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Two-Body Systems

Her we examine in detail the motion of two-body
systems. Two-body systemsan president in the

Judy of physics, such as the abit of a plant
about a fard the physics ofNerading electron &

proton in the hydrogen ston . Our focus will

be a catral fance problems ,

that is each boo,
exhibits a mutual farce on each other without

my exand faces

Central Forces

Consider two objects ,
considered as point particles,

with masses m,
& mc .

The faces considered
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A carol force has the funciond far

F(, ) =F -mil)

=-E
,
(I -Fl)

Here
,
i

,
& i we the positions of objects 1 & 2

in a coordinde system O.

An example of such a farce is Newton's

Low of Gravitation
,

-

F
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= -Grimz, -in
- Tri-z
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Gravitations cast
,
G = 6

.67x10"
legh

Since theFace is conservative (ExE = :)
,

We can describe it by a portatio energy
function

,
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,
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An isolated system is tradictionally invariant
,

& since the face is consensive
,

we have

UC ) = U (Ir, -Fill

Let us introduce the relative positionif,

=
,
-

> position of bodyI relative to body 2

with this definition,
-

F = - Gh
,mz Es = -Gr Urs

with r = irl ==
g

and the pottin is U = U(r)

For gravitation ,
UC = -G We

~

The dynamical system of the two bodies is described

by the Lagragia

2 = m, -U



The Newtaia formation is

=
,
=

my mz

We will use the Lagragia approach to quest

equations of rotion o a more suitable coordinate

system.

Cate Mass & Relative Coordinates

It is difficult to solve the system for dr

separately. However , since the patetic is

ca
,
U =W (r)

,

this indicates that there is

a beter st of coordides involving the relative

position =- .
We have 3+3 = 6 dof.

between r
, &is ,

and has b doof.
,

so we

need 3 more
.

Consider the Cute-of-mass I

F = me



Consider sore limits =-
711
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Example
Consider the Eath-Sun system . Wolve is the Ch

using a coordinate system with theargin of the

cate of the sun .

sun

Ro T i
·

⑦
7 X ↑

② Mo mo
Earth

-E =motmore Note
Mo + mi

~

mind
=

mo ver
+ 0((m)

Now
, Ma = 3x10 No

Cro) = 200 Ro
-

solar radius

=> (R) = 6x10Y Ro M



the total moration of the system P is given by

= (mitmilie = Mis
-

total mass of system

Recall that the total monation of a closed

system is constant
.

Therefore,

&

↑ = cas => R = cons

It = = R = E
.

++

V

initial composition in 0.

Given Ch & Relative courdntes (E)
,

can

invet relations for individual positions (2) ,

F= (minimum
-
= F+

r = - in : Fe-mir



Recall the Lagrangian

2 = time - Wir

Lo us transform the hintic energies to (7)

T = T
,

+Tz

=Inte
2

= In , (F+ ) + [mz(F-r)
= (m+mult + 1 m , w m2 2

-Mis
Lot us define a parameter ,

the reduced mass M

= m, M2M=m, +Mz

Consider limit

· 1 r = = n
,

- ((m +0(())
M2

· mi = Mz =MEM=



Thus
,
the lintic energy

is

T= Iri
- ↑
KEf em Ke o rktire motic

So
, Lagragia,
2 = M +-Wir

=(m + h+) <

-

depends only aT dependsany on i

Equationsf Motion

We ca garte the For FR&. Conside
the Enlor-Lagrage eyes ·

For R
,

- , j = 1
,

2
,
3

-

GRj

Since La : Za(Rj) = IMGR
the coordinate Rj is ignarable, Lar = O

2Rj



Thus the EOM we

(
-(MinSin)
=(ii)
= Mj

or, =
-

The cate f mass moves as a free particle",
as we expect for isolated-closed systems :

The soltim is straightforward

& (t) = + Y(t - tr)

with F
.

=RItr)
,
V =Fr(tr)

The relativeration is more complicated

-Chec , j = 1
,

2
,
3



The relative Lagragia is of
a particle of

mass a interacting with
a potential Ucr.

