Physics 303 Classical Mechaics II Rigid Baly Mation William & Mary A.W. Jackura

<u>Rigid Batics</u>

A rigid body is an abstract fairon of a collection ^o particles/objects that move together in such ^a way to maintain their share , i.e other in such a
c., their relative positions are fixed. \vec{v} = \vec{v} - \vec{v} $\frac{1}{2}$
 $\frac{1}{2}$ \Rightarrow \Rightarrow $|\vec{r}_\phi| = \text{cosh}\hat{J}$ 10-This is an idealization, as Fors and redeates vibrate meaning no object is completely regid . However, this is a good stading point to build on. is a good Stading point to dwild on. Suce la détences bituer partiels ave fixed,
the system is highly constrined. For N partieles, there are 3N conductes needed. But, since the distances between particles is fixed, The

 $right$ body and needs 6 degrees 5 freed

- 3 to specify CM -3 to specify criticalized

Consider system f N particles $\alpha = 1, ..., N$ with Consider system of N patieles $\alpha = 1, ..., N$ with
masses mx and positions \vec{h}_{α} measured w.d. O $\frac{1}{100}$ and $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ *dm p° $\qquad \qquad \blacksquare$ ව $_{\sf cn}$ $\sqrt{\vec{r}}$ o Catinum The Company $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ \mathcal{L} and the contract of \mathcal{L} The CH is $\vec{R}=\pm\sum_{m}^{N}m_{\alpha}\vec{r}_{\alpha}$, $M=\sum_{\alpha}m_{\alpha}$ If the particles are small and numerous de volume, we can cletime a cleristy prof) as $\Delta m = \rho(\vec{r}) \Delta x \Delta y \Delta z$ then we can consider the rigid body of a continuous distribution of mass M = felm = fpi+, dV <u>und CM</u> $\overrightarrow{R}=\int_{\overrightarrow{M}}\overrightarrow{r}d\overrightarrow{n}$

We will switch between a discrete and cartinuous Ve will switch bet
picture as needed.

Monaton & Angeler Monaton The total montro of the system is $\vec{P} = \sum_{\alpha} \vec{p}_{\alpha} = \sum_{\alpha} n_{\alpha} \vec{r}_{\alpha} = M \vec{R}$ If the system is exposed to an external fame Fer, then NII for the CM is $\overrightarrow{P} = \overrightarrow{\Sigma}^{aT} = M\overrightarrow{R}$ New we consider anywher momentum. Le 7 Le 1/2 ayrılar manedin f the system with O . $\frac{1}{2}\sqrt{\frac{1}{2}\sum_{c}^{2}\frac{1}{\alpha^{2}}}}$ We want to spit \vec{l} into on Tom, the angular memorian I the body about the CM, $\overline{\mathcal{O}}$ and the Tool, the angular morentum of the CM. The angular monoton of x about O is $\vec{l}_{\alpha} = \vec{r}_{\alpha} \times \vec{p}_{\alpha} = \vec{r}_{\alpha} \times m_{\alpha} \vec{r}_{\alpha}$

So the total agular moneture is $\vec{L} = \sum_{\alpha} \vec{L}_{\alpha}$

 $5,$ $\vec{l} = \sum_{\alpha} \vec{l}_{\alpha} =$ $\sum_{\alpha} P_{\alpha} \times m_{\alpha} P_{\alpha}$ $U = \sum_{\alpha} \vec{R}_{\alpha} = \sum_{\alpha} \vec{r}_{\alpha} \times m_{\alpha} \vec{r}_{\alpha}$
Now, Lit \vec{r}_{α}' be location of α with Cr $\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}$ So, fud \overline{l} = $(\vec{R} + \vec{r}_{\alpha}') \times m_{\alpha}(\dot{\vec{R}} + \dot{\vec{r}}'_{\alpha})$ $=\sum_{\alpha}(\vec{R}+\vec{r}_{\alpha}')\times$
= $\sum_{\alpha}\vec{R}\times m_{\alpha}\vec{R}$ $= \sum \vec{R} \times m_{\alpha} \vec{R} + \sum \vec{R} \times m_{\alpha} \vec{r}_{\alpha}$ - $K \times m_{\alpha}/C + L \times m_{\alpha}r_{\alpha}$
 $\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha}\vec{R} + \sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha}\vec{r}_{\alpha}^{\prime}$ Recall $M = \sum m_{\alpha}$ $= 2 \vec{k} \times \vec{R} + \vec{R} \times \vec{L} + \vec{R} \times \vec{L}$ $+\left(\sum_{\alpha}m_{\alpha}\vec{r}_{\alpha}\right)\times\vec{R}+\sum_{\alpha}\vec{r}_{\alpha}\times m_{\alpha}\vec{r}_{\alpha}$ Now, $\sum_{d} m_d \vec{r}_d = \vec{0}$ since this is location of Ch $reldivc$ to Ch (d) (ourse) l ike wise, $\sum_{x} m_{x} \vec{r}_{x} = \vec{0}$

