Physics 101 P
Genoal Physis I
Problem Sessions - Weck 7
A.W. Jachura -Willian \& Mary

Moncगur

$$
\vec{p}=m \vec{v}
$$

If a sy Sem is corposed f rultiple bodies

$$
\begin{aligned}
\vec{P}_{t a t} & =\sum_{i=1}^{N} \vec{p}_{i} \\
& =\sum_{i=1}^{N} m_{i} \vec{v}_{i}
\end{aligned}
$$

Coto f mass: $\vec{R}_{c m}=\frac{\sum_{i=1}^{N} m_{i} \vec{r}_{i}}{M}$
So,

$$
\begin{aligned}
\vec{P}_{+9} & =\sum_{i=1}^{N} m_{i} \vec{v}_{i} \\
& =\sum_{i=1}^{N} \frac{d}{d t}\left(m_{i} \vec{r}_{i}\right)=\frac{d}{d t}\left[\sum_{i=1}^{N} m_{i} \vec{r}_{i}\right] \\
& =M \frac{d}{d t} \vec{R}_{c m}=M \vec{V}_{c m}
\end{aligned}
$$

Collisions

$$
\vec{P}_{t a t}=\vec{P}_{t a}
$$

Monestun consuodin
If a collision consuves Curzy 2

$$
\Rightarrow \text { Elustic collision }
$$

If endyy Nit consenved

$$
\Rightarrow \text { Inelastic collision }
$$

\rightarrow if Max Eang 10.9 \Rightarrow Total inelatic collision

Example
Two pendulums each of Luth L are in'till situated as shown. The firs pudulum is released from a heist d \& Strives the second. Assure the collision is completely drastic and neglect the mass fth Strings \& cay fritiand feds. How high does the center f mass rise after the collision?

Solution

The ration ca be divided do twi sieges:
bear collision

Att collision

Before
ST $y=0$ at m_{2} position use consavition f aras for m,

$$
K_{i}+U_{i}=K_{f}+U_{f}
$$

(nits)

$$
\begin{array}{ll}
K_{i} & =0 \\
U_{i} & =r_{g} d \\
\Rightarrow & \overline{K_{f}} d=\frac{1}{2} m_{1} v^{2} \\
U_{f} & =0 \\
& v_{1} v^{2} \Rightarrow \\
\end{array}
$$

Qoy, titu monent is censuved duriy coltisin

veloing fter collsion

$$
\begin{aligned}
& \vec{P}_{b f a r}=m_{1} v \hat{\imath} \\
& \vec{P}_{c f+v}=\left(m_{1}+r_{2}\right) v^{\prime} \hat{\imath}
\end{aligned}
$$

- inelatic collison!
sor $m_{1} v=\left(m_{1}+r_{2}\right) v^{\prime}$

$$
\Rightarrow \quad v^{r}=\frac{m_{1}}{m_{1}+r_{2}} v
$$

Als, sice $v=\sqrt{2 g l}$

$$
\Rightarrow v^{\prime}=\frac{m_{1}}{r_{1}+r_{2}} \sqrt{2 g d}
$$

Now, rette collision kinentics to mation atter collision

After
tatal enong again conserved for ($m_{1}+m_{2}$) massive olojet

$$
K_{i}^{\prime}+v_{i}^{\prime}=K_{f}^{\prime}+U_{p}^{\prime}
$$

Lniti]
fing

$$
\begin{array}{ll}
K_{i}^{\prime}=\frac{1}{2}\left(m_{1}+m_{2}\right) v^{\prime 2} & K_{f}^{\prime}=0 \\
U_{i}^{\prime}=0 & U_{f}^{\prime}=\left(m_{1}+m_{2}\right) g h \\
\Rightarrow & \frac{1}{2}\left(m_{1}+m_{2}\right) v^{\prime 2}=\left(m_{1}+m_{2}\right) g h \\
& \Rightarrow h=\frac{v^{\prime 2}}{2 g}
\end{array}
$$

