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Continuum Mechanics

Classical Mechanics can be garaly dividedSo three

maincreas
,
with increasing complexity

1
. Mechanics of point particles

e.g, flight of baseball

↑

=> "poit mass
,
no tenture

Ty, b vmg
Actual
Baseball

2. Mechanics f rigid bodies
↳ -
⑫

=> extended object,

Ty, ratzicat drof,

b

Actual vmg

Baseball

3. Mechanics of continua
↳

,

"y,
=> object can deform

b

Actual vmg

Baseball



Continuum mechanics can be divided into

- solid mechanics low focus

- Fluid mechanics (see Phys . 302)

In this study , the ordinary differential equations garded
from Mentas laws on Ealv-lgrage become

partic differential equations.

Wave Motiona a Tant string
As our first example , his consider the wore mation a

an one-dimensional string

y1 y = U(x,+) = Sing displacement

-

y =u(xt)

X

In equilibrium , y = U(xit) =0
Fz

Pick a small segment from
-

7

⑨
le +dy

X +- x+ dx

Assure small displacements 19
·

Fi
7X

& , pedy1 X x+dx



the it face in x is

F= Tcosce+del -Tersy

= Tcosy -Toysin -Those

=
-Tdysiny = -Tyde = O(y")

Fut= Tsu(y+dy) -Tsiy
= Tsing +Thyrosy-Trif
= Tdycosy = Toe

Since 41 = Singer & cosy ~1

Nice thi take = 4 =E=
therefore

, FuTay = TODdx =Tax
NIE E = he = Fu= day , acceleratin a y disation

C mass element of Bring
E Todx = and a

= ou(ndx)
2 t 2

C linear mass cusity

- 2



Defe c=/t as the speed of the wave.

Notice
, more tant string has higher speed !

So,

cn =c This is the wae equi.

Gara solution to Wave Equation

Introduce two variables I = x-ct & y = x +ct

= X = ](z +y) , t= (4-2)

So

=

= z(+t)

=>
So
,
ware equ . E-c-

becomes

-



To solve this equ , 10 h
= 24
24

=> zh0 his indeed f,
it can depend on N,
=> h =h(4)

So
,
for a given E,

E =( Eu=digh() + cust.

Since Uh(m) E (dyhm) =g(2)
Also
,
the constrat is for agiven in E Cas+ F(T)

zo, general solution is

u(z,y) = f(z) + g()
W
,

u(x, t) = f(x- (t) + g(x +(t)

V ~

Wave moving
to righ havemorya



t=0

M
f(x) f(x-ct)

1 -1
S

>
X

Ct

Consider solution u(x
,
+) = f(x-ct)

At to, f(x) has a maximum of X = 0

At t
,
fix-ce has a maximum of X-Ct =0

=> X=Ct

A special example is the standing wine
Consider F(x-ct) = ASin(ux-wt)

where co = k & A
,
le are abitrary constants.

A is called the amplitude,
h is wave number => 1 = 2 is wavelength

Te
wisofrequency- T= is prod

If
g(x+(t) = Asw((x + wt)

then
,

u2x,t = ASin(kx -wt) + As ((x +wt)

= 2A sindex cas not



Notice this the wave does not travel, it were
oscillates up and down.

Mixt = [2Asislx] cos not

c oscillaty time dependence
amplitudes

nefice thatthe zros of the urpitude we fixed

=> ux = nT = X = ni we nodes
Te

1Y
= u(x, t)

t=/z

***
t= 0

t=

We will see that these standing waves

are the catieum analogue of normal modes

in coupled oscillators.



Boundary Conditions a Finite String
the wave equations requires initia and/or Boundry
conditions to completely specify a solution

.

Consider a wave on a flite string
subject to Dirichlo BCs

u(0
,
+) = u (L

,
+) = 0

for all t
& · >

X

X =0 X = L

We want a solution to

=

Try U(x,+) = X (x) Cos(cot-5)

M

"Separation # Variables"

= - whX(x) cos(wt - S) = cdXcos(wt - 5)

h= w= d=X I

Solution is X(x) = Ashlex + Bcoslex



Now, this solution is subject to Dirichlor BCs

=> X(0) = X(L) = 0

X(0) =0 = 0 = A . 0 + B(1) - T3 =0

x() = 0 = 0 = As(k))

Ato is frivid solution
,

so find h = nit
,
ne

=> Un= ,
n = 1

,
2, ...

The wave refor is qualized !

