Physics ³⁰³ Classical Mechanics II Collision Theory A.^W . Sachura William & Many

Unbounded Orbits

So far in or discussion of Two-body syters , we have focused ^a boundedorbits. We will now examine unbounded obits , which will lead us to the top of scating & collision thery

Recall the solution for a Kepler arbit w/ c etral farce law Fcr) = - γ /r,

$$
r(\varphi) = \frac{C}{1 + C \cos \varphi}
$$

We saw for 621 \Rightarrow 620 and the orbit is bounded Now we tun to $\epsilon \geq 1$, which from the andysis Now we tun to 621 , we
on the cropy of the system, $\int \frac{1}{2}u\omega\omega \,dx$ from the
 $\int \frac{2}{2}u\left(1+\frac{1}{2}\right)$ 20

$$
\epsilon = \sum_{i=1}^{n} (\epsilon^2 - 1) \geq 0
$$

$$
E = \sum_{\substack{2l \\ 2l}}^{r} (E - 1) \ge 0
$$
\n
$$
N_{\text{disc}}^2
$$
\n
$$
N_{\text{disc}}^2
$$
\n
$$
I + E \cos \varphi = 0 \quad I_{\text{tot}} \quad \varphi = \pm \pi
$$
\n
$$
S_{\text{c}}, \quad \varphi \Rightarrow \pm \pi \Rightarrow r \Rightarrow \infty
$$

S1, the system is unbounded and approaches as. Convolting to Cardistan Coordinder, we find $y^2=c^2-2cx$ (parabola) If $6>1$ $(6>0)$ then cleromed venishes $wln \sim 1 + 6 cos \varphi_{max} = 0$

So, as
$$
\varphi \rightarrow \varphi_{\text{max}} \Rightarrow r \rightarrow \infty
$$
, λ the $\omega_{\text{max}} +$
is centured between angles - $\varphi_{\text{max}} \le \varphi \le \varphi_{\text{max}}$.
As is a hypothesis, $\varphi_{\text{max}} = \varphi_{\text{max}} = \varphi_{\text{max}}$.

$$
\left(\frac{x-\delta}{\alpha^2}\right)^2-\frac{y^2}{\beta^2}=1
$$

with α_{1} , β in Fors β \in R c (c_{κ} v o)

Scattering

The previous example is part f a layer concept called scattering. In a scattering process, a particle (or projetile) approaches a another particle (or tage) from "infinitely" for ones. If there is a parain avoy ULI between the projectile x tag y (similar results hold for control invertions), is a patation energy ULI between
2 tag 5 (similar results hold
than the projective is deflected. The angle I which it is deflected is called the scattering angle & repulsive Force ^M Scattering
The provisors example is part 3 a loger concept
Called <u>sections</u>. In a scattering process, a
positive (or projective) approaches a arthur pro
1. to positive lawsp OCO between the project
2. to positive results $\overline{\Theta}$ > $\begin{array}{c} \hline \begin{array}{ccc} \uparrow \end{array} & \end{array}$ b b b and b and b b and $\overline{\Theta}$ $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ targ^a An ayle $\theta = 0 \Rightarrow \mu_o$ scattering attactive Θ = $\pi \Rightarrow$ Max scattering Head-on collision

Another useful quatity is the <u>impat parameter b</u>. which is the perpendicular distance from the projectiles incoming straight line poth to ^a paralled axis through the targets cate.

- \Rightarrow b = different of closest approach it there were no face .
- Scattering a Collisia Theory is especially important in particle & nuclear physics, where we learn about substanic faces for collide experiments .
	- sustanic fores from collecter experiments.
Generally, Or is easily measured, 69 b is not. Two perspectives :

know interaction \Rightarrow calculte b \Rightarrow predict ∂ D_{o} it know introdic \Rightarrow measure θ => determent

To effectively do this, we usually do not consider a single scattoring experiment, bit many projectiles an a bunch of tay $S_5 \Rightarrow G_2 \rightarrow P_3$ babilitic deternation.

If we find a been f
$$
proj\hat{u}
$$
 is \int \int with is
\n \int $\frac{1}{\int} \int_{\text{left}} = \frac{\int \frac{f u}{\int \text{left}} d\tau u}{\int \text{left}} = \frac{n_{\text{right}} A \sigma}{A} = n_{\text{tot}} \sigma$
\nIf been cands. Note hold \int \int

We generally hnow Nine & Mta, & can measure Nsc re generally have Nice.
=> gd access to σ !

The cross-sidian of *is* the dtdine area
$$
f
$$
 the
try~~8~~ f *when* f *with* the projdile.

