Physics 101 P
General Physics I
Problem Sessions - Week 9
A.W. Jachura -William \& Mary

Example
A 20 kg floodlight suppontal on a beam of negligible mass the os hinged to a pole. A cable ar 30° writ. the beam helps support the light.
(a) Find the tension on the cable
(b) Find the horizata) \& vertical farce it the hinge.

Solwion
The beam is it Glic equilibrim.

$$
\begin{aligned}
& \Sigma \vec{F}=\overrightarrow{0} \\
& \Sigma \vec{\tau}=0
\end{aligned}
$$

FBD f bean

Dờ hav dredins
$f V$ ar H, so guess
(a) Sun triqus ot linge

$$
\begin{aligned}
& +\sum \sum \gamma=0 \text { e lige } \\
& \Rightarrow-L m y+L T \operatorname{si} \theta=0 \\
& \Rightarrow T=\frac{m g}{\sin \theta} \simeq 392 \mathrm{~N}
\end{aligned}
$$

(6) To fied $H \& V$, wse $\sum \vec{F}=3$

$$
\begin{aligned}
& x:-H-T \cos \theta=0 \\
& y: \quad+v+T \sin \theta-m y=0
\end{aligned}
$$

So,

$$
\begin{aligned}
H & =-T \cos \theta \\
& \simeq-339 \mathrm{~N}
\end{aligned}
$$

© chose wreng diresin!
$\&$

$$
\begin{aligned}
V & =m y-T \sin \theta \\
& =0 \quad \backsim \operatorname{since} \quad T=\frac{r y}{\sin \theta}
\end{aligned}
$$

\Rightarrow No ventical fances!

Exanple
A miform ladder of $L=10 \mathrm{~m}$ lay, weigo 50 N , rests on a wall. If the ladder is ivat on the verge of slipping or $\theta=50^{\circ}$ (wir.t. ground), wht is the cofficior of fricion betwean the laddes and the ground?

No frition have

Somion
Ludder is in Stic equilibrion

$$
\begin{aligned}
& \sum \vec{F}=\overrightarrow{0} \\
& \sum \tau=0
\end{aligned}
$$

FBD f ladder

$$
\begin{aligned}
& \frac{\sum \vec{F}=\overrightarrow{0}}{x:} F_{f}-N_{1}=0 \Rightarrow F_{f}=N_{1} \\
& y: \quad N_{2}-w=0 \Rightarrow v_{2}=\omega
\end{aligned}
$$

\& $F_{f}=\mu_{s} N_{2} \quad$ (3)
S., (2) \rightarrow (3) \rightarrow (1)

$$
\Rightarrow \quad N_{1}=\mu, w
$$

ar

$$
\mu_{s}=\frac{N_{1}}{w}, w_{i} \text { is } N_{1} ?
$$

+ + $\sum \tau=0$ e port where ladders rets ground

$$
\begin{aligned}
& L N, \sin \theta-\omega \frac{L}{2} \cos \theta=0 \\
& \Rightarrow \quad N_{1}=\frac{\omega}{2} \frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

si $\mu_{1}=\frac{N_{1}}{\omega}=\frac{1}{2} \frac{\cos \theta}{\sin \theta}$
ar,

$$
\begin{aligned}
\mu_{s} & =\frac{1}{2} \cot \theta \\
& =\frac{1}{2} \cot \left(50^{\circ}\right) \\
& \simeq 0.42
\end{aligned}
$$

Exarple
A spleve δ mass M \& radius R is released it the top f an undined plare f height h \& ange θ. At the sare tire, a cylueder f radins R \& mass M is $\omega_{s o}$ released of the sure tire. Whch reades the bottoo forg?