Nov use

$$
v^{\prime}=\frac{m_{1}}{r_{1}+r_{2}} \sqrt{2 g d}
$$

to find

$$
\begin{aligned}
& h=\frac{v^{\prime 2}}{2 g}=\left(\frac{m_{1}}{m_{1}+r_{2}}\right)^{2} d \\
& h=\left(\frac{m_{1}}{m_{1}+m_{2}}\right)^{2} d
\end{aligned}
$$

Sore extreas

$$
\text { if } m_{1}=m_{2} \Rightarrow h=\left(\frac{1}{2}\right)^{2} d=\frac{d}{4}
$$

if $m_{1} \ll m_{2} \Rightarrow \frac{r_{1}}{r_{2}} \ll 1$

$$
\begin{aligned}
\Rightarrow \frac{m_{1}}{r_{1}+r_{2}} & =\frac{m_{1}}{m_{2}}\left(\frac{1}{1+\frac{m_{1}}{r_{2}}}\right) \\
& =\frac{m_{1}}{m_{2}}\left(1-\frac{r_{1}}{r_{2}}\right)+\cdots \\
\Rightarrow h & =\left(\frac{m_{1}}{r_{2}}\right)^{2} d, \text { she } \frac{m_{1}}{m_{2}}<1, \frac{h}{d} \ll 1
\end{aligned}
$$

$$
\text { if } \begin{aligned}
& m_{1} \gg m_{2} \Rightarrow \frac{m_{2}}{m_{1}} \ll 1 \\
& \Rightarrow \frac{m_{1}}{m_{1}+r_{2}}=\frac{1}{1+\frac{m_{2}}{r_{1}}} \simeq 1-\frac{m_{2}}{r_{1}} \\
& s_{0}, \quad h \simeq\left(1-\frac{m_{2}}{r_{1}}\right)^{2} d \simeq d
\end{aligned}
$$

Exarple
Scationg f hdiun-4 nudei from gold-197 nudei. The eaogs f an ancoming hdiun- 4 sudens is $8 \times 10^{-13} \mathrm{~J}$, \& the raises f the helim \& gold nudei are 6.68×10^{-27} ag \& $3.29 \times 10^{-25} \mathrm{~kg}$, respective), (N.B. rass catio 410197)
(a) If the heim nudens scattos to a agle f 120° during on elatic collision with a goll nudens, cakelte the hoim nudens's final speed \& the find veocity f the gold nuders.
(b) wht is the funt leivatic enorgy of the hetinm nudens?

Solbion
Elastic collisians carserve monestion \& energy

Momentm

$$
\begin{aligned}
x: \quad m_{H e} v_{H_{e}} & =m_{H_{e}} v_{H e}^{\prime} \cos \theta+m_{A_{n}} v_{A_{n}}^{\prime} \cos \varphi \\
0: & =m_{H_{e}} v_{H_{2}}^{\prime} \sin \theta-m_{A_{n}} v_{A_{n}}^{\prime} \sin \varphi
\end{aligned}
$$

Envg

$$
\frac{1}{2} r_{H e} v_{H_{e}}^{2}=\frac{1}{2} r_{H e} v_{H_{2}}^{\prime 2}+\frac{1}{2} m_{A_{4}} v_{A_{1}}^{\prime 2}
$$

Defle mass ratio $\frac{1}{\alpha}=\frac{m_{\text {He }}}{m_{A 1}}=\frac{4}{197}$

$$
\Rightarrow \alpha=\frac{m_{A_{n}}}{m_{\text {fer }}}
$$

So,

$$
\begin{align*}
v_{H e} & =v_{H e}^{\prime} \cos \theta+\alpha v_{A n}^{\prime} \cos \varphi \tag{1}\\
0 & =v_{H e}^{r} \operatorname{sit} \theta-\alpha v_{A n}^{\prime} \sin \varphi \tag{2}\\
v_{H e}^{2} & =v_{H e}^{\prime}{ }^{2}+\alpha v_{A n}^{\prime 2} \tag{3}
\end{align*}
$$

Gaal: Need $v_{H C}^{r}, v_{A n}^{\prime}, \varphi$.
3 eqas., 3 uniluouas, solue!