Wa - un
= - 2Uri

Orj
and

=I
- (m& in Sin)

=

So
,
Ear = Mij = -Quiri

Grj

a

ri = -J
r
Ucr) For f particle

of mass en
is partic vars



The Cete-f-Mass frame

We can sinify ou problem furthe by

choosing a special metal reference frame .

Since F = caust
,

we can choose a frame

called the CM frame
, where the CM is

↓ ro
,
Fitt =5 - t .

Thus
,

F = = Za = 0

So
,
the Lagougin is

2 = 2u = Lu - Vir

↑
Cm Frame

this is an effective I-body problem

> ~
=

m,
r

T M

- , >

I ↑ o =Mi [ r
- 2 M

L Cr O

>
m2

Centr of effective I-body system
partic



We have reduced a problem in 6 variables to

3 variables in the Ch frame
. Using consumatic f

angular mometer ,
we can further sirdify the

problem . The tes angula morate [ is

T = r
,x ,

+
= x5z

= m,,xi + mexi

In the CM free
, Fi = Mr & = - it

so
,

=

m (mex +m
=Mix

Since total angular monatur is conserved
,

i =

=>T = cost
-

Therefor
S T =Mix = cust

.

So
,
the direction x = cast



Thus
,

we can write

T = lz = cas.

where=
Thus

,
theNation of the system lies is a place,

effective
- reducingb coordides to 2 .

re

T =1 =
M↓ = M

7
T M· r

place defined by

=



Lo us drive the equations of motion for the

ranching I variables .
Le us choose to rac

with cylindrical solar coordinates (r
,4)

=
Y1 ↑

- = in + rij
T

-

r

=> " + n22
Te

· >
So, X

2 = 22 = [r( + rich) - Wiri

Voice this h is independent of e => = 0

So
,

= uniq = l = cat
. angular e e

=>=i=

Recall : [ =nx = =uri) * xY =uric =
=1

So
,
the 4 equo is sirdy a statement of caseration

o angular mometer.



Nor let's consider the radial equ

-

Su
, =r(zurri -Wars)

=unij-z

=
=ri

=> ni = Mrij-zu radiate

Given Ull
,

we wish to solve for w



EffectivePotentials

Before specifying a partial virs ,

w

us examine the effective one-dimensions

problem :
the equates of ration are

(1)

&*- 2 (2)

zr

Since = caut
,
the uy equation is this fixed

from initie conditions since given

ro = r(to)
, 40 = 4 (tol

r = r(t), i = ((tr)

= l =

ur? Do

So
,
let us write (1) as

4 =Er( = (FYo
and climate if from 121

Mr= (3)



Egu .

3 is a equivaled 1-dimension problem

only involving the uncorn -.

ri= -
M -

central Force

"fictitions" centrifuge face

Le Fi =th
be the cerfug face

We can define a catrifuge partic easy
F =-)

Where Up (r)=
So

,
the radia eye can be written as

Mi = -(wi + U=()
= -Ever



we have defined the effective potenting

Wef() = Want Wefcrs
2

= Un + &
zur

?

It's effectively as of a single patide is

moving in Indimension in a pattie Versus

Let's look of gravitation interactions as an example,

UC) : - G Me
er

Recall M =

Mun = U
= -GM

So
,

Ve() = - GMM+
For 170

, Wet ~-Gr as n -> c

~

Ver~ LS ~ -> 0



Lo To be the location of the whim

value of Wet for 10.

-
G

So,

-,

= ro-et
e2 = GMu" ro

V

2

At the mine, U =

-Gr 2

=- GM
-

+ EM =-- zr
O ~ S

We can then write We as

Ver = -Gr + ! Err
v

Co)
= Wefe [2-



M

~Wo

& = - (& )[-2 +(

= r >

-

!
~ Wil -- GMr

~ Wetf ra

-
[0) T

Wetr : Wefe

Lo us consider the consequences of conservation of

energy.
Take theFor & multiply by i,

= - Ver (i =c)

=> mir) = -U



Thisreams that

trit + Weff) = cast.