 S_{2} $\vec{L} = \vec{R} \times \vec{P} + \sum \vec{r_x} x r_x \vec{r_x}$ angeler monten & CM argular monten relative relative to O to the CM Détre Lon= Lspr = { \vec{r}_{a} ' x mara $L_{\omega b} = \vec{R} \times \vec{P}$ $\overline{L}_{ch} = \overline{L}_{spin}$ $\Rightarrow \begin{array}{|c|c|c|c|c|} \hline \multicolumn{1}{|c|}{1} & \mult$ Tis separation às Ster usdel as sol are approximately canserved $\dot{\vec{L}}_{\omega s} = \dot{\vec{R}} \times \dot{\vec{P}} + \dot{\vec{R}} \times \dot{\vec{P}} = \vec{R} \times \vec{F}^{cF}$ We have $\vec{L} = \vec{T}$ and the thought return to U $rac{50}{L_{cm}} = \frac{1}{L} - \frac{5}{L_{cm}} = \frac{3}{L} = \frac{9}{L} = \frac{9}{L} \times \frac{3}{L} = 6\frac{9}{L}$ $=\sum_{\alpha}(\vec{r}_{\alpha}-\vec{R})_{\times}\vec{F}_{\alpha}^{c\vartheta}=\vec{\nabla}_{c}^{\vartheta}$ externed targue redice to CM

Rwdre & Pactic Energy The tatal hindre ency, & N particles à $T = \sum_{\alpha=1}^{n} \frac{1}{2} m_{\alpha} \vec{r}_{\alpha}^{2}$ As before, write $\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}'$, \vec{r}_{α} position relative t. Che $\Rightarrow \frac{3^2}{r_0} = \frac{3^2}{R} + \frac{3}{r_0}r^2 + 2\overline{R}\cdot\overline{r_0}$ $\Rightarrow T = 12 m_x \vec{R} + 12 m_x \vec{r} + \vec{R} \cdot \vec{r} + m_z \vec{r}$ $= M\overrightarrow{R} + \frac{1}{2}\sum_{m} m_{m} \overrightarrow{r}_{m}^{2}$ $\frac{10}{45}$ Dotte KE rective to CM T cm = 1 2 mg m2" So, $T=\frac{1}{2}\frac{m\dot{\vec{R}}^2+T_{cn}}{r}$ RE & CM

For conservative forces, can moite patainid envy and decompose as $U = U_{eA} + U_{iA}$ Returnal PE (Soma) PE Where $U_{dA} = \sum_{k \in A} U_{k}(|\vec{r}_{k} - \vec{r}_{A}|)$ Cassuring card Puces Shee $|\vec{r}_{\acute{a}\acute{b}}|$ = cond., \Rightarrow Ug = cand : Unit is included for rigid buty dynamics

<u>Rodian about a Fixed Axs</u> Here we consider the Fadion of a rigid body about some fixed axis. Since the axis is fixed, 10 us defie it as the z -axis E $=$ $\sqrt{2}$ = (0,0, 4) To If the body consist f N particles , the $\frac{\rho}{L}$ = $\frac{1}{2}$ $\sum_{\lambda} \vec{J}_{\lambda}$ = $\sum_{\alpha} \vec{r}_{\alpha} \times m_{\alpha} \vec{v}_{\alpha}$ Since the axis of AT_{in} is fixed, $\vec{v}_x = \vec{w} \times \vec{r}_x$, S , with $\vec{r}_s = (x_{d_1} y_{d_1} z_{d_2})$ $\Rightarrow \vec{v}_{\lambda} = (-\omega y_{\alpha}, \omega x_{\alpha}, 0)$ \Rightarrow \vec{v}
: $\frac{1}{26}$ m_{α} m_{α} $= m_{\lambda} \omega \left(-z_{\alpha} x_{\alpha} - z_{\alpha} y_{\alpha} x_{\alpha}^2 + y_{\alpha}^2 \right)$ thus, \vec{l} = $x = m_d \vec{v}_d \times \vec{v}_s$
= $m_A \omega \left(-\frac{2}{3}x_A - \frac{2}{3}x_A - \frac{2}{3}x_A\right)$
 $y = m_b \omega \left(-\frac{2}{3}x_A - \frac{2}{3}x_A\right)$

LOS example comportes & l The z-comport is $L_{2} = \sum m_{d}(x_{d}^{2}+y_{e}^{2})\omega$ Notice 12 \int_{α} = $x_{\alpha}^{2} + y_{\alpha}^{2}$ with ρ_{\varkappa} being the difference to any p.w from the 2-axis. Thus, $L_2 = \sum w_{\alpha} p_{\alpha}^2 \omega = I_2 \omega$ Where $I_2 = \sum m_{\alpha} p_{\alpha}^2$ is the monet of inviting about the z-axis The limitic energy is then $T = \frac{1}{2} \sum_{\alpha} m_{\alpha} v_{\alpha}^{\alpha}$. Since $v_x = \rho_x w + w$ on a different direct $z = w + iy$ $\Rightarrow T = \frac{1}{2} \sum_{n=1}^{n} m_{\alpha} p_{\alpha}^{2} \omega^{2} = \frac{1}{2} I_{2} \omega^{2}$ These should be familier results from Phys 201.

Notre though that there is non-zoro components for L_P & L_{γ} $L_{x} = -\sum m_{d} x_{d} z_{d}$ $L_{y}=-\sum_{\alpha}^{q}m_{\alpha}y_{\alpha}z_{\alpha}w$ we dother the products of dential about the z-axis as $L_{x} = T_{xz} \omega$, $L_{y} = T_{zz} \omega$ with $I_{x2} = -\sum_{x} m_{x} x_{x} z_{x}$ $I_{yz} = -\sum w_{x} y_{x} z_{x}$ Uburously, il is at public to is $L = (\mathcal{I}_{xz} \omega, \mathcal{I}_{yz} \omega, \mathcal{I}_{zz} \omega)$ $with \ \Upsilon_{22} \equiv \Gamma_2$. Consider a sigle point porticle, $Z = \vec{r} \times m \vec{v}$ $F = \frac{1}{2}$ is a yz done, find it lies in y z place too

The India Tensur The lactic Torse

Lore saw that it I is with I height a number

la general I is a 3x3 syardine tense.