Square (1) \& (2)

$$
\begin{gather*}
\left(v_{H 2}-v_{H e}^{\prime} \cos \theta\right)^{2}=\alpha^{2} v_{A_{2}}^{\prime 2} \cos ^{2} \varphi \\
\rightarrow v_{H_{l}}^{2}+v_{H_{C}^{\prime}}^{2} \cos ^{2} \theta-2 v_{H e} v_{H e}^{\prime} \cos \theta=\alpha^{2} v_{A n}^{\prime 2} \cos ^{2} \varphi \quad\left(1^{\prime}\right) \\
v_{H_{l}}^{\prime 2} \sin ^{2} \theta=\alpha^{2} v_{A_{n}}^{\prime 2} \sin ^{2} \varphi
\end{gather*}
$$

Add (1' $A\left(2^{\prime}\right)$, use $\cos ^{2} \theta+\sin ^{2} \theta=1$

$$
\Rightarrow \quad v_{H e}^{2}+v_{H e}^{r 2}-2 v_{H z} v_{H e}^{\prime} \cos \theta=\alpha^{2} v_{A n}^{r^{2}}
$$

N Ner ase (3) t, dinile $N_{A}^{r^{2}}$

$$
\alpha v_{A_{u}^{\prime}}^{\prime 2}=v_{+1 c}^{2}-v_{H / c}^{\prime 2}
$$

$$
\begin{aligned}
& v_{H e}^{2}+v_{H e}^{\prime 2}-2 v_{H i} v_{H i}^{\prime} \cos \theta=\alpha\left(v_{H l e}^{2}-v_{H / C}^{\prime 2}\right) \\
& \Rightarrow \quad(1+\alpha) v_{H e}^{\prime 2}-2 v_{H C} \cos \theta v_{H e}^{\prime}+(1-\alpha) v_{H e}^{2}=0
\end{aligned}
$$

ar

$$
v_{H e}^{\prime 2}-\frac{2 v_{\text {He }} \cos \theta}{l+\alpha} v_{\text {Hee }}^{\prime}+\left(\frac{1-\alpha}{1+\alpha}\right) v_{\text {He }}^{2}=0
$$

shlue quadstic for Vrée

$$
\begin{aligned}
v_{H e}^{\prime} & =\frac{v_{H e} \cos \theta}{l+\alpha} \pm \frac{1}{2} \sqrt{\frac{4 v_{H e}^{2} \cos ^{2} \theta}{(1+\alpha)^{2}}-\frac{4(1-\alpha)}{1+\alpha} v_{H e}^{2}} \\
& =\frac{v_{\text {He }} \cos \theta}{l+\alpha} \pm \frac{v_{\text {He }} \cos \theta}{l+\alpha} \sqrt{1-\frac{\left(1-\alpha^{2}\right)}{\cos ^{2} \theta}} \\
& =\frac{v_{\text {He }} \cos \theta}{l+\alpha}\left[1 \pm \sqrt{1+\frac{\alpha^{2}-1}{\cos ^{2} \theta}}\right]
\end{aligned}
$$

Subsitue numbers, chat is vien?

$$
K_{\text {He }}=\frac{1}{2} m_{\mathrm{He}} v_{\mathrm{He}}^{2} \Rightarrow v_{\text {Hec }}=\sqrt{\frac{2 K_{\mathrm{He}}}{m_{\text {Her }}}}
$$

Sor

$$
\simeq 1.548 \times 10^{7} \mathrm{n}
$$

- Ther soltio ir negaive

Nov, he know $v_{H_{c}}^{\prime}=1.5 \times 10^{7} \mathrm{mes}$
So, from (3),

$$
\begin{aligned}
v_{A_{u}}^{\prime} & =\sqrt{\frac{v_{H e}^{2}-v_{H e}^{\prime 2}}{\alpha}} \\
& \simeq 5.36 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Finally, from (2)

$$
\begin{aligned}
\sin \varphi & =\frac{v_{H 2}^{\prime}}{\alpha v_{A u}^{\prime}}, \sin \theta \\
& \simeq 0.492 \\
\Rightarrow \varphi & =\sin ^{-1}(0.492) \\
& \simeq 29.5^{\circ}
\end{aligned}
$$

