory : $K_{A}+U_{A}=K_{B}+U_{B}$

Example
Roller cocos have vertical loops. the radius f curtiore is small at the top the the sides - why?

Solution
Sine $a_{0}=\frac{v^{2}}{R}$, \& $F=$ mas.
the small R is sad the to erse the covripital face or the ter is greater the gravity

Exurple
What is the speed of a rollecocsor I the top f a loap if the radius f curutre thar is 15.0 m \& the dounward accingtar of the Cor is 1.50 g ?
solvion

$$
\begin{aligned}
& a_{c}=1.5 y \\
& a_{c}>g \Rightarrow \text { cas is a trach }
\end{aligned}
$$

Nコー,

$$
\begin{aligned}
a_{c}=\frac{v^{2}}{R} \Rightarrow v & =\sqrt{R a_{c}} \\
& =\sqrt{1.5 R_{y}} \\
& =\sqrt{1.5 \cdot 15 \cdot 9.8} \\
& \simeq 14.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example
A child f mass 40 hg is in a coll caste car this travels in a loop f radius 7.00 m . At point A the Speed of the car is $10.0 \mathrm{~m} / \mathrm{s}$, if It point B the speed is $10.5 \mathrm{~m} / \mathrm{s}$. Assure the child is not holding an and does not wen a seat belt.
(a) What is the farce f the car sea on the child at port A ?
(b) Whit is the farce f the car seat on the cloud I polit B?
(c) Whit minimum speed is required to learn the child in his scot at $\rho-1$ A?

Solution
(a)

$$
\begin{aligned}
& V_{A}=10.0 \mathrm{~m} 11 \\
& R=7.00 \mathrm{~m} \\
& \mathrm{~m}=40 \mathrm{hg}
\end{aligned}
$$

FBD cor seat (1)

Dis un M
FBD cluct (2)

f cossent

$$
\sum \vec{F}=m \vec{c}
$$

(1) $\quad N-M_{j}=-\frac{M v_{A}^{2}}{R}$
(2) $-N-m y=-m v_{\bar{R}}{ }^{2}$

$$
N\left\|_{m g}\right\|^{a_{c}=\frac{v_{A}^{2}}{R}}
$$

Frem (2)

$$
\begin{aligned}
N & =m v_{A}^{2}-m g \\
& =m\left(\frac{v_{A}^{2}}{R}-g\right) \\
& \simeq 179.4 \mathrm{~N}
\end{aligned}
$$

(b) $v_{B}=10.5 \mathrm{r} / \mathrm{s}$

FTD f child

$$
a_{c}=\frac{v_{13}^{2}}{R}
$$

$$
\theta=30^{\circ}
$$

$$
\omega_{y}=\omega \cos \theta
$$

$$
\Rightarrow N=m a_{c}-m g \cos \theta
$$

$$
=m\left(\frac{U s^{2}}{R}-g \cos \theta\right)
$$

$$
\simeq 290.2 \mathrm{~N}
$$

(c) Minimus speed I polit A ? Vain is sud the child Viム3 touche the seat \Rightarrow w, normal force FBD child

$$
\downarrow_{a_{c}}=\frac{v_{n i}^{2}}{R}
$$

$$
\begin{aligned}
& \hat{\imath}^{\top} \sum \vec{F}=m \vec{c} \\
& -N-m g=-m a_{c} \\
& \text { TOT, } N=0 \Rightarrow g=a_{c}=\frac{v_{\mu}^{2}}{R} \\
& \Rightarrow v_{m i n}=\sqrt[J g R]{ } \\
& \simeq 8.3 \mathrm{~m} /
\end{aligned}
$$

Example
If a Car takes a banked cure I less than ideal speed, friction is needed to bleep it from sliding toward the chide f the cue.
(a) Calculi the ideal speed to take a 100.0 m radius curve baked at 15°.
(6) What is the minimum colficien f friction needed for a drive tally the same cove of $20.0 \mathrm{~km} / \mathrm{h}$?