- w
,=

S
ext) = [AnSin (hx) cos(mont-Sa)

> a infinite - standing loaves
=> Nura mochs



X=0 X = L

sin(x) E of n = 1

Si(Y) Ea & = n = 2

↳
z

sin( * / To & · u = 3

↳
·

Cofficiants A
,
& Sn are fixed by initial configuration

Lo A
,
cos(wet-51) = Be cosmet + G sis cont

=> u(x, +) = [Sichex (Recount + Csicont)
At too

,
we are give UX0) & u(x

,0

we fod Ucxd = [B. Sidex

i(X ,0) = [CW. Sin hx



to go B, & C ,
use foris trich from

Forie Scries

u(x
,
o) = [B. Su(nx)

=> Taxuxos sin(mx) = [BxSi(x)()
Can show that

Tax si(ax) () = Sun

E R=xux
Similarly, for C fil C=xios

Let's look of a particular example.



Example : Triangular wave un finite string
M

for example, h ( Ho(x)t
= 0

h = L = a = 1

& ⑳ > X

O Ed
+ 2

Er
,

O 02X42 - a

Y(x - (f-a) Y242XW2
Ho(x) = H(x, 0) = E

go E +a[XL

+ a-x)2x Let

in our example,
0 = X(3

3= x24h
. (x) = u(x, 0) = E Y = X 75

52x28

We are also given U(x0 = 0 # x20, 27

Nice this the have is symetric abot X= ( = 4)

Defhe x= X - E , so Howi = 401-x]

=> B = jax vox)Su(Y) check Sign
W

2

=noSh



Since Moxi is even

=> Ben =0 nEN

why?
< Sin(d -mm) = ( -1 S(x)

Ben = Ensu
=Gix(x) = 0

-
1

even even odd

So
,
look of old modes

Ra= voxSix-i

=Gma()
< Sin (d-T) = - cosX

=Gtxnoos(
Ev
even even even

=> Bantfo



To encude furth
, nexis is given by X = x+ 3

M

h ↓ Ho(xit
= 0

& ⑳ > X
- a E 2

- L S Z

2

h(x+alra -ax 0
U
.
(x) = Ho(X

,
0) = S

O 02Xc - 4

h( -x+a)/a o X2a

O a2xL

So,

Ran =(-v(
=c)x(axcos(
=> -" Thn(1-cos((2++ = )]
=4*1-cos()]

* C-1)" from wrang sign an Cost = Si+#2)



Let's look of the time evolution for the

fundamcial frequency 2, = IC **=

t =0
-

- -

t=

t

t=
-> E

t=

At the boundary
< incicet

% infence % t= try

7I refined add to
X
-

Zero u



Wave Equation in 3D

We can quadize the 1D wave equ,=2

to 3D is the expected way .

Le p(,H = p(x, y,z, t) denoe some

disturbance of a 3D system leg, pressure in

sound ware through airl , then the wave

equation is

=( )

C = speed of wave

> Bulk Modulus (se lar)
For sound in air

,
CEBL

Po

c equilibrium density
Define the wester operat

5 =(
So that

828 .8 = (,)+ (2) + (2)
Laplacin



therefore
,
the 3D wave eqto is

=

Place wave solution

If the havefront is propagating in the i direction,

the
p(r,t) = f (n- - (t)

Verify : Ep=En=

=>p =- =
-
27

using tricks as before
=-
=

If wave is in free space , no Bounday conditions,

then

p(,+) o cos(k(n- - (t)
n

wavefrom



Spherical Wave solutions

Another important example is spherical wave

solutions
,
i .e, a disturbance traveling radially

outward
.

p =p(r, t)

Can show 52p=up t

So, wave eye, is

=

Can see ther zrp =+
zr :

has a solution rpcyt) = f(r -(t) + y (r + (t)

If disturbance is radidly outward , g = o

=> partie for-ct)
T
-X-



Volume & Surface Forces

We now aim to content the Equations of matic

f a continuous 3D system.