So,

$$
\begin{aligned}
& v_{H_{c}}^{\prime} \simeq 1.5 \times 10^{7} \mathrm{~m} / \mathrm{s} \\
& v_{A_{-}}^{\prime} \simeq 5.4 \times 10^{5} \mathrm{mos} \\
& \varphi \simeq 29.5^{\circ}
\end{aligned}
$$

(b)

$$
\begin{aligned}
R_{H_{\mathrm{C}}} & =\frac{1}{2} m_{\mathrm{Her}} v_{\mathrm{He}_{2}}^{-2} \\
& \simeq 7.53 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

s., $\frac{K_{\text {Hef }}}{K_{\text {Hei }}}=\frac{7.53 \times 10^{-13} \mathrm{~J}}{8 \times 10^{-13} \mathrm{~J}} \simeq 0.94$
s\% 6% enegy tranfered to gold sudens.

Example
A shall moon is orbiting a play with a period f lo les, and the distance between the non \& plat is $10^{4} \mathrm{~km}$. Deduce the mass f the planes.

The plane is further obscured to have a radius of 100 un. What is the acceoction due to gravity it the surface f the plant?

Solution
plans x
Moon

$$
R=10^{4} \mathrm{~km}
$$

$T_{\text {noon }}=10 \mathrm{dys}$.

Lg $M_{X}=\operatorname{rass} f \operatorname{ltan} X$
$M_{M}=$ ross f man
$F B D f$ roan
\longleftarrow^{*}

circus orbit

$$
\frac{\Gamma \vec{F}=m \vec{c}}{F_{G}=M_{m} a_{c}}
$$

\& Nectar's law f Grail

$$
\begin{aligned}
& F_{G}=\frac{G M_{x} M_{M}}{R^{2}} \\
\Rightarrow & G \frac{M_{x} M_{r}}{R^{2}}=M_{r} a_{c}
\end{aligned}
$$

Moon mass cancels

Solve for M_{x}

$$
M_{x}=\frac{R^{2} a_{c}}{G}=\frac{R^{2} v^{2}}{G R}=\frac{R v^{2}}{G}
$$

So, if we know the speed f the ramon, we have the mass f the plant x.

$$
M_{x}=\frac{R v^{2}}{G}
$$

Know prod $T=10 \mathrm{dc} / \mathrm{s}$

$$
\begin{aligned}
T & =10 \mathrm{dys} \cdot\left(\frac{24 \mathrm{~h}}{1 d_{\mathrm{c}}}\right) \cdot\left(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\right) \\
& \simeq 8.64 \times 10^{5} \mathrm{~s}
\end{aligned}
$$

Circular motion

$$
\begin{aligned}
v & =\frac{2 \pi R}{T}=\frac{2 \pi \cdot 10^{4} \mathrm{~km}}{8.64 \times 10^{5} \mathrm{~s}} \\
& \simeq 0.0727 \mathrm{~km} / \mathrm{s} \\
& =72.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Sor

$$
\begin{aligned}
M_{x} & =\frac{R v^{2}}{G} \\
& =\frac{10^{7} \mathrm{~m} \cdot(72.7 \mathrm{~m} / \mathrm{s})^{2}}{\left(6.67 \times 10^{-11} \frac{\mathrm{~N}_{\mu^{2}}}{\mathrm{hg}^{2}}\right)} \\
& \simeq 7.92 \times 10^{20} \mathrm{ug}
\end{aligned}
$$

on the surface f pland x

$$
\begin{aligned}
y_{x} & =\frac{G M_{x}}{r^{2}} \\
& =5.28 \mathrm{rrs}^{2}
\end{aligned}
$$

Example
A 5.5 kg bowling ball moving at $9 \mathrm{~m} / \mathrm{s}$ collides with a 0.85 kg bowing gil. which is scattered of an angle $f 15.8^{\circ}$ to the ditid diredin f the boulig ball and with - speed $f 15 \mathrm{~m} / \mathrm{s}$.
calculate the final velocity f the bowling ball. Is the collision elastic?