(J. see by casilor a raditar about a

general text of is is .
 $\vec{L} = \sum \vec{r}_{\alpha} \times \vec{r}_{\alpha} \vec{v}_{\alpha}$ In good, Taxe
19 L F I Lo with I bein
I is a 3x3 synalor trover. LHS see by consider a rollion about a
governt fixed axis B . \mathcal{L} is general fixed axis to. $=\sum_{\alpha}$ $\frac{1}{x}$ Tasa

1. I is a 3

1. I is a 3

1. I is a 3

1. Warnd \vec{v}

2 \vec{r} x \vec{r} x x 1
 \approx $-8\frac{1}{10}$ O Trail L $= 2 m_{\alpha} \vec{r}_{\alpha} \times (\vec{\omega} \times \vec{r}_{\alpha})$ \propto \propto $\frac{1}{\sqrt{3}}$ \times $(\vec{3} \times \vec{c}) = (\vec{4} \cdot \vec{c}) \cdot \vec{3} - (\vec{4} \cdot \vec{3}) \cdot \vec{c}$ ー
⇒ し =
→ し = $\begin{bmatrix} \frac{\partial}{\partial t} & \frac{\partial}{\partial t} \\ \frac{\partial}{\partial t} & \frac{\partial}{\partial t} \end{bmatrix} = (\vec{A} \cdot \vec{C}) \vec{B}$ L Us look at it -comparent, $L_i = \sum_{\alpha} m_{\alpha} \left[\tilde{r}_{\alpha}^2 \omega_i - \left(\sum_j r_{\alpha_j}, \omega_j \right) r_{\alpha,i} \right]$ = $\sum_{j}^{\infty} \left[\sum_{\alpha} m_{\alpha} \left(\vec{r}_{\alpha}^{2} \delta_{\epsilon j} - r_{\alpha,i} r_{\alpha,j} \right) \right] \omega_{j}$ $=\sum_{i}^{n}I_{ij}\omega_{j}$ we define the Insta tensor as I with hatrix elenats $T_{ij} = \sum_{\alpha} m_{\alpha} (\vec{r}_{\alpha}^{2} \delta_{ij} - \vec{r}_{\alpha,i} \vec{r}_{\alpha,j})$

In Fors of a continuos distribution, $T_{ij} = \int dn \left(\vec{r} \delta_{ij} - r_i r_j \right)$ By degredian, $I\!\!I$ is sympton, $I\!\!I^T$ = $I\!\!I$ ω $\mathcal{I}_{\zeta j} = \mathcal{I}_{ji}$. It charadures a abjects resistance to change in radional Madius $\vec{L} = \vec{\mathbb{L}} \cdot \vec{\omega} \quad \rightsquigarrow \quad L_i = \sum_j T_{ij} \omega_j$ The Carlisian comparats are $I = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$ $with \quad T_{xx} = T_x = \sum_{\alpha} m_{\alpha} (\vec{r}_{\alpha}^2 - x_{\alpha}^2) = \sum_{\alpha} m_{\alpha} (y_{\alpha}^2 + z_{\alpha}^2)$ $T_{xy} = -\sum_{\alpha} h_{\alpha} x_{\alpha} y_{\alpha}$ $\overline{\partial}$ c...

 E_{Xp} : $\dot{\theta}$ $+1$ θ = $\hat{\mu}$ $\ddot{\omega}$ is $\begin{pmatrix} L_x \\ L_y \end{pmatrix} = \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \end{pmatrix}$
 L_z $\begin{pmatrix} L_z & T_{zx} & T_{zy} & T_{zz} \end{pmatrix}$ $\begin{pmatrix} \nu_x \\ \nu_y \end{pmatrix}$ The Media tersor is a 3x3 syndric rator which must tender as $I\!\!I' = R I R^{T}$ $T_{ij} = \sum_{i,j} R_{ik} R_{jk} T_{mj}$
C this is ult To see this, rate that I & is an physical
vedus which must transform as I' = R.I, I' = R.W under a rollin R. $\therefore \qquad \zeta' = \zeta \cdot \overline{\zeta} = \zeta \cdot \overline{\zeta} \cdot \overline{\zeta}$ = $R \cdot \Pi R^T R d$

= $R \cdot \Pi R^T$

= $(R \cdot \Pi R^T)$ is $\begin{array}{r@{\hspace{1em}}l} \Delta R^T \cdot R & \text{if } R^T \cdot R \text{ is the } R^T \cdot R \text{ is the } R^T \cdot R & \text{if } R^T \cdot R \text{ is the } R^T \cdot R \text{ is the } R^T \cdot R \text{ is the } R^T \cdot R^T \cdot R & \text{if } R^T \cdot R \text{ is the } R^T \cdot R$ > Regence I'= R.II.R if I, is an physical vectors.