Soltiran
¿Э's use consongaion forys.
(nitid)

$$
\begin{aligned}
E_{i} & =U_{i}+K_{0} \\
& =M_{g} h
\end{aligned}
$$

Find

$$
\begin{aligned}
E_{f} & =U_{f}+K_{f} \\
& =\frac{1}{2} M v^{2}+\frac{1}{2} I_{L^{2}}
\end{aligned}
$$

The sphere \& cylinders roll withal slippy

$$
\begin{aligned}
& v=R_{\omega} \Rightarrow \omega=\frac{v}{R} \\
& \Rightarrow M_{y h}=\frac{1}{2} M v^{2}+\frac{1}{2} I \frac{v^{2}}{R^{2}}
\end{aligned}
$$

so, $\quad v^{2}=\frac{2 g h}{1+\frac{I}{M R^{2}}}$
Now, $I_{\text {sher }}=\frac{2}{5} M R^{2}$,

$$
I_{G k d e}=\frac{1}{2} M R^{2}
$$

Si,

$$
\begin{aligned}
v_{\text {splere }} & =\sqrt{\frac{2 g h}{1+\frac{2}{5}}} \\
& =\sqrt{\frac{\operatorname{logh}}{7}}
\end{aligned}
$$

$\&$

$$
\begin{aligned}
V_{c \text { linder }} & =\sqrt{\frac{2 g h}{1+\frac{1}{2}}} \\
& =\sqrt{\frac{4 g h}{3}}
\end{aligned}
$$

So,

$$
\begin{aligned}
\frac{v_{\text {splue }}}{v_{\text {clile }}} & =\frac{\sqrt{1017}}{\sqrt{4 / 3}} \\
& =\sqrt{\frac{30}{28}}>1
\end{aligned}
$$

\Rightarrow sphere will reach botten firg !

Example
A buy f mass 0.02 kg is 9 ret on the edge f a solid cylindrical dish $(M=0.1 \mathrm{~kg}, R=0.1 \mathrm{~m}$) roving in a horizontal plane around the vertical axis through its color. The dish is Noting I $10 \mathrm{cad} / \mathrm{s}$. The bug crawls to the cor f the dish.
(a) what os the new ages velocity f the dish?
(b) whet os the charge do kinetic cary ff the system?
(c) whit is the cane f the cheese \& decrease of lentic energy?

Sefition
BSac

Atts

(a)

Anguler monestim is cansrued

$$
\begin{aligned}
& L_{i}=L_{f} \\
& L_{i}=I w_{i} \\
&=\left(I \operatorname{sish}+m R^{2}\right) w_{i} \\
& L_{f}=I_{\operatorname{din} h} w_{f} \\
& \Rightarrow \omega_{f}=\left(1+\frac{m R^{2}}{I_{\text {dish }}}\right) w_{i}
\end{aligned}
$$

so

$$
\begin{aligned}
\omega_{f} & =\left(1+\frac{2 m}{\mu}\right) \omega_{i} \\
& =\left(1+\frac{2\left(0.02 \omega_{s}\right.}{0.1 \mathrm{ug}_{\mathrm{g}}}\right)\left(10 \mathrm{rad} \mathrm{rs}_{\mathrm{s}}\right) \\
& \simeq 14 \mathrm{rad}_{\mathrm{s}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\Delta K= & \frac{1}{2} I_{f} \omega_{p}^{2}-\frac{1}{2} I \omega_{i}^{2} \\
= & \frac{1}{2} I_{d, L}\left[1+\frac{m R^{2}}{I_{b S L}}\right]^{2} \omega_{i}^{2}-\frac{1}{2}\left(I_{d B L}+m R^{2}\right) \omega_{i}^{2} \\
= & \frac{1}{2}\left[I / d L+2 m R^{2}+\frac{\left(m R^{2}\right)^{2}}{I_{d, L}}\right] \omega_{i}^{2} \\
& -\frac{1}{2}\left[\frac{I / \omega_{i L}}{}+m R^{2}\right) \omega_{i}^{2} \\
= & \frac{1}{2} m R^{2} \omega_{i}^{2}+\frac{1}{2} \cdot \frac{2 m^{2} R^{2} \omega_{i}^{2}}{M} \\
= & \frac{1}{2} m R^{2} \omega_{i}^{2}\left[1+\frac{2 m}{M}\right] \simeq 0.0140
\end{aligned}
$$

(c) $\omega=\Delta K$

The Uork is dere to nan-cansurghe farces.