Bowls c-11

$v_{b}=9 \mathrm{rrs}$

$$
m_{5}=5.5 \mathrm{ng}
$$

公

$$
v_{\rho}^{\prime}=15 \mathrm{mrs}
$$

$$
\Rightarrow \theta_{\rho}=15.8^{\circ}
$$

Monentun is consorval

$$
\begin{align*}
& \vec{P}_{t a}=\vec{P}_{t D} \prime \\
x: \quad & m_{b} v_{b}=m_{p} v_{p}^{\prime} \cos \theta_{p}+r_{b} v_{1}^{\prime} \cos \theta_{b} \tag{1}\\
y: & 0 \tag{2}
\end{align*}
$$

Solve (2) fr v_{b}^{\prime}

$$
v_{b}^{\prime}=v_{\rho}^{\prime} \frac{m_{\rho}}{m_{s}} \frac{\sin \theta_{p}}{\sin \theta_{b}}
$$

Sulitite $\left(2^{\prime}\right)$ wo (1)

$$
\begin{aligned}
& m_{b} v_{b}=m_{\rho} v_{\rho}^{\prime} \cos \theta_{\rho}+r^{\prime} /\left(v_{\rho}^{\prime} \frac{m_{\rho}}{r_{\rho}} \frac{\sin \theta_{\rho}}{\sin \theta_{b}}\right) \cos \theta_{b} \\
& m_{b} v_{b}=m_{\rho} v_{\rho}^{\prime} \cos \theta_{\rho}+m_{\rho} v_{\rho}^{\prime} \sin \theta_{\rho} \frac{1}{\tan \theta_{b}}
\end{aligned}
$$

Solve f_{N} tan O_{6}

$$
\Rightarrow \tan \theta_{b}=\frac{m_{p} v_{\rho}^{\prime} \sin \theta_{\rho}}{m_{b} v_{b}-m_{p} v_{\rho}^{\prime} \cos \theta_{\rho}}
$$

$$
\begin{aligned}
\tan \theta_{b} & =\frac{m_{p} v_{\rho}^{\prime} \sin \theta_{\rho}}{m_{b} v_{b}-m_{p} v_{\rho}^{\prime} \cos \theta_{\rho}} \\
& =0.093 \\
& \Rightarrow \theta_{b} \simeq 5.33^{\circ}
\end{aligned}
$$

Fron (2')

$$
\begin{aligned}
v_{L}^{\prime} & =v_{\rho}^{\prime} \frac{m_{\rho}}{m_{s}} \frac{\sin \theta_{\rho}}{\sin \theta_{b}} \\
& =6.79 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Is the collision elastic?

$$
\begin{aligned}
& K_{i}=\frac{1}{2} m_{b} v_{b}^{2} \\
&\simeq 222.75] \\
& K_{f}=\frac{1}{2} r_{p} v_{p}^{\prime 2}+\frac{1}{2} m_{b} v_{b}^{\prime 2} \\
&\simeq 222.41] \\
& \Rightarrow K_{f}<K_{i} \Rightarrow \text { Inclastic! }
\end{aligned}
$$

Example
A shell is fired from a gun w/ ruzzle velocity $466 \mathrm{~m} / \mathrm{s}$, St an angle f $57.4^{\circ} \mathrm{wl}$ The havizeta). At the top f the traject?, The shell explodes alto two fragments f equal tass. che frugres, whose speed druedictely after the explosion is zero, falls vortically. How for from the gun does the other frogmen land, cisuning level terran?
Solution