The leading energy is $T=\frac{1}{2}\sum_{\alpha}m_{\alpha}\vec{r}_{\alpha}^{2}=\frac{1}{2}\sum_{\alpha}n_{\alpha}(\vec{\omega}\times\vec{r}_{\alpha})^{2}$ $=\frac{1}{2}\sum_{\lambda}h_{\lambda}\sum_{i}(\vec{u}\times\vec{r}_{\kappa})_{i}(\vec{u}\times\vec{r}_{\kappa})_{i}$ $=$ $\frac{1}{2}\sum_{\alpha} m_{\alpha} \sum_{i} \sum_{j,k} \epsilon_{ijk} \omega_{j} r_{\alpha,k} \sum_{k} \epsilon_{ikm} \omega_{k} r_{\alpha,k}$ Note the relation $\sum_i \epsilon_{ijk} \epsilon_{ilm} = \delta_{j\ell} \delta_{kn} - \delta_{kl} \delta_{jn}$ $\Rightarrow T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \sum_{j,k} (S_{jk}S_{km} - S_{kk}S_{jn}) \omega_{j} \omega_{l} r_{\alpha,k} r_{\alpha,m}$ $=$ $\frac{1}{2}$ $\sum_{i,j}$ ω_i \sum_{α} m_{α} $(\vec{r}_{\alpha}^2 \vec{s}_{ij} - r_{\alpha,i} r_{\alpha,j})$ ω_j $=$ $\frac{1}{2}$ $\sum_{\lambda,i}$ ω_i $\sum_{\lambda,j}$ ω_j \Rightarrow $T = \frac{1}{2} \vec{\omega}^T \mathbb{I} \cdot \vec{\omega} = \frac{1}{2} \vec{\omega} \cdot \vec{\omega}$

Example - Carsido a point-particle with mass in Withing around z-axis at a curetal radius p, height In above $a_{j}a_{j}$, & angular velocity is. Compile the elements of $\frac{1}{4}$ the incition tusser. \vec{w} = (0, 0, w) 2 position $\vec{r}(t) = \rho \cos \omega t \hat{x} + \rho \sin \omega t \hat{y} + \mu \hat{z}$ Since the cadion is about z, there are any 3 - nurzus Componets, I_2, I_{x} z= I_{2x}, I_{y} = I_{z} T_1 = $m(x^2+y^2)$ = mp^2 T_{x2} = -mxz = -mhpcoswt I_{yz} = -myz = -mhp shot S_{0} , $\vec{L} = \vec{L} \cdot \vec{\omega} = T_{\times 2} \omega \hat{x} + T_{\gamma 2} \omega \hat{y} + T_{2} \omega \hat{z}$ $= -h h \rho \omega (cos \omega t \hat{x} + su \omega t \hat{y}) + h \rho^2 \omega \hat{z}$ Exercic : compare le to l = Pr mv.

Naice 149 if L=0, i.e., the wigh is in the plane of rolling $\Rightarrow \mathcal{L}_{\mathbf{h}=\mathbf{0}} = \mathcal{L}_{\mathbf{z}} \stackrel{\rightarrow}{\omega}$ Which is the result from Phys 201 Example - Compte the chinica tersor I a solid cube I mass M and side layth a about (a) the carrier, (b) the certer. Compte L for both cases given $\vec{w}_i = \omega(1,0,0)$ 2 $\vec{w}_i = \frac{10}{2} (1,1,1)$.

For a catinuous d'Aristian $\mathbf{\omega}_{\mathbf{\Omega}}$ $T_{ij} = \int (\vec{r}^2 \delta_{ij} - r_i r_j) \rho dV$ $L = 9$ $\frac{M}{a^3}$ - Carner (port O) => $(0,0,0)$ - Ceter (port C) = $(\frac{2}{2}, \frac{2}{2}, \frac{6}{2})$

Cas for port ⁰, constant $\pi \rho d\theta$
 $T_{x}(0) = \int_{0}^{a} dx \int_{0}^{a} dy \int_{0}^{a} dz \rho (y^{2} + z^{2})$
 $= \rho (\int_{0}^{a} dx)(\int_{0}^{a} dx)^{1} (\int_{a}^{a} dx)^{2}$ = $\rho\left(\int_{0}^{a}dx\right)\left(\int_{0}^{a}dy\,y^{2}\right)\left(\int_{0}^{a}d\,z\right)$ $+ \int \left(\int_{0} dx \right) \left(\int_{0} dy \right) \left(\int_{0} dz \right)^{2}$ $= \int \frac{1}{3} \cdot a \cdot a^3 \cdot a + \int \frac{1}{3} \cdot a \cdot a$ $\frac{2}{3}$ $=$ $\int P \cdot a$
= $\frac{2}{3} \rho a$ $\frac{1}{2}$ $\frac{a + p \cdot a}{\frac{2}{3} (\frac{M}{a^{3}})^{\frac{5}{2}}}$ \Rightarrow $T_x(0) = 2$
3 Ma B_7 inspection, fund $T_x(\circ) = T_y(0) = T_z(0) = \frac{2}{3} Ma$? The product of didie is $T_{xy}(0) = -$ 3

fud $T_{x}(0) = T_{y}(0) =$

dudic 3
 $\int_{0}^{a} dx \int_{0}^{a} d\theta \int_{0}^{a} d\theta \cdot xy$
 $\left(\frac{M}{a}\right) \underline{a}^{2} \cdot \underline{a}^{2} \cdot a = = -\left(\frac{M}{a^{3}}\right)\frac{a^{2} \cdot a^{2}}{2} \cdot a = -\frac{1}{4}Ma^{2}$ By inspection, find all products of inentia are equal

 ζ o, $T(\omega) = Ma^{2}$ $\begin{pmatrix} 2/3 & -1/4 & -1/4 \\ -1/4 & 2/3 & -1/4 \\ -1/4 & -1/4 & -1/4 & 2/3 \end{pmatrix}$