Other, in reverse life in core three if you
\n
$$
\Rightarrow R_{\lambda c} = r \lambda c \pm \text{hold} p \cdot \text{d}t = \frac{N_{\text{tot}}}{\Delta t}
$$
\n
$$
R_{\text{sc}} = r \lambda c \pm \text{ schedule} p \cdot \text{d}t = \frac{N_{\text{tot}}}{\Delta t}
$$
\n
$$
\Rightarrow R_{\text{sc}} = R_{\text{tot}} n_{\text{tot}} \sigma
$$

Since
$$
J = \pi R^2
$$
, $[J] = L^2 = A \tau \omega$.
\nFor parallel 2 under physics, R
\n $\Rightarrow J \sim 10^{-28} r$
\n $\Rightarrow J \sim 10^{-28} r$
\n $\sqrt{3}r = 10^{-28} r^2$

Example Sxanple
10,000 neutras ar firel on an Al foil targo 5 0.1 mm thick. The coss-section is σ_{n-1} = 1.5 barns. How many neutrons are scattered ?

 $SolGia$

 N_{sc} = $N_{inc} \cdot m_{turg}$

 N_{av} , $N_{inc} = 10^{4}$, $J = 1.5$ bans = 1.5×10^{-28} m² 180 , Nie = 10^{4} , $5 = 1.5$ bans = 1
Number density is $M_{4a} = \frac{\# A \cdot B_{a-3}}{276}$ Number despity is $M_{\text{L}} = \frac{\# A \times D_{\text{L}}}{\text{area}}$ 757 , are mass density = $p \cdot d$

The Atomic mass S Al is $27 \times 1.66 \times 10^{-27}$ by The Atric mass $S A l \ge 27 \times 1.66 \times 10^{-27} h$
 $\Rightarrow M_{\text{tw}} = \underline{\rho} d = \frac{(2.7 \times 10^{3} h_{7} / n^{3})(10^{-9} h)}{22.1 \times 10^{27} h} = 6.0 \times 10^{-24} h^{-2}$ $27x1.66x10^{-27}$

So,
\n
$$
N_{sc} = N_{sc} n_{sc} \sigma
$$

\n $= (0^{4} \cdot 6.0 \times 0^{24} n^{-2} \cdot 1.5 \times 0^{24} n^{2} = 9$
\n9.

Consider now the scattering 5 two hard splives.
projectile less radius R₁,
$$
t_{0}
$$
5 R₂

The cross-solve is
\n
$$
\sigma = \pi (R_i + R_i)^2
$$
\nFollowing the force asymptotes as before, find
\n
$$
N_{cc} = N_{inc} n_{tc} \cdot \sigma
$$
\n
$$
= \pi (R_i + R_i)^2
$$

dc.

Diffuction Cres Sedius

The cross-section is a measure of the number 3 and 3
\n
$$
\frac{1}{2}
$$
 a solution process. 112 of the also
\nmeasured 3:631 and 6.4 is allowed pathed ?
\n
$$
\Rightarrow \frac{1}{2}
$$

 $\Rightarrow \quad \mathcal{W}_{\text{sc}}(\mathfrak{L}_{\text{b}} \mathfrak{L} \mathfrak{L}) = \mathcal{W}_{\text{bc}} \cdot n_{\text{tc}} \cdot d\sigma(\mathfrak{D}_{\text{c}} \mathfrak{L} \mathfrak{L})$ $=$ # $\frac{1}{3}$ particles entrared in come dD

Aladive cass-sation is then

$$
d\sigma(\omega_{o} dz) = \frac{d\sigma}{d\Omega} d\Omega
$$

$$
W_{sc} (\text{abs } 0,0) = W_{sc} \cdot W_{tar} \cdot \frac{dS}{d\Omega} (0,0) \cdot d\Omega
$$

If we add up all N_{sc} (ids d)2) aver all d)2, we mod y^2 $N_{se} = N_{dec} \cdot N_{ter} \cdot \sigma$

$$
\Rightarrow \qquad \sigma = \int \frac{J \sigma(\theta, a)}{J J L} dA
$$

$$
= \int_{0}^{\pi} d\theta \, s L \theta \int_{0}^{2\pi} d\phi \, dJ \sigma(\theta, \theta)
$$

Example Neuros scate of ^a tough of seve MeV . The differential cross-section is measured to be

$$
8Mv\pi J
$$
 cross-siden $8s$ measured 4. Le
 $dJ(0,0) = \sigma_0 (1 + 3cos\theta + 3cos^2\theta)$

