Physics 101 P
General Physics I
Problem Sessions - Week 6
A.W. Jachura -William \& Mary

Worle \& Enery

$$
W_{A \rightarrow B}=\int_{\substack{p \neq \pi \\ A \rightarrow B}} \vec{F} \cdot d \vec{r}
$$

Work-Energy theoren: $\omega_{A \rightarrow B}=\Delta K$

$$
=K_{B}-K_{A}
$$

w/ Kindic uugy $K=\frac{1}{2} m v^{2}$
For new- Eurth grovity, $\vec{F}_{y}=-m y \hat{\jmath}$
Can dotre potedial Enogy

$$
\begin{aligned}
W_{A \rightarrow B, g} & =\int_{A}^{B} \vec{F}_{g} \cdot d \vec{r} \\
& =-\Delta U \\
& =-\left(U_{B}-U_{A}\right)
\end{aligned}
$$

w/ $U=m g y$
Separate ot grovit:

$$
W_{f_{A} \rightarrow B}=(\underbrace{K_{B}+U_{B}}_{\equiv E_{B}})-(\underbrace{K_{A}+U_{A}}_{\equiv E_{A}})
$$

It no frition

$$
E_{B}=E_{A}
$$

Example
A ball is suspended from a light 1.1 m Sting. The string ales on angle f 21 with the vertical. The ball is then leicked up ad to the right suck that the String remains tom the entire time the ball swings upwards.

This hick gives the ball on diitial velocity, f $1.1 \mathrm{~m} / \mathrm{s}$.
(a) Whet will be the speed of the ball when it readres its lowest point?
(b) What will be the maximum apple the Bring males with the utica)?

Solution
(a) LO $y=0$ be when the ball is I its lowest point.

No fridion,
 total eiorgy is consured.

$$
E_{i}=E_{f}
$$

Finad aryy e lowest poit $y=0$

$$
\begin{aligned}
& E_{f}=K_{f}+U_{t} \\
& U_{+}=0, K_{f}=\frac{1}{2} m v^{2}
\end{aligned}
$$

(nitia) Endgy © dütid hich $y=h$

$$
\begin{aligned}
& E_{i}=K_{i}+U_{i} \\
& U_{i}=m g h, K_{i}=\frac{1}{2} m v_{0}^{2}
\end{aligned}
$$

Now, need h,

so, $\quad U_{i}=m g h$

$$
=m g L(1-\cos \theta)
$$

Therefore, $E_{i}=E_{f}$

$$
\begin{gathered}
\Rightarrow \quad \frac{1}{2} m v_{0}^{2}+m g L(1-\cos \theta)=\int_{2}^{1} m v^{2} \\
\Rightarrow \quad v \\
=\sqrt{v_{0}^{2}+2 g L(1-\cos \theta)} \\
\simeq 1.625 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(b) To get maximum angle, $\theta_{m a x}$, we cess. f. Envy)!

From before, $\quad h_{\max }=L\left(1-\cos \theta_{r a x}\right)$

$$
h=L(1-\cos \theta)
$$

so, $\quad E_{i}=E_{f}$

$$
\begin{array}{ll}
\frac{\text { Initial }}{U_{i}=m g h} & U_{f}=m g h_{\text {max }} \\
K_{i}=\frac{1}{2} m v_{0}^{2} & K_{f}=0 \\
\Rightarrow \frac{1}{2} m v_{0}^{2}+m g h=m g h_{\text {max }}
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{2} m v_{0}^{2}+m g h=m g h_{\operatorname{rax}} \\
& \Rightarrow \frac{1}{2} v_{0}^{2}+g L(y-\cos \theta)=g L\left(y-\cos \theta_{\text {rax }}\right) \\
& \Rightarrow \frac{1}{2} v_{s}^{2}-g L \cos \theta=-g L \cos \theta_{\operatorname{rax}} \\
& \Rightarrow \cos \theta_{\text {rax }}=\cos \theta-\frac{v_{0}^{2}}{2 g L} \\
& \Rightarrow \theta_{\operatorname{rax}}=\cos ^{-1}\left(\cos \theta-\frac{v_{2}^{2}}{2 g L}\right) \\
& \simeq 28.66^{\circ}
\end{aligned}
$$

Example
A bowling ball $m=1.1 \mathrm{~kg}$ is cropped from a height h. It falls a distance, d, before accounting a large tube with radius $r=2.5 \mathrm{~m}$ which is corseted by two bolts. Each bolt can induiduad)? sustain a face of $F=110 \mathrm{~N}$ before failing. Whit is the maximum gitace, d, above the pipe from which the ball cm drop so the bolts do not fail?