Solution

(a)

FBD car

$$
\begin{aligned}
& \sum \vec{F}=r \vec{a} \\
x & : N \sin \theta=m a_{c} \\
y & : N \cos \theta-r y=0 \\
\Rightarrow \quad N & =\frac{m g}{\cos \theta}
\end{aligned}
$$

so, $\quad a_{c}=g \tan \theta$
BN, $a_{c}=\frac{v^{2}}{R}$

$$
\begin{aligned}
\Rightarrow & =\sqrt{g R \tan \theta^{\circ}} \\
& =\sqrt{9.8 \mathrm{~m}_{3} 2 \cdot 100 \mathrm{n} \cdot \tan 15^{\circ}} \\
& =16.2 \mathrm{~m} / \mathrm{s} \quad \mathrm{z} \\
& =16.2 \mathrm{~s} \cdot\left(\frac{3600 \mathrm{~s}}{\mathrm{~h}}\right) \cdot\left(\frac{14 \mathrm{~s}}{1000 \mathrm{~m}}\right) \\
& =58.3 \mathrm{lem}
\end{aligned}
$$

(b)

Nou, for very low speed car

$$
\begin{aligned}
v & =20 \frac{u_{n}}{h} \\
& =20 \frac{u_{n}}{4} \cdot\left(\frac{14}{3600 \mathrm{~s}}\right) \cdot\left(\frac{1000 \mathrm{n}}{140}\right) \\
& =5.6 \mathrm{r} / \mathrm{s}
\end{aligned}
$$

$F B D$

$$
\begin{aligned}
& \frac{\sum \vec{F}=r \vec{a}}{x:} \\
& \text { y: } N \sin \theta-F_{f} \cos \theta=m a_{c} \\
& \text { asor } \quad F_{f}=\mu N \\
& \text { and } \quad a_{c}=\frac{v^{2}}{R}
\end{aligned}
$$

$$
\begin{align*}
& N \sin \theta-\mu N \cos \theta=\frac{m v^{2}}{R} \tag{1}\\
& N \cos \theta+\mu N \sin \theta=m g \tag{2}
\end{align*}
$$

$$
\begin{align*}
& N \sin \theta-\mu N \cos \theta=\frac{m v^{2}}{R} \tag{1}\\
& N \cos \theta+\mu N \sin \theta=m g \tag{2}
\end{align*}
$$

Solve (1) for N,

$$
N=\frac{m v^{2}}{R} \frac{1}{\sin \theta-\mu \cos \theta}
$$

Solve (2) for μ

$$
\begin{aligned}
\mu & =\frac{m g-N \cos \theta}{N \sin \theta} \\
& =\frac{1}{N} \frac{m g}{\sin \theta}-\frac{1}{\tan \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \mu=\frac{R}{r^{2} v^{2}} \cdot \frac{r \cdot g}{\sin \theta} \cdot(\sin \theta-\mu \cos \theta)-\frac{1}{\tan \theta} \\
&=\frac{R_{g}}{v^{2}}\left(1-\frac{\mu}{\tan \theta}\right)-\frac{1}{\tan \theta} \\
& \Rightarrow \mu\left[1+\frac{R_{g}}{v^{2} \tan \theta}\right]=\frac{R_{g}}{v^{2}}-\frac{1}{\tan \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left[1+\frac{R_{g}}{v^{2} \tan \theta}\right]=\frac{R_{y}}{v^{2}}-\frac{1}{\tan \theta} \\
& \mu=\frac{\frac{R_{y}}{v^{2}}-\frac{1}{\tan \theta}}{1+\frac{R_{y}}{v^{2} \tan \theta}} \\
& =\frac{R_{g} \tan \theta-v^{2}}{R_{g}+v^{2} \tan \theta}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mu & =\frac{R_{g} \tan \theta-v^{2}}{R_{g}+v^{2} \tan \theta} \\
& \simeq 0.234
\end{aligned}
$$

Exaype
Gains from a hopper falls it a catc of $l 0 \mathrm{ly} / \mathrm{s}$ voaicall, cuto a cunveyer bolt that is roving hurzaitlly I a conssu speed $f \quad 2 \mathrm{~m} / \mathrm{s}$.
(a) whi is the face seeded to beep the conveyer bett mooing at the coss wocity?
(b) Wht is the minimun pous ff the rotar dning the converer Let?

