Physics 101 P
Geneal Physics I
Problem Sessions - Week 11
A.W. Jackura William \& Mary

Example
A 500 kg solid block of conte is submerged under water and held by an ideal cable, as shown. The density f concise is $2300 \mathrm{~kg} / \mathrm{m}^{3}$, \& the density of water is $1000 \mathrm{~kJ} / \mathrm{m}^{3}$. What is the bnoymo farce on the block? Who is the fusion o the cable? Note the the tessin measures the appanat weight.

Solution
The bogor farce is given by

$$
B=\rho_{\mathrm{H}_{2} \mathrm{O}} \vee g
$$

concise
where V is volume f displaced was

Now, the vilure f concete is the sare volure f water displaced as the carode is fully submuged
\Rightarrow Archinedes pringple

$$
\Rightarrow m=\rho_{\text {caroc }} V \Rightarrow V=\frac{r}{\rho_{\text {cansor }}}=0.217 \mathrm{~m}^{3}
$$

Sr

$$
\begin{aligned}
B & =\rho_{\mathrm{H}_{2} \mathrm{O}} V g \\
& =\frac{\rho_{\mathrm{H}_{2} \mathrm{O}}}{\rho_{\text {carcor }}} \mathrm{ry} \\
& \simeq \frac{\mathrm{mg}}{2.3} \\
& \simeq 0.43 \mathrm{my}=2,170 \mathrm{~N}
\end{aligned}
$$

The tusion on casle con te fould by $\sum \vec{F}=0$

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \text { y: } T+B-m=0 \\
& \Rightarrow T=m g-B \\
& =m g\left(1-\frac{\rho_{\mathrm{H}_{2} \mathrm{O}}}{\rho_{\text {concrer }}}\right) \\
& =0.57 \mathrm{mg} \leftarrow 57 \% \text { of } \omega_{i} j \omega \\
& \simeq 2800 \mathrm{~N} . \mathrm{S} \text { cande }
\end{aligned}
$$

What if not $\mathrm{H}_{2} \mathrm{O}$, bo an

$$
\begin{aligned}
\rho_{\text {aiv }} & =1.3 \frac{\mathrm{hg}_{g}}{\mathrm{~m}^{3}} \\
\Rightarrow T & =\left(1-\frac{\rho_{\text {aur }}}{\rho_{\text {can }}}\right) \mathrm{mg} \\
& =0.9994 \mathrm{ng}
\end{aligned}
$$

Example
Water stands It a depth D behind the vortical upstream face f a dan.
Let W be the width f the dan.
(a) Fine the results horizatal face exited on the dam by the gauge pressure of the war.
(b) Find the no targe due to the gauge pressure of the water exevil abort a line through $1 O$ porathel to the width f the dam.

Solvicen
Gange pressure $=$ pressure cellive to Srosphuic
(a)

Nov, $P-P_{0}=\rho g\left(y-y_{0}\right)$

$$
\begin{gathered}
e y_{0}=0, P_{0}=0 \\
\Rightarrow P=\rho g y
\end{gathered}
$$

Loole I infritesind wea an dam

So

$$
\begin{aligned}
F & =\int P d x d y \\
& =\rho g \int_{0}^{\omega} d x \int_{0}^{D} y d y \\
& =\left.\rho g \omega \frac{y^{2}}{2}\right|_{0} ^{D} \\
& =\frac{1}{2} \rho g \omega D^{2}
\end{aligned}
$$

As we go deeper, Larger farce
\Rightarrow Dan reeds to be thochn
(b) torqu

$$
\begin{aligned}
d \tau & =(D-y) d F \\
\Rightarrow \tau & =\int(D-y) P d x d y \\
& =\rho g \int_{0}^{\omega} d x \int_{0}^{D}(D-y) y d y \\
& =\rho g \omega\left[\left.\frac{D y^{2}-\frac{y^{3}}{3}}{2}\right|_{0} ^{D}\right. \\
& =\rho g \omega\left(\frac{D^{3}}{2}-\frac{D^{3}}{3}\right) \\
& =\frac{1}{6} \rho g \omega D^{3}
\end{aligned}
$$

Example
A U-tube, in which both eds we open to the Snosplure, is panty filled with wove. Oil, which does not mix with wats, is pored so cue side until it stands a distance $d=12.3 \mathrm{~mm}$ above the wiser level on the other sidle, which has meanwhile risen a distance $a=67.5 \mathrm{~mm}$ for its arigind level. Find the clessity f the oil.

Solon
Points C are at the same pressure the pressure change to C form the wite side

$$
\Delta p=\rho_{w} g(2 a)
$$

the pressure drop from $0 i l$ side t. C

$$
\Delta p=\rho_{0 i 1} g(2 a+d)
$$

Now pressure drop to C mat be equal

$$
\Rightarrow \quad \rho_{\omega} g(2 a)=\rho_{\text {oil }} g(2 a+d)
$$

Solve for density of oil

$$
\begin{aligned}
\rho_{o i l} & =\rho_{\nu} \frac{2 a}{2 a+d} \\
& =\rho_{\omega} \frac{1}{1+\frac{d}{2 a}} \simeq 916 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Exurple
What fradion f the tota) volure f an icebuy is expased?