Exarple
An Euth seaclite has its upogee Ir 2500 he above the suntace f Ewth \& perisce I 500 len above the sunture f the Earth.

At upogee its speed is 6260 ms . Wh is its speed 9 paigec? Earths cadius is 6370 km .

Soltion
Ayuar moment is conserued

$$
L_{A}=L_{P}
$$

w/ $L_{A}=I_{A} \omega_{A}, L_{\rho}=I_{\rho} \omega_{\rho}$
s.

$$
I_{A} \omega_{A}=I_{\rho} \omega_{\rho}
$$

Non, $I_{A}=m r_{A}^{2}, m=$ mass f satulite

$$
I_{\rho}=m r_{\rho}^{2}
$$

\& $\quad \omega_{A}=\frac{v_{A}}{r_{A}}, \omega_{P}=\frac{v_{P}}{r_{P}}$
s.,

$$
\begin{aligned}
r_{A}^{2} \frac{v_{A}}{r_{A}} & =r_{P}^{2} \frac{v_{P}}{r_{P}} \\
\Rightarrow \quad v_{P} & =\frac{r_{A}}{r_{P}} v_{A} \\
& =\left(\frac{2500 \mathrm{~m}}{500 \mathrm{~m}}\right) \cdot 6260 \mathrm{r} / \mathrm{s} \\
& =5.6260 \mathrm{r} \\
& =31,300 \mathrm{r} / \mathrm{s}
\end{aligned}
$$

Example
A uniform rod f mass M \& length L cm rate about a hinge at its lift ad and is witially I rest. A pity ball f mars m, moving θ speed ν, strikes the rod at angle θ from the normal \& sticks to the rod after the collision. What is the angular speed f the system imrediadel, after the collision?

Solution
Angules roraton is cassaused

$$
L_{i}=L_{f}
$$

Theare

$$
\begin{aligned}
\vec{L}_{i} & =\vec{r} \times \vec{p} \\
& =(D m v \cos) \hat{u}
\end{aligned}
$$

$$
\Rightarrow \quad L_{i}=\operatorname{Dr} v \cos \theta \quad J
$$

After

$$
\begin{aligned}
& \quad L_{f}=I \omega_{f} \\
& I=I_{r . d}+I_{\text {puty ball }}
\end{aligned}
$$

Now, from talle,

$$
I_{\text {rod }}=\frac{1}{3} M L^{2} \text { abo9 and. }
$$

\& $\quad I_{\text {p-th b-11 }}=m D^{2}$

$$
\Rightarrow \quad I=\frac{1}{3} M L^{2}+m D^{2}
$$

S\%

$$
L_{f}=\left(\frac{1}{3} M L^{2}+m D^{2}\right) \omega_{f}
$$

Therefor,

$$
L_{i}=L_{f}
$$

$$
\Rightarrow \quad D m v \cos \theta=\left(\frac{1}{3} M L^{2}+m D^{2}\right) \omega_{A}
$$

a,

$$
\omega_{f}=\frac{D_{m} v \cos \theta}{\frac{1}{3} M L^{2}+m D^{2}}
$$

Example
A gyroscope has a 0.5 kg dish that spins If 40 cauls. The cover f mass f the dish is 5 ch from a pivot with a radius f the dish $f 10 \mathrm{~cm}$. Whit is the precession ungula velocity?