At top f trajuster, $v_{1}=0$

$$
\begin{aligned}
v_{7} & =v_{0}-y^{t} \\
\Rightarrow \quad & =v_{0} \sin \theta_{0}-y^{t} \\
t_{h} & =\frac{v_{0} \sin \theta_{0}}{g} \\
v_{x} & =v_{0 x} \\
& =v_{0} \cos \theta_{0}
\end{aligned}
$$

roje a tep f trajedy

$$
\begin{aligned}
x_{h} & =v_{0} \cos \theta_{0} t_{n} \\
& =\frac{v_{0}^{2} \sin \theta_{0} \cos \theta_{0}}{g}
\end{aligned}
$$

heigle a top f trexang

$$
\begin{aligned}
y_{h}=h & =v_{1} \sin \theta_{0} t_{h}-\frac{1}{2} g t_{h}^{2} \\
& =v_{0} \sin \theta_{0}\left(\frac{v_{0} \sin \theta_{0}}{g}\right)-\frac{1}{2} g\left(\frac{v_{0}^{2} \sin ^{2} \theta_{0}}{g^{2}}\right) \\
& =\frac{v_{0}^{2} s s^{2} \theta_{0}}{2 g}
\end{aligned}
$$

Non, explisian!

$$
\begin{aligned}
& m
\end{aligned}
$$

Morenum is consuved during explosion

$$
\begin{aligned}
m v_{x} & =m_{1} v_{1} \\
& =\frac{m_{2}}{v_{1}} \\
\Rightarrow v_{1} & =2 v_{x}
\end{aligned}
$$

Now, we can map the trajety of $N_{1}>$ fragnas

$$
\begin{aligned}
& x_{f}=v_{1} t_{\text {hit }} \\
& y_{f}=0=40-\frac{1}{2} s t_{\text {Lit }}^{2}
\end{aligned}
$$

nov, $y_{0}=y_{h} \Rightarrow t_{\text {hit }}=\sqrt{\frac{2 y_{4}}{g}}$
bs

$$
\begin{aligned}
y_{h} & =\frac{v^{2} \sin ^{2} \theta_{0}}{2 g} \\
\Rightarrow t_{L i t} & =\sqrt{\frac{2 y_{4}}{g}} \\
& =\sqrt{\frac{2}{g} \frac{v_{0}^{2} s^{2} \theta_{0}}{2 g}} \\
& =\frac{v_{0} \sin \theta_{0}}{g}
\end{aligned}
$$

$$
v_{1}=2 n_{x}
$$

$$
v_{x}=v_{0} c_{0} \theta_{0}
$$

\downarrow
So, $x_{f}=\frac{v_{1} v_{0} \sin \theta_{0}}{g}=\frac{2 v \times v, \sin \theta_{0}}{g}=\frac{2 v_{0}^{2} \sin \theta_{0} \cos \theta \text {, }}{g}$
Tote distance : $\quad x=x_{f}+x_{n}$

$$
x_{4}=\frac{v_{0}^{2} \sin \theta_{0} \cos \theta_{0}}{g}
$$

So,

$$
\begin{aligned}
x & =\frac{3 v_{0}^{2} \sin \theta_{0} \cos \theta}{y} \\
& \simeq 3.02 \times 10^{4} \mathrm{~m}
\end{aligned}
$$

Exarple
A box with mass $m=10 \mathrm{ug}$ was hiched up a rarp with an indine $f \theta=30^{\circ}$ \& speed $v=40 \mathrm{mrs}$. A readed a heiget $h=2 \mathrm{~m}$ befur it Staps.
How much wowh is dore by fristion?
Sobsion

$$
\begin{aligned}
\omega_{N c} & =\Delta E \\
& =\left(K_{f}+U_{+}\right)-\left(K_{i}+U_{i}\right) \\
& =m g h-\frac{1}{2} m v^{2} \\
& =-7800 \mathrm{~J}
\end{aligned}
$$

Why is the farce of frisian?

$$
W_{N C}=-F_{f} L
$$

bs, $L=\frac{h}{\sin \theta}$

$$
\begin{aligned}
\Rightarrow F_{f} & =-\frac{W_{N C}}{L}=-\frac{W_{N c} \operatorname{sit} \theta}{h} \\
& \simeq 1950 \mathrm{~N}
\end{aligned}
$$