Where $\sigma_a \approx 30$ mb/se

$$
\pi_{\alpha} \tanh \csc -s\theta_{\alpha} \tIm \int_{a}^{2\pi} d\theta \int_{a}^{2\pi} d\theta \cdot d\theta \cdot d\theta
$$
\n
$$
\sigma = \int_{a}^{2\pi} d\theta \int_{a}^{2\pi} d\theta \cdot d\theta \cdot d\theta
$$
\n
$$
= 2\pi \sigma_{\alpha} \int_{a}^{2\pi} d\theta \cdot d\theta \left[4 + 3\omega^{2} + 3\omega^{2} \theta^{2} \right]
$$
\n
$$
= 2\pi \sigma_{\alpha} \int_{a}^{b} d\omega \theta \left[4 + 3\omega^{2} + 3\omega^{2} \theta^{2} \right]
$$
\n
$$
= 2\pi \sigma_{\alpha} \left[\omega_{s} \theta + \frac{3}{2} \omega_{s}^{2} \theta + \omega_{s}^{3} \theta^{2} \right]_{-1}^{1}
$$
\n
$$
= 2\pi \sigma_{\alpha} \left[2 + \theta + 2 \right]
$$
\n
$$
= 8\pi \sigma_{\alpha}
$$
\n
$$
\sigma = 8\pi \sigma_{\alpha} \approx 754 \text{ mJ.}
$$

 \blacksquare

We now to
$$
\frac{1}{2}
$$
 to cancel the differential case-seclia

\nto the impact parameter. For simplicity, $\frac{1}{2}$ is assumed to be a small value, and the scattering is a valid value.

\nthat is φ -independent.

Consider a projective product are by 3- with

\nimplifying parameters to a 13, calculating the products

\ntripating, the
$$
6-9(6)
$$
.

\nAlthough, by solving the $9-9(6)$.

\nAlthough, by solving the $6-9(6)$.

\nAnother two profiles are a $4/3$ with

\nlength of the two fields, and the $6+4b$.

\nlength of the two fields, and the $6+4b$.

\nwidth of the two points are not specified.

\nlength of the two points are not specified.

\nlength of the two points are not specified.

The added analysis has const-
$$
sin
$$
-axis.
\n $10 = 2\pi b db$
\n $10 = 2\pi b db$
\n $12 = 2\pi sCD d\theta$
\n $12 = 2\pi sCD d\theta$

- Find the different cross-section for the scattuing of ^a point particle off ^a fixed rigid sphere f radius R .
- Solition: We not first find the trajectory θ = θ 16).

Led x be the agre of the live cornecting the t_{ref} code to the strike port بت
P .
P. From this live, of the angle toward the direction after collision . : ⁰ ⁼ ^A-^x -x

We now need α λ α' .

Fig. 22 the law of reflection: $x = x^2$	
To see the law by the the boundary and o. By's, the children is clearly by by a y^2	
Now, $y = y^2$	
Now, $\theta = \pi - 2x$	
Thus, $\theta = \pi - 2x$	
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \pi - 2x$
by	$y = \frac{\pi}{2}$
by	$y = \frac$

So, we have

$$
\frac{dJ}{d\Omega} = \frac{6}{s_1 \theta} \left| \frac{dG}{d\theta} \right|
$$
\n
$$
= \frac{RCs\theta}{s_1 \theta} \left| \frac{S_1 \theta}{Z} \right|
$$
\n
$$
= \frac{R^2}{Z} \left| \frac{Cs_1 \theta}{s_1 \theta} \right|
$$
\n
$$
= \frac{R^2}{Z} \frac{Cs_1 \theta}{s_1 \theta} \left| \frac{S_1 \theta}{Z} \right|
$$
\n
$$
= \frac{R^2}{Z}
$$

$$
M\text{Area} \quad 11.3 \quad \frac{dJ}{d\Omega} = \frac{R^2}{4} \quad \text{as the value } \quad f \quad \theta^{-1}
$$
\n
$$
S_{2} \quad \text{the final}
$$

$$
\sigma = \int d\Omega \frac{d\sigma}{d\Omega} = \pi \lambda^2 \qquad \blacksquare
$$

Ruthorfund Schooling We will now consider the scattering experiment that led to the discovery I the Dorie nudeus. Rutherfard scattering consid of apha particles (He⁺⁺) att d' gold nuclei in a llien gold fail. The face is that of coulomb's law X-charge $\frac{1}{\sqrt{2}}$ yold nuders chaye $F = h_2 Q = Y$ e^{i} de la Urre
 \mathcal{F} de la Urre
 \mathcal{F} de la Urre
 $=\mu_{2}Q = \mu_{2}$
 \mathcal{F}
 \mathcal{F}
 \mathcal{F}
 \mathcal{F}
 \mathcal{F} if the speeds f the α' s are layer enough to purifile the golds electron cloud Since this fire is the same as discussed in lesper abits , we know immedidely that the Sine this fu
Kepler arbits
tréjedary d^e the & is ^a hyperbola . \vec{p} \mathbb{Z} Jon
7 R i
U M P_{λ}^{σ} $\boldsymbol{\theta}$ α \sim $\frac{1}{\gamma}$ $\sqrt{4}$ $\frac{1}{\sqrt{2\pi}}$ v tagens

127.
$$
\vec{u}
$$
 is the unit vector is divided by the t-sipis color to the point \vec{a} by the t-sipotent, \vec{r}_{m} .