Solvion
weight F icebus

$$
w_{i}=\rho_{i} V_{i} g
$$

Buapor face

$$
B=\rho_{H_{1} O} V_{H_{2} O} J
$$

Dasity f ice $=917 \mathrm{~m} / \mathrm{m}^{3}$
Dacis f same $=1024 \mathrm{~g} / \mathrm{n}^{3}$
\Rightarrow velure of wat displared
staic equilibrim

$$
\Rightarrow \Gamma \vec{F}=0 \Rightarrow B=w_{i}
$$

ar $\quad \rho_{\mathrm{H}_{2} \mathrm{O}} V_{\mathrm{H}_{2} \mathrm{O}} \mathrm{J}=\rho_{i} V_{i g}$

$$
\Rightarrow \frac{V_{H_{20}}}{V_{i}}=\frac{\rho_{i}}{\rho_{H_{20}}}=0.896 \Rightarrow 89.6 \%
$$

$\Rightarrow 10.4 \%$ Expard

Exarple
A starge towe of heigh $h=32 \mathrm{~m}$ \& dianges $D=3 \mathrm{~m}$ seppies wat to e house.
A horizald pipe 9 the bue f the towe has a Jianger $d=2.54 \mathrm{ch}$.
To sutisf the reeds f the hore, the supdy pipe mut deliun wate at a Rate $R=0.0025 \mathrm{~m}^{3} / \mathrm{s}$.
If wate were flowing at raxirun rte, ulst is the pressure is the hurizald pipe?

Solvion
use Berroultrs equam betwen $A \& B$

$$
P_{A}+\frac{1}{2} \rho v_{A}^{2}+\rho g y_{A}=P_{B}+\frac{1}{2} \rho v_{B}^{2}+\rho g y_{B}
$$

At poit A,

$$
\begin{aligned}
& P_{A}=P_{0}=P_{\text {atmospha }} \\
& y_{A}=h
\end{aligned}
$$

So, with $y_{D}=0$

$$
\Rightarrow P_{B}=P_{0}+\rho g h+\frac{1}{2} p\left(v_{A}^{2}-v_{B}^{2}\right)
$$

To git v_{A}, v_{n}, we conservin f mass

$$
\begin{aligned}
\Rightarrow \frac{d m}{d t} & =\rho R=\text { constas } \\
& =\rho v_{A} A_{A}=\rho v_{B} A_{B}
\end{aligned}
$$

So,

$$
\begin{aligned}
& v_{A}=\frac{R}{A_{A}}=\frac{R}{\pi r_{A}^{2}}=3.5 \times 10^{-4} \mathrm{rrs} \\
& v_{B}=\frac{R}{A_{B}}=\frac{R}{\pi r_{n}^{2}}=4.9 \mathrm{~ms}
\end{aligned}
$$

See, $v_{A} \ll v_{B}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \rho\left(v_{A}^{2}-\nu_{B}^{2}\right) \simeq-\frac{1}{2} \rho \nu_{B}^{2} \\
& \Rightarrow P=P_{0}+\rho g h-\frac{1}{2} \rho v_{B}^{2} \\
& P_{0}=1.01 \times 10^{5} \mathrm{~Pa} \\
& \rho=10006 \mathrm{eg} / \mathrm{n}^{3} \\
& \Rightarrow P \simeq 4.03 \times 10^{5} P_{a}=4 a_{a}
\end{aligned}
$$

Exanple
Whor eminges from a fanel \& "redes doun" as it falls. The cooss-scotion aree A_{1} is $1.2 \mathrm{~cm}^{2}$, \& A_{2} is $0.35 \mathrm{~cm}^{2}$. The two leveds are separied by a vitical didance $h=45 \mathrm{~mm}$. How ling does it take to fill a 100 nL beake?
5. (A)
consubler f racs

$$
\frac{d m}{d t}=\rho A v=\cos 9 \omega
$$

so,

$$
A_{1} v_{1}=A_{2} v_{2}
$$

so
Apdly cansuution fuyz on Phid elenwo

$$
\begin{aligned}
& K_{1}+U_{1}=K_{2}+U_{2} \\
& \quad \Rightarrow \frac{1}{2} m v_{2}^{2}=\frac{1}{2} m v_{1}^{2}+m g h
\end{aligned}
$$

So

$$
v_{2}^{2}=v_{1}^{2}+2 g h
$$

Now, solve far v,

$$
\begin{aligned}
v_{2} & =\frac{A_{1}}{A_{2}} v_{1} \\
\Rightarrow v_{1} & =\sqrt{\frac{2 g h A_{2}^{2}}{A_{1}^{2}-A_{2}^{2}}} \\
& \simeq 0.286 \mathrm{r} / \mathrm{s}=28.6 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

so,

$$
R=A_{1} v_{1}=34 \mathrm{~cm}^{3} / \mathrm{s}
$$

Now, volume f beaker

$$
\begin{aligned}
& V=R T \\
& \Rightarrow T=\frac{V}{R}=\frac{100-L}{34 \mathrm{~cm}^{3} / \mathrm{s}}=\frac{100 \mathrm{co}^{3}}{34 \mathrm{cos}^{3} / \mathrm{s}} \\
& \simeq 2.9 \mathrm{~s}
\end{aligned}
$$