=> Apply NI to suc ①muss element

Consider small elemen

< surface area is specified
dv
&
surfaces b wond retri

posted "outward"

Two types of faces a du
- volume faces (F & dV)

e.g ., gravity Egg
mass density

- Surface Forces (FocdA)

-

F 2

3

2

pressure tension Shear

E = -pudA



Ideal fluids have to shea modulus

(Real fluids have small shee modulus -> viscocity

Isotropic Pressure of Fluids

10 S . & S2 be two surfaces of name

vetes
,
&2 · Consent third surface by u Es

to form isosces prism
2

T =d
NI gives

= -P,ndAs S

1

F
,
+F+ + Fun = ma

-

-

Fz = - Pyty daz
=> F,

+= +F = ma - Fun
um ~

surface faces volume forces

Shruk size by a factor

=> + (f +F + Es) = 1(m-F)

as 1 o => F
, +Fi += = 1(m-Fr) =t

Since issues
, nFill life F= Fz = P ,

= Pa

=> isotropic pressure (Directresult of no shear modulus



Stress & Strak

Stress is the ratio of surface farce F to

the applied area

examples : Stress = E =

pressure P for stic fluid

strass :I for wine in tension

Stress = Sallyface = shear stress

Strain is the defunction of object as the

result of stress
.

(fractional deformation)

examples : Strand For stre fluid
V

Strat = Al for wire in tesia

Strain d for she

~
E

10 dy
dx



Stress & Stran are related by properties
& matter

.

For stresses in a medium which

is not too large , expect stick to be

linea to stress

stress on strain

The proportiodity factor is called the Elastic modulus

For a stretched wire
,

f YM
> Young's modulus

For hydrostatic pressure,

dp = -Br du
I

> Bulle modulus

For shearing forces,

= SM
I Shear modulus



The Stress Tensu

Here we will make the corset of stress move

rigorous . Consider a surface face on a small

area det of a closed surface SF some

continuous medium .

Define crinted reco ⑳di = ndA

The surface force ading
on the area d is E(dI).

It is a liver function of dE
,
i . e
,

F(t
,
dA

,
+ +2 d(z) = t

,
F(dA ,

) + 12EldFn)

Proof : First note that as long as di small,

E(dil = tE(d) Fa
like wise

, by NI

F(-dE) = -F(d) -d
V

~ El-d)



Net
,
consider two elemets di& din

Find a third diy = -(dE, +dAr ~ EldE)

di

=
So
,
NI give daz

~

-(E) +F(d) + F(dEy) = ma -Frol ~ Edi

As before
,
if surface size+ 0

,
the

=(d ,) + E(dEn) +EldEs) = G

=> F(-dis) = -F(a) = E(dE) + F(dtz)

Br
, dis = - (dA,

+d)

= F(d+d) = F(dt , ) + F(dEr)

Combine with F(dE) = EldE) , and yield

F(x ,da, + 12dF) = 1 ,E(d, ) +1eF(E2)

So
,
FIdE) is linear in dE



For a fluid, FIdEl =-pot . By, the most

your relation is

F(dl= Am ( =x

This defines the 3x3 Stress taso &
,
with

elements Ojk . In notix farr,

Final = E : da

Notice - E does notneed to be 11 w1 to surface

Consider the surface element di =A,

Fz
1

F Fj = [dA2,
<,

= OjdA

So
, F = G

,
da round Face

3Fodt nee



The Stress teson is symmetric. Conside

the square elevant of prise 7 ~ Fz = uyxdA
I

> Ex = xydA
The torgue on the ↑ S

l
>
2

C 2 X

element is Fzx= -Fix
3

Y

Tz = Fyl - F,xl
F
+j

= - Fzz

= (oxx - 5xy)ldA
= dL

Z

E

Now , rescale 3D Prism by a

=> Tz = 13Tz

but LzI a melaplx + +" Lz

=> as Sto EPEtO E Oxy = Eyx

Similar arguments hold for other edges

=> On Enj & is syntricl .

So
,
I has 6 independent components



Simple example - hydrostatic fluid

In this case
,
FLdEl =-pd

> castat

=> Oju = -pSju

= = -p1

= ( )



Strain Tensa

Consider a small volumeoriginally of position,
but its new position is shifted to + Zr).

A uniform Er = Go is just a overall translation,

but not a distation .
A generic shift is

dui = Eidr,

Define the deintive matix D as

Grtdil -
-

Dij = O d dr + du

such that
-
>·

D_
LUZ ↳

However
, a
rotic will cause a non-unishing Dij,

bo it's no a distation either !



For a retation
,

dur =dt = dtxdi =dx

So
,

0 03 -02

D = - 0
,

0 O,

02-0 ,
0

which is abisquetric . We decompone Dij into

symetric & antigenetic parts

Dij = (Di +Dii) + 1 (Dij =Dji)

= Eij + Aij

Aij represents rigidl ratatio

Eij we the elements of the Strain tensor E.

theStrain Jason is syntric (Eij = Ejil and

represents deformations of a continuous media.