(b) f_{α} pont C , $T_{x}(C) = \int_{-q_{2}}^{q_{2}} dx \int_{-q_{2}}^{q_{1}} dy \int_{-q_{2}}^{q_{1}} dz (y^{2} + z^{2})$ $=\frac{M}{a^{3}}\cdot a\cdot a\cdot \frac{1}{3}\cdot 2\left[\left(\frac{a}{2}\right)^{3}+\left(\frac{a}{2}\right)^{3}\right]$ $=\frac{1}{6}Ma^{2}$ Libersie, $I_{\gamma}(C) = I_{z}(C) = \frac{1}{6}Me^{2}$ $T_{xy}(c) = \rho \int_{-q}^{q/2} dx \int_{-q/2}^{q/2} dy \int_{-q/2}^{q/2} dz \times y = 0$ \rightarrow old \Rightarrow All \mathcal{I}_{ij} = 0 for it j $TCC = M a^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ \Rightarrow $=$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{4}$

The angular moments are \vec{L}_1 (0) = $\text{T}(0) \cdot \vec{\omega}_1$ = Ma² W $\left(\begin{array}{cc} 2/3 & -1/4 & -1/4 \\ -1/4 & 2/3 & -1/4 \\ -1/4 & -1/4 & 2/3 \end{array}\right)$ (1) $=$ $\frac{1}{12}$ Ma² W (8, -3, -3) $\overrightarrow{L}_{2}(0) = \overrightarrow{\mu}(0) \cdot \overrightarrow{\omega}_{2}$ = $\frac{1}{\sqrt{3}}$ Ma²W $\left(\begin{array}{cc} 2/3 & -1/4 & -1/4 \\ -1/4 & 2/3 & -1/4 \\ -1/4 & -1/4 & 2/3 \end{array}\right)$ 1 = $\frac{1}{653}$ Ma² w (1, 1, 1) = $\frac{1}{6}$ Ma² $\frac{1}{\omega_2}$ F_{α} port c , $\vec{L}_1(C) = \vec{I}(C) \cdot \vec{\omega_1} = \frac{1}{6} M a^2 \vec{I} \cdot \vec{\omega_1} = \frac{1}{6} M a^2 \vec{\omega_1}$ $\vec{L}_2(C) = \mathbb{I}(C) \cdot \vec{\omega}_2 = \frac{1}{6} M a^2 \mathbb{I} \cdot \vec{\omega}_2 = \frac{1}{6} M a^2 \vec{\omega}_2$

The previous example shows something Devesting, for a porticular choice of arign and/or axis Le previous example shows sortility Ducting,
a patienter change of arign and/or axis
& rototion, the relation $\vec{L} = \mathbb{I} \cdot \vec{\omega} \in S$ ign/ifres such that I ¹¹⁰. Mis particular sot of axis are called principal axes. The monet of chiefied about the principal axes is called the principal months, and generally the moment of suntice is xes . The month of
 $y = 0$ order to called the
 $y = 0$ of $y = 0$
 $y = 0$ of $y = 0$
 $y = 0$ of $y = 0$
 $y = 0$ $s.$ 19 \vec{l} = $\lambda \vec{\omega}$. Principal axes are associated with some symmetry axis. Theorem: Existence & Principal Axes For my rigid body and point 0 , 7 three pepedicule axes through O s.t. Il is diagn). $=$ $\sqrt{16}$ = $\sqrt{10}$ and $\sqrt{11}$ $\sqrt{10}$

To prive this, we need to recell some linear Algebra...

Diagonalizing a Real-Symmetric Matrix L'agonarding a near sprinche riaria d is remind ourself d some aspects d linear algebra, namely eigensystems & sold
Consider a real, symptric nxn matrix A. We'd like to sdue the eigenvalue equation pasider a real, symptoire ux
Je'd like to sdue the eight
> A J = λ J = . λ = $(A\vec{v}=\lambda\vec{v}$, $\lambda = \text{e}$ quicle $(\overline{16}, \overline{\lambda 6})$ ($\overline{16}, \overline{\lambda 6}$) Ais is equivalent to $(A - \lambda 1)\vec{v} = 0$ From linear algebra, we know that this has a nontrivial solution (\vec{v} f \vec{o}) if $d\theta$ $(A - \lambda \underline{1}) = 0$. ~ characteristic egn. This is a vial solidian (\vec{v} f \vec{o}) iff $d\theta$ (A- λ
polynomial of degree n. In general, us is a polynamic of exerce $n \cdot n$ yended
it has n complex solutions.
For each solution λ_{κ} , def $(A - \lambda_{\kappa} 1) = 0$.
So \exists a null vector \vec{v}_{κ} S $A - \lambda_{\kappa} 1$, i.e For each solution λ_{κ} , det $(\mathbb{A} - \lambda_{\kappa} 1) = 0$., sawin A_{κ} , del (A^{2})
. Aull vedor \vec{V}_{κ} S /t and Vx an cigaretur.

In general, $\vec{v}_x \in C^n$. Ld. 2 (1) a the
Left by \vec{v}_a^{\dagger} = LV, $\right)^*$ (\dagger = cognose transpose) $\vec{v}_{\alpha}^{\dagger}$ /A $\vec{v}_{\alpha} = \lambda_{\alpha} \vec{v}_{\alpha}^{\dagger} \vec{v}_{\alpha}$ $\Rightarrow \lambda_{\alpha} = \frac{\vec{v}^{\dagger} \mathcal{A} \vec{v}_{\alpha}}{|\vec{v}_{\alpha}|^{2}}$ Recall that, an gueral, $\lambda_{\alpha} \in \mathbb{C}$, so it is a 1x1 matrix and is syntatric, da-1x Shilaty, $|\vec{v}_x|^2 \in \mathbb{R} \Rightarrow (|\vec{v}_x|^2)^T = |\vec{v}_x|^2$ So, take traspose, $\lambda_{\alpha} = \lambda_{\alpha}^{T} = \left(\frac{v_{\alpha}^{+} A \overline{v_{\alpha}}}{|\overline{v_{\alpha}}|^{2}}\right)^{T}$ Real $(ABC)^T = C^T B^T A^T$ $\Rightarrow (\vec{v}_\alpha^+ / A \vec{v}_\alpha)^\top = \vec{v}_\alpha^\top / A^\top \vec{v}_\alpha^*$ $= V_{x}^{\dagger} A^{\dagger} V_{x}^{\dagger}$ Nov, A is real au synadric => $/A^T =/A = A^*$