Solution

Dish exes a torque an pivot

$$
L=I_{\text {dish }} \omega ; \quad I_{\text {diG }}=\frac{1}{2} M R^{2}
$$

Side view
${ }^{7} \longrightarrow$

$$
\begin{aligned}
\vec{\tau} & =\frac{\Delta \vec{L}}{\Delta t} \\
& =\vec{L} \frac{\Delta \varphi}{\Delta t}=\vec{L} \omega_{\rho}
\end{aligned}
$$

So,

$$
\omega_{p}=\frac{\tau}{L}
$$

Nov, $\tau=d M_{g}$
\& $\quad L=\left(\frac{1}{2} M R^{2}\right) \omega$

Top vies

$$
\Delta \vec{L}=\vec{L} \Delta \varphi
$$

$$
\omega_{\rho}=\frac{\Delta \varphi}{\Delta t}
$$

So,

$$
\begin{aligned}
\omega_{p}=\frac{\tau}{2} & =\frac{d M g}{\left(\frac{1}{2} M R^{2}\right) \omega} \\
& =\frac{2 d g}{R^{2} \omega}
\end{aligned}
$$

veed to concen ω,

$$
\begin{aligned}
\omega & =40 \frac{\mathrm{rev}}{\mathrm{~s}} \cdot\left(\frac{2 \pi \mathrm{col}}{1 \mathrm{rev}}\right) \\
& =80 \pi \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

Sor

$$
\begin{aligned}
\omega_{p} & =\frac{2(0.05 n) \cdot\left(9.8 \mathrm{rs}^{2}\right)}{(0.1 \mathrm{n})^{2} \cdot\left(80 \mathrm{rrad}_{\mathrm{s}}\right)} \\
& \simeq 0.39 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Exarple
The axis f Eurth makes a 23.5° agle with a diretion popudicular to the plane f Euth's cabbit. The axis precesses ralling one conple ration in 25,780 ,
(a) calcable the change a angur rorevin in half this tine.
(b) What is the curage torgue producing this chage in angur ronetr-?
(c) If this tarque were creaid b7 a pain of farces ading at the most offotive polt an the equatu, whi would the ragitude f cach fance be?

Solvion
(c)

From yeons

$$
\frac{\Delta L}{2}=L \sin \theta \quad \Rightarrow \quad \Delta L=2 L \sin \theta
$$

$\& \quad L=I_{\text {sphe }} \omega$

$$
\begin{aligned}
& I_{\text {sphre }}=\frac{2}{5} M R^{2} \\
& \omega=\frac{2 \pi}{T} \\
& T=24 h \cdot\left(\frac{60-m}{1 h}\right) \cdot\left(\frac{60 s}{1 M i}\right) \\
& =86400 s
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad L & =\left(\frac{2}{5} M R^{2}\right) \cdot\left(\frac{2 \pi}{T}\right) \\
M & =5.97 \times 10^{24} \mathrm{~kg} \\
R & =6.38 \times 10^{6} \mathrm{~m} \\
T & =86400 \mathrm{~s} \\
\Rightarrow \quad L & =7.07 \times 10^{33} \mathrm{~kg} \cdot \mathrm{n}^{2} / \mathrm{s}
\end{aligned}
$$

Thurere,

$$
\begin{aligned}
\Delta L & =2 L \sin \theta \\
& =2\left(7.07 \times 10^{33} \mathrm{hg} \cdot \mathrm{~N}^{2} \mathrm{~s}\right) \sin \left(23.5^{\circ}\right) \\
& \simeq 5.64 \times 10^{33} \mathrm{Gg} \cdot n^{2} \mathrm{rs}
\end{aligned}
$$

(b) $\tau=\frac{\Delta L}{\Delta t}$

$$
\begin{aligned}
\Delta t & =\frac{1}{2}(25,780,7) \cdot\left(\frac{365.25 d}{4}\right)\left(\frac{244}{d}\right)\left(\frac{60-1}{4}\right)\left(\frac{605}{h l}\right) \\
& =4.07 \times 10^{11} \mathrm{~s}
\end{aligned}
$$

Sis

$$
\begin{aligned}
\tau & =\frac{\Delta L}{\Delta t} \\
& \simeq 1.39 \times 10^{22} \mathrm{~N}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\tau & =2 R F \\
\Rightarrow F & =\frac{\tau}{2 R} \\
& \simeq 1.09 \times 10^{15} \mathrm{~N}
\end{aligned}
$$