=> ri+ Wi = c

BJ
,
zall Tr =tr = Iri + Lurj

& j=E Tr=
Therefore

, Tel + Wri = and

This is just a siterat of tren energy,

E = Trai + Virl =Const
.

which is conserved
, =0 .

Let's gain look
of themation of a particle of

massmn
is a 1-din effective system

↳Mi + Wef( = E



Notice that Imit 20 always,

thus

E ? Vete

The poits such the i = o we turning ports in the

reduced patichs trajectory .

Now
, Yet can in gued be positive or negative,

thus we have two cases to caside : EXO & ECO
.

his look - ELO case
,
for an object, such as a

come
,
is a gravitation well , UC = - GM /

-

W

where 170 ·

If E = 0 & E ? Wet , we have Wet - O

wr,

We Was o

For gravity , UC1
=

-GM ,
and 10

,

this yours

(- ) = 0

=> rax->0 a Wan=



So
,
there ismly 1 turning port , to

,
o

~min
Thus

,
if a coret comes in from -D

,

it turns

around of fin
,
and moves back toward -> 0.

As a function of Elo
S

we can deterie turning posts, v =o,

E ? Wep()

thos gives E=A-G 7 take E= Wet Case

2=> n + GM r - I = G

E IE

=> I
=

- + ze
~
E

=-GrGree- -3
2 E G2MM

Now
, Since +10

,
I is an uphysical solution

for ELO
.
Therefore

,
ELWe (ii) with

-

Nin = ~+= -GMu +GAI+



Lo us expand the solution for small E, Er "- ,

Erin = -

Cr +G
+ O(E)

Graphicaly ,

this is showe is blue o the

effective patatio Not. This Ezo Scenario

is a unboundedabit
.

M

Urin unbonded Exc
M ⑨-

> ! M

Emi

>

-
ra



Come

Sun Cusonded traje
Now

,
conside ECO .

LO E = -E
,
210

.

the turning poits are nor
,

- Et Wet (ru

w E-Vet(i) .

~

solving for the turning points ,

for 10 & gravity
-E +G
zur

or
,
2 - GMur + l = 0

-

E zuE

which has solutions

=Grecrz



to go a sense of the solution
,
18 Sin1 ,

=>r= =Gr(1

= S-
+ 0()

+ l-
2GM/

+ 0(b)

So
, N

= - & Nex = + .

Recall that the
2

whine of the effective pattie is ot toEth &

M
=>= ro

, ne fu2x1

this is an example of a bonded abit
,

M where the effective particle moves back &

> fath between the turning poits Nn/rax!
M

>

bynex to

r

&
No



E

Come
closed bonded 1

trajectory r

Uhax Prin
Sun

T

the arguements we made work for gard cate

patations ,
but invuse-square- kns like gravitation

result in closed bounced orbits
. One can show

that not other force lows have open bonded

abits
,
the is they precess.

Come

run·NanSun -

What

3



Equation of Orbit

Let us now more toward understanding the drails
F thegeantry of the trajectory. Recall the

equations of nation,

uri =l ( = cas
. )

Mi=+ Fr

Where Firi = -Of is the card force.
or

In gard , solving for Verit) & Y =CH is

very condicated ,

and in generat requires numerica
solutions. But

,

we can learn something about the

georiy of the orbit is a relatively side way.

First
,
has perform a variable change,

v = - u = 1
~

So that the FOM for the radial component is

) = Ein'+ F(t)



Now
,

we trade t -> o as

=
bo

, i fur from the angular En e

=>= fun e
wa thit) = E (t)

=-
und

() =E

=
So
,
the radial equ. is

-in a

a

y = -u -

E - F(t)



So
,

we haveon ODE for UI) ,
from

which we can find re = Nusy)
, give a

face F .

Example
Consider a free particle ,

F=0 ·
Find its whit

, ruel

For F = 0
,
the EOM is a

this is the eye of a SHO

=> U(4) = A cos(4-5)

Where A & S are constants to be fixed

by initial conditions .

ym
M trajatay

So
, r(e) is sin &

-

r(y) =

-Si

m
C
~ No -

& ↑ S -

Where No = /A. at
>
X

Exercise : Show that is isa ege. of aStrengt live !