 $S_{\boldsymbol{\nu}_\ell}$ $\lambda_{\alpha} = \frac{\vec{v_{\alpha}}^{+^*}/A^* \vec{v_{\alpha}}}{|\vec{v_{\alpha}}|^2}$ $= \left(\frac{\vec{V}_{\alpha}^{\dagger} / A \vec{V}_{\alpha}}{|\vec{v}|^{2}} \right)^{\dagger} = \lambda_{\alpha}^{\dagger}$ $\lambda_{\alpha} = \lambda_{\alpha}^{*} \Rightarrow \lambda_{\alpha} \in \mathbb{R}$ for real, symptone matrix 1A Naira also $A^{\dagger} \vec{v}^{\dagger}_{\alpha} = \lambda^{\dagger}_{\alpha} \vec{v}^{\dagger}_{\alpha} \Rightarrow A \vec{v}^{\dagger}_{\alpha} = \lambda_{\alpha} \vec{v}^{\dagger}_{\alpha}$ So, Vi is also a eigenvector u/ same eigenvalue as V_{\prime} , \Rightarrow Can take $\overrightarrow{V_{\prime}}$ + $\overrightarrow{V_{\prime}}$, the must also be an eigenveur with eigenvalue λ_{α} . \overrightarrow{B} \overrightarrow{U} , $\overrightarrow{V}_{\alpha} + \overrightarrow{V}_{\alpha}^* = 2 \overrightarrow{R}$ $(\overrightarrow{V}_{\alpha}) \in \overrightarrow{R}^n$. => Arough switche mainpulations, all eigenvecturs can be chosen to be veal. We may also normalize the eigenedans $\vec{v}_x \rightarrow \frac{\vec{v}_x}{\sqrt{\vec{v}_x \vec{v}_x}}$, so that $\vec{v}_x^T v_x = 1$.

From now as, assure Va is normalized. Finally, cansider two eigenvalues $\lambda_{\mathsf{x}} \neq \lambda_{\mathsf{A}}$. Then, $A\vec{v}_s = \lambda_s\vec{v}_s$
 $B \times (A\vec{v}_s = \lambda_s\vec{v}_s) \Rightarrow \vec{v}_s^T A = \lambda_s\vec{v}_s^T$

Ad second egn. on \vec{v}_s $\Rightarrow \vec{v}_A^T/A \vec{v}_A = \lambda_A \vec{v}_A \vec{v}_A$ $\vec{V}_{s}^{\top}(\lambda_{x}\vec{V}_{d}) = \lambda_{\alpha}\vec{V}_{s}^{\top}\vec{V}_{\alpha}$ $\therefore (\lambda_{\alpha} \cdot \lambda_{\beta}) \vec{v}_{\alpha} \cdot \vec{v}_{\alpha} = 0 \Rightarrow \vec{v}_{\beta}^T \cdot \vec{v}_{\alpha} = 0$ We conclude $Covlude$
 $V_{\alpha}^T. \vec{V}_{\beta} = \vec{\delta}_{\alpha\beta}$ (arthonorm): t_{γ}) With all this, we can now show that 14 Can be diagonalized as $A = W D W^T$ Where ID is diagonal matrix with the eigenvalues an the diagonal and IV is an arthogonal motrix Formed by placing to I column as in the same order as λ_{A} in $\mathbb{D}.$

Prof. Since \vec{v}_α are othernormal, they form ce complète basis & we just need to show $AG_{d} = (WDM^{T})\nabla_{d}$ In the usual basis f/k , \vec{e}_i = $(i, 0, 0, \ldots, 0)$ $e_2=(0,1,0,...,0)$ $e_{\alpha}=(0,0,...,1,...,0)$ We can write the p-elevat of elevat I the α -basis vedur (\vec{e}_{α}), = $\delta_{\alpha\beta}$. With this basis, we can expand the eigenvector as $V_{\alpha} = \sum_{A} V_{\alpha} \sum_{\beta} \vec{e}_{\beta}$ Then, $W_{\alpha\beta} = V_{\alpha\beta}$ is an arthogonal matrix $W^{\dagger} = W^{\dagger}$.
To see this, $W \vec{e}_{\alpha} = \vec{V}_{\alpha}$, also $(\mathbb{V}^{\top} \vec{v}_{r})_{s} = \sum_{k} (\mathbb{V}^{\top})_{s} (\vec{v}_{r})_{r}$ $=\sum_{r} (W)_{\gamma,0} (\vec{v}_x)_{r} = \sum_{r} v_{\alpha,r} v_{\alpha,r}$ $=\overline{V_{\rho}}^{\top} \cdot \overline{V_{\alpha}} = \delta_{\alpha \beta}$

 $\Rightarrow W^T \vec{v}_{\alpha} = \vec{e}_{\alpha} \Rightarrow W^T W \vec{e}_{\alpha} = \vec{e}_{\alpha}$ $\Rightarrow W^TW = 1 + \alpha$ $Fhell,$ $(V \mathbb{D} W^T) \vec{v}_* = W \mathbb{D} \vec{e}_k = \lambda_{\alpha} W \vec{e}_k = \lambda_{\alpha} \vec{v}_k = A \vec{v}_{\alpha}$ \therefore $A = W D W^T$

Principle Axes & Principal Manats

For the Matia tasor, a real symmitric mitrix, ue can diagonalize it, i.e., in the Mation turn, a real symptone motion
we can disyonalize it, i.e.,
Choose a so I axes, such that Illis.