Solwion

$$
\sum_{\operatorname{grans}} \frac{d m}{d t}=10 \frac{\mathrm{ug}}{\mathrm{~s}}
$$

Conveyer

$$
\longrightarrow v=2 \mathrm{~m} / \mathrm{s}
$$

cal
N.ts.

Really, slaid isteduce conces f monevin to fully undertal /apprecole this problem.

$$
\vec{P}=m \vec{v}
$$

\& NII sass $\vec{F}=\frac{d}{d t} \vec{P}$
B9, her $\vec{v}=\cos t=9, m \neq \cos \theta=5$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d t}(m \vec{v})=\frac{d m}{d t} \vec{v}+m \frac{d}{d t} \\
& \\
& \Rightarrow \vec{F}=\frac{d m}{d t} \vec{v} \\
& F=\frac{d m}{d t} \cdot v=10 \mathrm{~kg} \cdot\left(2 m_{s}\right) \\
& \\
& \Rightarrow F=20 \sim
\end{aligned}
$$

(b)

Pows

$$
\begin{aligned}
P & =F \cdot v \\
& =\frac{d m}{d t} v^{2}
\end{aligned}
$$

$$
\Rightarrow P=40 \mathrm{~W}
$$

Exarple
A sadl block f ross 200 g stâs 9 CoI at A, slides to B whe its spead is $v_{B}=8.0 \mathrm{mrs}$, then stiders along the harzanat suntace a distince 10 m before coring to res at C.
(a) wht is the wash foridim clang the courch suntace?
(b) whe is the coeffion of lentic fribion aly the hirzat surface?

SuDion
(a) Wake f fridion a canved sunface

$$
\begin{aligned}
W & =\int \vec{F} \cdot d \vec{r} \\
& =\int \vec{F}_{y} \cdot d \vec{r}+\int F_{f} \cdot d \vec{r} \\
& =-\left(U_{B}-U_{A}\right)+W_{f r}
\end{aligned}
$$

加, wso $\omega=K_{B}-K_{A}$

$$
\begin{aligned}
& \Rightarrow \quad K_{B}-K_{A}=-U_{B}+U_{A}+w_{f r} \\
& \left.\Rightarrow \quad \omega_{f_{r}}\right|_{A \rightarrow B}=K_{B}+U_{B}-\left(K_{A}+U_{A}\right)
\end{aligned}
$$

Non,

$$
\begin{array}{ll}
\frac{A}{k_{A}=0} & \frac{\beta}{K_{B}=\frac{1}{2} m v_{B}^{2}} \\
U_{A}=r g h & U_{B}=0
\end{array}
$$

Sor

$$
\begin{aligned}
w_{f r} & =\frac{1}{2} m v_{B}^{2}-m g h \\
& =\frac{1}{2}(0.2 g)\left(8 \mathrm{~ms}_{s}\right)^{2}-(0.2 v) \cdot\left(9.8 \mathrm{~m}_{\mathrm{s}}\right) \cdot(4 \mathrm{~m}) \\
& =-1.44 \mathrm{~J}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left.w_{f r}\right|_{B \rightarrow C} & =k p_{c}^{0}-k_{B} \\
& =-\frac{1}{2} n v_{n}^{2} \\
& =-6.4 \mathrm{~J}
\end{aligned}
$$

B9

$$
\begin{aligned}
& W_{f r}=-F_{f} \Delta x \\
&=-\mu m g \Delta x \\
& \Rightarrow \mu=\frac{-\omega_{f r}}{m g \Delta x}=\frac{6.4 J}{(0.2 \mathrm{~L})(9.8 \sim-s) \cdot(10 n)} \\
& N=r j
\end{aligned} \quad\left\{\begin{array}{l}
F_{f}=\mu v \\
\\
\Rightarrow \mu=0.33
\end{array}\right.
$$