Kepler Orbits

Let us now specify the face as a

invose square law,

F(u) = - Em

why go by assuction. For gravity,

V = GM ,
while for Coulombia Forces

v = 13
, 22 (which can be+o -1

.

As a function f u
,
Flul = -yu2

So
,
the radia equation takes the for

du = -n + Ut
Tez 22

M

constant
2

To solve
,
15 w = n - Ur = do na-

12

=> di = -w

dy 2

whose solution is 2(e) = Acos(y-5)

whoe A & 8 we to be fixed from initor conditions
.



We can choose Its such the 8:0,

effectively choosing the axis where y = 0.

=> U(y) =

VE + Acc
= (1 + ecs)

Where E = All 20 is a dirusionless cate

voice that=L , w =l
-

um

So
,
the orbit is

ricel =

ecose

Bauded abits

It's explore the features of bonded orbits.

There two setos EE
,
/1 & EL1

if EX1
,
then 1 +Ecosy never unishes

as Coso =+ 1
,
Cost = -1

,
So

,

It
,
1-t > 0

.

=>arbit renahs bonded C .



so
, r(cl oscillates between

rmin=e and ra
,Ee

Here, w= rui is called the periopsis when U = 0

for perihdion if object orbiting the sul , and

Nirmax is called apoapsis when =i

Car aphetion if orbiting the sul.

Noce this rays is periodic, (0) = r(2),

thus the cubit is closed.
-

--Y

1 - t -
-

it In > 9
j

the yearity of theorbit is an ellipse.

Recall the Sudad
*
far for the ellipse,

(x)+
-

1
seriminar exis

Semi-major axis



one can show that

a=,b ,
and d=ae

·

1

N

C C Teapapsis ① 3 · ⑧

d
O perrapsis

b

Norce that the raio =
-

eccetricity of ellipse
Ifa = b = E =0 (a circle

~
a = b = c

,

d = 0

· => r(e) = C

If ↳ -> 0 E E -> 1 /elegated allipse
u

E r -
· ·

b ·
·

singularity of E = 1 - transition from bounded to unbounded



The CM is located o d = at from the cate

this is the focus of an ellipse .

=> we have powe Kader's It lar

Orbital Prod

Obtaing the time-dependence of the obit is in geral

very difficult. However, we can get into a the

orbital prod ,
T

Kers 1 law States A = A
zu

to see this
,
look of dA

dA

da=de -

=> i =1
But

, really For : Mr =l

=> A =1 = constant !
In ~

Arc f ellipse = Hab

T tell

the period is then T = (dt = ( dA+=A
j u

M
constant



So
,

T =

2
Square both sides

,
& recall b =Fe a

=> Th = Yale a = ,
=4 G

e2

we defined c = 12 > T=E-

um

For gravity , U = Grimn = GrM

=>= Reeders third law

For the solar system ,
m

,
= Upland , my = Msu =Mo

=>
m = mp ,

M =Mo

~
L -

C

·

⑳

·
·

⑧
⑳

&
·

⑨

>

3
a



Eccentricity & Energy
the measurement of ecutricity + gives informationa

the
ergy

of the orbiting objects.

Recall that I closed approach , run Se
At this paint, i = 0

,
and

2

E = Def(n) = - u + l
2

-zu Min

= (U)
Recall c= Yum = ru=e +e)

=> E =

U+ e) (ullt -2
-(

Nice the since OLEC1 for bonded orbits,

the ECO , as expected !



TimeDependence of Orbits

We have found the geortical abit were

r(q) =

reconce

with 5=0 by choice. For astronomet research
,
would

also like to have y = C(t) ·

~
called the true moraly

Recall the EOM Mic =e

I

- tyat = (dyy
l

G
O

RJ
,
Rall T=

ar
,

Tt = does
Ca show (Challenge) the result is Kepler's equation

= 2tm( trE) -

se
This is ... conflicted



We would like to invet t = +(e) => C =C() ,

bof impossible castically ·
Ca content series

expansion , on medically solve

However
,

can do sore seri-andytic approximations

By introducing sure new geondric qualities.