The diagonal elements are given by the The diggand elemodes
essentires d I, i.e essenvalues of I, i.e., the solidians to

 $J\mathcal{F}(\mathbb{I} - \lambda \mathbf{1}) = 0$

 $Example - PricipJ axes f casc 450J curv?$

Recall from previous example 12 Real from previous example
 $\frac{1}{40}$ = Ma² -1/4 2/3 -1/4
-1/4 2/3 -1/4 2/2 $\begin{array}{ccc} \n\frac{1}{3} & -\frac{1}{4} & -\frac{1}{4} \\
\frac{1}{4} & \frac{2}{3} & -\frac{1}{4} \\
\frac{1}{4} & -\frac{1}{4} & \frac{2}{3} \\
\frac{3}{4} & -\frac{3}{4} & \frac{1}{4} \\
\end{array}$ $\overline{\mathbf{z}}$ all from previous example
 $= Mc^2$ -1/4 $2/3$ -1/4
 $-1/4$ -1/4 $2/3$
 $M = 3$ 8 -3
 $M = 3$ 8 -3
 $M = 3$ -3
 $M = 14$
 $M = 3$ $\overline{\textbf{x}}$ - 3 g

 $wih = \frac{1}{2}Ma^{2}$

So, we want to solve $d\vartheta(\mathbb{T}_{o}-\lambda 1)=0$ $\Rightarrow \quad \partial \mathcal{F}\left[\begin{array}{cccc}8\mu-\lambda & -3\mu & -3\mu\\ -3\mu & 8\mu-\lambda & -3\mu\\ -3\mu & -3\mu & 8\mu-\lambda\end{array}\right]=0$ To solve, note the following: O Reparing a column (row) of a motrix with the sam & 1h2 column (row) & a multiple & condition (column (row) does <u>NOT</u> change dd. o Muttiplying a column (row) by number, multiples det by sure number $d\theta$ $\begin{bmatrix} a_1 & a_2 \\ a_3 & a_1 \\ a_2 & a_2 \\ a_3 & a_3 \end{bmatrix} = d\theta$ $\begin{bmatrix} a_1 & 0 & 0 \\ a_2 & a_2 \\ a_3 & a_3 \end{bmatrix} = a_1a_2a_3$ $\begin{bmatrix} 5a, & +ab & & & -3a & -3a \\ 0 & 0 & 0 & 0 \end{bmatrix}$ = 3x $\begin{bmatrix} 8a - \lambda & -3a & -3a \\ -3a & 8a - \lambda & -3a \\ -3a & -3a & 8a - \lambda \end{bmatrix}$

take $col 1 \rightarrow col 1 - col 2$

 0.000 $-1/n + \lambda$ $-3n -3n -3n +1$
 0.0000 $-1/n + \lambda$ $8n - \lambda -3n +1$ \Rightarrow

 $colov2 \rightarrow root2 + row 1$

 $10003 + 2003 + 20002$

 $50, \text{frd}$

 $d\theta[\cdots] = (1/\sqrt{2})^2 (2/\sqrt{2}) = 0$

 $\Rightarrow \begin{cases} \lambda_1 = 2\mu \\ \lambda_2 = \lambda_3 = 11\mu \end{cases}$

So, the principal moments are T_{o} = $(3\rho \omega)$ mands are
 $D = \mu \begin{pmatrix} 2 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$
 μ_{c} axes ? W W about the coxes? ω at $\hat{e}_1, \hat{e}_2, \hat{e}_3$ $\lim_{n \to \infty} \frac{e_1}{b_1} = \lim_{n \to \infty} \frac{e_1}{b_1} =$ Selve $(\mathbb{I}_{o} - \lambda_{1}\mathbb{1})\vec{\omega}_{1} = o$ (^I > a principal manials are
 $\mathcal{I}'_{0} = \mathcal{D} = \mu \begin{pmatrix} 2 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$
 $s_{0} \mathcal{I} - A_{L}$ axes ?
 $\mathcal{E}_{1}, \mathcal{E}_{1}, \mathcal{E}_{2}$
 $\mathcal{M}_{U} = \mathcal{I}_{1}$ associated $\forall \lambda_{1}$
 $(\mathcal{I}_{U} - \lambda_{1} \mathcal{I}) \mathcal{I}_{1} = 0$
 $\$ -3 $\Rightarrow 20, x - 4, y$ $U_{1},$ 2 $=$ O (4) ω_{11} \times $+$ $2\omega_{11}$ \times ω_{11} \times ω_{12} \times ω_{13} $-W_{1, x} - W_{1, y}$ $U_{1},$ 2 = 0 (c)
 $U_{1},$ 2 = 0 (b)
 $+$ $2U_{1},$ 2 = 0 (c) T_{abc} (a)-(5) => $U_{11}x = U_{12}y$ I abe (G) - (5) => $U_{1, x} - W_{1, y}$
From (G) => $W_{1, x} = W_{1, y} = W_{1, z}$ s_{0} $\vec{\omega}$ || $(1,1,1)$ \Rightarrow Normalize to find $\hat{e}_{1} = \frac{1}{2} (1, 1, 1)$