Solution
God): Relde l to F !
Los's look at a FBD of the
ball in the twle

$$
\begin{aligned}
& \sum_{x}^{4} \\
& y: N=N a_{c}=\frac{v^{2}}{r} \\
& y=m g \operatorname{mas}_{x}^{\theta} \theta=m \frac{v^{2}}{r}
\end{aligned}
$$

By NIII, Nornal fonce on ball b) tube is equal \&opposite f fance on tube from bull. WhS is maximun Nornd farce?

$$
N=m g \cos \theta+m \frac{v^{2}}{r}
$$

if $\theta=0^{0}, N$ is raximun! $N=m g+m \frac{v^{2}}{r}$

$$
N_{\operatorname{rax}}=m y+m \frac{v^{2}}{r}
$$

How to relate this Neral farce t. farces on bots? FBD of tale

$F=M a x_{x}$ face on bolt before failure

$$
=110 \mathrm{~N}
$$

LJे's assume tube is massless ($m_{\text {tale }} \ll m_{\text {ball }}$)
So, $\quad \sum \vec{F}=m \bar{a}$

$$
2 F-N_{\max }=0 \quad \Rightarrow \quad N_{\max }=2 F
$$

So, we have the reldian

$$
2 F=m g+\frac{m v^{2}}{r} \lessdot \text { Now need } v!
$$

We con find \sim usily consurbion f enesy!

$$
E_{i}=E_{f}
$$

Initia

Find

$$
\begin{aligned}
E_{f} & =K_{f}+U_{f} \\
K_{f} & =\frac{1}{2} m v^{2} \\
U_{f} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad E_{i}=E_{f} \\
& \quad \Rightarrow m g(d+r)=\frac{1}{2} m v^{2}
\end{aligned}
$$

Si, two relations

$$
\begin{align*}
& 2 F=m g+\frac{m v^{2}}{r} \tag{1}\\
& v^{2}=2 g(d+r) \tag{2}
\end{align*}
$$

So, (2) \rightarrow (1)

$$
2 F=m g+\frac{2 m g(d+r)}{r}
$$

\rightarrow Solve for d!

$$
\begin{gathered}
\Rightarrow 2 F r-m g r=2 m g d+2 r g r \\
\Rightarrow 2 r g d=2 F r-3 r g r \\
\Rightarrow d=\frac{F r}{m g}-\frac{3 r}{2}
\end{gathered}
$$

or, substitute numbers;

$$
d \simeq 21.73 \mathrm{~m}
$$

Gravity
Nenton's
Low f Gravity

$$
\stackrel{\rightharpoonup}{F}_{1 \rightarrow 2}=-G \frac{m_{1} m_{2}}{r^{2}} \hat{r}
$$

fron NIII

$$
\vec{F}_{1 \rightarrow 2}=-\vec{F}_{2 \rightarrow 1}
$$

$$
G=6.6 \times 10^{-11} \frac{\mathrm{Nm}}{} \mathrm{mg}^{2}
$$

Ncwon's gravitation costan

New Euthis surface,

$$
\begin{aligned}
& \vec{F}=-\frac{G m}{(R+h)^{2}} \hat{\jmath} \\
& \text { Euth radius } \\
& \simeq-m\left(\frac{G M}{R^{2}}\right) \hat{\jmath}+O\left(\frac{h}{R}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-m g \hat{\jmath}+O\left(\frac{h}{R}\right)
\end{aligned}
$$

Example
The cover f a moon f mass m is a distance D from the cover f a plant wi mass M. At sore distance from the cuter of the plant, dong a line connecting the covers f the plus t ald moon, the ne force will be zoo. Where is thar locate?

Solution

Assure in object with mass mo It x.

$$
\begin{aligned}
& \frac{\sum \vec{F}=\overrightarrow{0}}{}-F_{l^{\prime \prime \mu g}}+F_{m-m}=0 \\
& F_{l^{\prime m g}}=\frac{G M_{r_{0}}}{x^{2}} \\
& F_{r m=n}=\frac{G m r_{0}}{(D-x)^{2}} \\
& \Rightarrow-\frac{G M r_{0}}{x^{2}}+\frac{G m r_{0}}{(D-x)^{2}}=0 \\
& \Rightarrow \frac{M}{x^{2}}=\frac{m}{(D-x)^{2}} \\
& \Rightarrow\left(\frac{D-x}{x}\right)^{2}=\frac{m}{M} \\
& \Rightarrow \frac{D}{x}-1= \pm \sqrt{\frac{m}{M}} \\
& \Rightarrow x=\frac{D}{1 \pm \sqrt{\frac{m}{M}}}
\end{aligned}
$$

Example
Plane f A has a mass M \& radius R, while plane B has a mass $3 M$ \& radius $2 R$. They are separtied by a diDance $G R$. A rock f mass m is released halfing between the pines. Assure the plants do not move. why is the accelocition f the role?

Solution

FBD f rock

$$
\longrightarrow^{a} \text { (Guess) }
$$

$$
\begin{aligned}
& \sum \vec{F}=r \vec{c} \\
& F_{B}-F_{A}=m a \\
& F_{A}=\frac{G M_{A} m}{r_{A}^{2}} \quad \text { N.te: Plane ralim } \\
& F_{B}=\frac{G M_{B} m}{r_{B}^{2}} \quad \\
\Rightarrow & \frac{G M_{D} m}{9 R^{2}}-\frac{G M_{A} m}{9 R^{2}}=m a
\end{aligned}
$$

is Not anpooth hue!

No, $M_{n}=3 M, M_{A}=M$

$$
\begin{aligned}
\Rightarrow \quad a & =G\left(\frac{M}{3 R^{2}}-\frac{M}{9 R^{2}}\right) \\
& =\frac{2 G M}{9 R^{2}}
\end{aligned}
$$

Since $M>0, R>0$, accdedian is townd plang $B 3$.

$$
\vec{a}=\frac{2}{9} \frac{G M}{R^{2}} \hat{\imath}
$$