\n3

\n4

\n4

\n5

\n5

\n6

\n7

\n8

\n1

\n

$$
\begin{array}{lll}\n737 & 7.6 = 17119'1 \cos\theta \\
S_7 & (07)^2 = 2171^2 - 2173 \cos\theta \\
&= 2171(1 - \cos\theta) \\
&= 4171^2 \sin^2\theta_2\n\end{array} (171 = 171)
$$

$$
\Rightarrow |S_{P} = 2|\vec{p}| \sin \theta / 2 \qquad (1)
$$

$$
H_{01200}, f_{02} \ln\rho_{ud} = \ln\rho_{u0} \ln\rho_{uu}
$$
\n
$$
\Delta \vec{\rho} = \int_{-\infty}^{\infty} dt \vec{F}
$$
\n
$$
\Rightarrow \Delta \vec{\rho} = |\Delta \vec{\rho}| \vec{u}
$$
\n
$$
\Rightarrow |\Delta \vec{\rho}| = \int_{-\infty}^{\infty} dt \vec{F}_{u} , \vec{F}_{u} = \vec{F} \cdot \vec{u}
$$
\n
$$
H_{01} \cdot \vec{\rho} = \int_{-\infty}^{\infty} dt \vec{F}_{u} , \vec{u} \cdot \vec{F}_{u} = \cos \psi
$$
\n
$$
\Rightarrow \vec{F}_{u} = \sum_{r=1}^{\infty} \cos \psi
$$
\n
$$
u \sin y \, dt = \frac{d\psi}{d\psi} \, d\psi = \frac{d\psi}{d\psi}
$$
\n
$$
\Rightarrow |\Delta \vec{\rho}| = \int_{-\psi_{u}}^{\psi} d\psi \vec{F}_{u} / \psi
$$

Finally , angular monetar conservation mr> 2 ⁼ 1 ⁼ bip) 4- =>1581 ⁼ fact West, - 40 = S [sir] = z Su Now, from ^F=-22. => Six to ⁼ cos E2 => Isp1 ⁼ 20 coo (2) 2 Equate (1) & (2) - ²¹% IsiF ⁼ Zcost e Solve for ^b, using ¹⁵¹ ⁼ mr => b ⁼ Un =o

So,
\n
$$
\frac{d\theta}{d\theta} = \frac{1}{mv^{2}} \frac{d}{d\theta} \left(\frac{dv}{dr}\right)^{2} = -\frac{\gamma}{2mv^{2}} \frac{1}{sh^{2}\theta}
$$
\n
$$
1 - \frac{dv}{dr} \left(\frac{dv}{dr}\right)^{2} = \frac{\gamma}{2mv^{2}} \frac{1}{sh^{2}\theta}
$$
\n
$$
\frac{dS}{d\theta} = \frac{1}{sh\theta} \left(\frac{db}{d\theta}\right)
$$
\n
$$
= \frac{\gamma}{mv^{2}} \frac{c_{0}t}{sh\theta} \left(\frac{v}{dr}\right)^{2} = -\frac{\gamma}{2mv^{2}} \frac{1}{sh^{2}\theta/2}
$$
\n
$$
= \frac{\gamma^{2}}{m^{2}v^{4}} \frac{c_{0}\theta/2}{2sh^{2}\theta/2} \cdot \frac{1}{sh^{2}\theta/2}
$$
\n
$$
= \frac{\gamma^{2}}{4m^{2}v^{4}} \frac{1}{sh^{4}\theta/2}
$$

Recall
$$
12 - \gamma - \gamma = 2
$$

\n $12 + \gamma = 1$ $2\omega = \gamma$ $5 \text{ yields } \rho = 2\pi$
\n
$$
E = \frac{1}{2} + \omega^2 \Rightarrow \omega^2 = 4E^2
$$
\n
$$
\Rightarrow \frac{d\sigma}{d\Omega} = \left(\frac{\kappa_2 Q}{4E \sin^2{\theta/2}}\right)^2
$$
\nRitheded scaling