This means 12 if $\vec{\omega}_{i} = \omega \hat{e}_{i}$ $12 - 2.7$ $\vec{u} = \vec{u}$, $= \omega \hat{u} \hat{e}$, $= \omega \lambda_1 \hat{e}$, $= \lambda_1 \vec{u}$ \Rightarrow \vec{l} , $\epsilon \lambda$, $\vec{\omega}$ F_{α} $\vec{\omega}_1$ & $\vec{\omega}_2$, $\lambda_1 = \lambda_2$ $Solve$ $(\mathcal{T}_{o} - \lambda_{2} \mathbb{1})\vec{\omega} = 0$ $\Rightarrow \mu \begin{bmatrix} -3 & -3 & -3 \\ -3 & -3 & -3 \\ -3 & -3 & -3 \end{bmatrix} \begin{bmatrix} u_x \\ v_y \\ u_z \end{bmatrix} = 0$ \Rightarrow $U_x + U_y + U_z = 0$ ν and the this is equal to $\vec{\omega} \cdot \hat{\vec{e}}$, =0 => $\vec{\omega}$ needs to be cothogon) to \hat{e} ,
=> \hat{e}_2 & \hat{e}_2 need to be cothogon) to \hat{e}_1 Two sud soldiers are $\hat{e}_1 = \frac{1}{\sqrt{2}} (1, 0, -1)$, $\hat{e}_3 = \frac{1}{\sqrt{2}} (-1, 2, -1)$ (vof_7)

So, principal axes (cigavecture) ave $\hat{e}_1 = \frac{1}{\sqrt{3}} (1,1,1)$, $\hat{e}_2 = \frac{1}{\sqrt{2}} (1,0,-1)$, $\hat{e}_3 = \frac{1}{\sqrt{2}} (-1,2,-1)$ The principal axes Caresport to symptoy I the cube and the body diagen - with CONV DO. Can decorpuse II, = W ID V^T $D_o = 1$ Hc^2 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ with $W = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & \sqrt{3} & -1 \\ \sqrt{2} & 0 & 2 \\ \sqrt{2} & -\sqrt{3} & -1 \end{pmatrix}$ \hat{e}_1 \hat{e}_2

Precession 5 Symptoire Top duc to weak Targue Having all the tools is an assered, Wis apply then for a "simple" physics problem. Carsider a symmetric top with mass M and chedra tensor I=diag (1, 1, 1, 1) in the basis & its principal axes, (e, Ez, Ez). It radics <u>Freely</u> with its tip pivoted at a Its CM is 2 \vec{R} . \hat{e}_3 \mathbf{e}_3 We assume its argular ∍^e
e2 velocity is sistedly along its symptog axis, M_{J} $\overrightarrow{\omega}$ = $\omega \hat{e}_3$ andjiza \overline{S} The ayour monetum is diticly (initial contig) $\overrightarrow{L}=\overrightarrow{\mu}\overrightarrow{\omega}=\lambda_{3}\omega\hat{e}_{3}$

If we release the top, gravity will exet a t we release the top, gravity will exet a
torgue, and canse a change & angular mometum. Torgue, and cance a change & angels moment CM with fixed pair O . \mathbb{f} $\overrightarrow{7}$ = $\overrightarrow{8}$ (e.g., \overrightarrow{R} \overrightarrow{R} = \overrightarrow{O})
=> \overrightarrow{C} = cand. To see, take $\left(\frac{\partial \vec{l}}{\partial t}\right)_{\vert_{\mathcal{L}^{1}}}=\lambda\frac{d}{\partial t}\left(\omega\,\hat{c}_{3}\right)_{\vert_{\mathcal{L}^{1}}}$ $=\lambda(\dot{\omega}\hat{e}_3 +$ $\omega\left(\frac{d\hat{e}_3}{dt}\right)_{|_{\infty}}=0$ Suce $\vec{G}||\hat{e}_3 \Rightarrow (\frac{\partial \hat{e}_3}{\partial t})_{ts} = \vec{w} \times \hat{e}_3 = \vec{0}$ That is, \hat{e}_3 is fixed in the lis frame too! \Rightarrow $\hat{\omega}$ = 0

 0 If $\overrightarrow{\Gamma}$ \uparrow \overrightarrow{O} , $b\overrightarrow{\omega}$ ω_{1}, ω_{2} are small, so $\overrightarrow{\omega}$ = ω_{3} \overrightarrow{e}_{3} \Rightarrow $\vec{P} \perp \vec{\omega}$ and $\vec{\omega}$ remains small So, Est gives $\left(\frac{d\vec{l}}{dt}\right)_{11} = \vec{\Gamma}$ $\Rightarrow \lambda(i/2) + \omega(d\hat{e}_3) = \vec{R} \times M \vec{y}$ Since $\dot{u}_0 \approx 0$, $\left(d\frac{\partial}{\partial t}\right) = \frac{1}{\lambda}\overrightarrow{R} \times M\overrightarrow{g}$ $Now, \vec{R} = \vec{R}\hat{e}_3$, $\vec{G} = -\hat{g}\hat{i} \implies \vec{R}\times\vec{g} = R\hat{g}\hat{i} \times \hat{e}_3$ \Rightarrow $\left(\frac{\partial \hat{e}_3}{\partial t}\right) = \left(\frac{MR_9}{\lambda \omega}\right)^2 \times \hat{e}_3$ Donce 52 = MR9 2 => The symptom aris of the t cades $w/$ Ω = MRg $\sum_{i=1}^{n}$ => precession