Qualitatively , the strain measures the fractiona

change in an objects size , -11
L



Examplesf strain :

Dilatation (aDilation (

Eij =eSij = e 1

This is the trace-part of E
di =ed

e =1Tr(IE) Er
3 D

represets sphaica strain , an
dilatation

,
of medium

C Expansion & contractio

Each corpanet stretches b a Factor (2+ e)

so
,
V- (I +e) v = C +3e)V for ex1

=>

V = Je for et
.

ShearingStrain ~du
,=

dr,

=)) ,
vot

↳

is~dur
r

also,

E = )V)E



We can decompose a guad strah tasm

no a piece corresponding to pureetching
& a piece to pare

shear
.

If the diagent cleats of Eare E , Ez , Ess,

IE =(E)
If En = En = Eg = e, the IE = 21

For a garic strah teson, define on arrage

e via

e = +(Ex +Ez + (3)

Recall the definition of the trace of a matrix

tr(MM)= Mij =Mutmann

=> e = ( +r(E)



Can separate this trace from IE as

IE = c1 + Ev

> traceless part
with e =Str[E]

a spherich part
The traceless part is called stran devistar . It

catans shearinga non-disation defactions

↓

ey , if I'( t

↑

->

if 7

E =( )
,
-



Hooke's Law

We now want to construct a relation betwee

the stress && Strain IE .
Such relationswre

called constitutive equations , which relate
two physical qualities via some material property.

Here we assume that a system experiences

small deformations and stresses
,
such that

the constitutive equation is linear
.
The not

genera relation (Gandized Mocke's Law) is

win=&Cinem tem

> elasticity tenson

the enticity fasm is a 3x3x3x3 object
=> 81 compacts !

However, Since oij & Eij are symatic
E any 21 indepechts compacts

Further syenities of motards will reduce this further.



Here, we focus on an isotropic medium,

that is the system is ratidly christ
We will see this reduces Hookes law to

2 independent components.

For isotropic media E K(ER) = Er(IE)

Recal that the strat tensor is decomposed as

IE = 21 + Ev

Since e1 is spherically symmetric, each tern transfers

separatel unde rutations

=> k = ce1 +RI

wherea,s are cofficients · It ise coming

to express inTerms of E = C1+I,

=> ( = ( - p)e1 + BE

Any solid respecting Hooke's law is an elastic solid.



Note Hotwe can solve for I = (4) · Take

the trace,
O

tr(E] = 3xe + tr[I]

= 3x2

= c=

·
&

Q : Who is the physical meaning of L &&?

A : Look of I cases involving Bulk & shear moduli

Bulle Modulus

Consider a system with no shear & isotropic pressure,

[ = -p1=80
o o P

=> tr[k] = - 3p



So
E =↳(pH)-()( -bp)

=-I
= e =-

Recall thi Q =32 E
=-3

But
,
we defined theBull modules as p = -PM dV

I
So,
L =3 BM

Shear Modulus

Recall the shear modulus is defined as

= smaesmond
ife =0 = k= E us2 duc

= ra
Fo K =

(0) =BE
=> E = 512 =sti = Pu = 18 = So

=> M =25M



so
,

K = (x-1)/trC] I +BE
= (Br-zsu)t(IE] + ISMI

Young's Modulus

The Young's Modes is defined viaYM
Mr
,
E = (000 C >

=> IE
=(c +(p-t

=
So,= 1 ,==(2

= iM==



Equation & Motion for Eladic solid

NI gives
for volume

Searc = Fa+ E~ Ea = Sejav
Esu = /E -d

Recall the divegue there : JedE =/ .Ed
=> Fir =J .Edv 5 .T = ec+

So
,
for volume elemet p=+.

for the jth compact, p=+EG
Now
,
Hookis law

[ = (-3)e1 +S

Oju = -pleSin +&Ein
= (-1)[tebin +1+
= (-3)(. )Siu++



Therefore,

=-) Sin(.)+(i+
So, (5 ·4)

;=
=-M)Sij()+

wi

So
, =
8E =( +8)v(u) +25

= (BM +Sr)() +S

=> =1 + (3r +5)(4) +Sr

This is the Navier or Navier-Canchy Equation



Wave Equation in Elastic Solids

15 5 :5 . Conside two cases ...

LongitudiDiserbne
Lo i = (ux (x,+) , 0, 0)

So.==8x2

=x

=> s = (BMS)

So
, speed of langitudinwasse

Transverse Disturbane

10 h = 10
,
U
,
(x,t) , 0)

so
,
8.% = 0

=> surs
so
, speed of trance were C+=
For fluids

,
SMEO E only langitudinal waves !