Let us circumscribe a circle of radius a on the ellipse

Q(x;xi = Q(a
,4)

&

a

-
P(x

,y) =Pr
,e)

⑨
1

v

C C ↑4 19
① 3 · ⑧

d
O

b

(d)+=1 Eg. Fellipse Creased from

↑

X + Y = 1 Eg .
of reference circle (measured from Ch

-

2al a



We introduce ot as the eccentric money ,
which

is the agle of point Q ,
which is the projection of

point P on the refrence circea

For this projection to be true ,

- 2
(*)=

From geonery , we mat have

cost = x & Sinit = y
I a

Now
, X = d + +Cosy = at + X

=> 20se =

Xe

From (*)
,

me conclude yay = S4 =1
b

Loating ,
X = a (cost - E)

y = b sitt = atte st

In terms of 4,
X = rcosy , yer sing



ca show explicit relation is (challenge

tal : ta (1)

Insating this into Kepler's equation (challenge) are obtains

25 + = 4 - Esh4 (2)

E

this is still a truscaded equation , but me can fus

approxinde (2) ,

& solve (1) for 4

LG M = It Mean anomaly
T

his wat It = #(M) as a solution.

Since it-M = Esisit is a old function a [0,i]
,

Ca expand in Foria Size series

=> 4(4) - M= Anch Since

T

Inves
,

An(h) = for (4m)-M) Sinlum) dM
01

=

- dkosmi)(2(m) - 1]

- I



-

=> An = -zatim-1]cosum-a
T

=di cas com
O

=) can

Recall the M =2 - Esn't
> Lo E = 4141

=> And(2) cosfuctias - ne sinutes)
G

= Ecos[E-nesE]
O

= E](t) Rossel functions f 15 kind !

For Small E
,
bu(x) =X ura) !

ix =2

Su
,

4 (M) = M+ (t)Sucam

M= +



For small ->, few turns could be adegude to

yield good approximation. For high eccentricity
orbits

, eg, conets ,
often need very may ters,

& this nurvical methods are preferred.

Once I=H) is determined
,
either sens-malytically

a numerically ,
then we ca go 2= +) by

(H) = 2tai ta ] mod it

Findty ,
Neet is the

↓(+) = C

1 + Ecos((t)



Precession

Physical abiting bodies in solar syders are

Farely name) two-body problems. Our solu system

has 8 plants & many draf plants &d e objects

which all iteat gravitationaly .

These perturbations input the obit , In intend
F being closed abits

, A4 #0 ,
there is some

deviation & the plant precesses .

planet

run al·Sun NahWhat
L

3

These deviations can be computed for a give plant using
Newtonian gravity .

Howeve
, Mercury was historically

scen to have issues
, as its abit processes

of a

additiona 43" of as perceimy to the Neutrin theory.



The resolution care from Einsens Gaud Raktivity .

Gara Relativity supercedes Mentaria gravity

Gur = OIGMu
↑ T

Spacetime Causture Energy-Mater density

It can be show that the relativistic corrections

on an abit appear as additional ters to the

ceira face. Recall the equation for thearbit,

=- n + Gr

with u= Vr. GR corrections on of the far

= - +G+2
-

speed of light
Since 36M/C1

,
thos is a small correction.

18 t= & S = bar

T2

=> d = -u+



to solve this
,

we construct a potubation series
in 8,

u = u + Su
,

+ 0(8)

Cignare
Expanding,

Mo + Sdu = -no-Sutlu, se

= - uo-Su , + 1 + Suc + 0(54

collecting powers of S,

5 : =-U Un=Hey

As before

S : du = -
,
?he

= - u
,

+() + zecosy +Ecos)

(4)

to solve, ,
= n . + 4

,

%

↑ ↑

horogeneous particular

u
,! = A cos(y - 4)

But
,
ICs fix U = u/S =0] => A = 4 =0

only need to enforce particular solution .



Can show thatu,l1 is

u, = u, = (()1 + E3) + eysy - Eco24]
So
,
to O(b),

u(y) = !(1 + easy) +S
+ (1 + E) -So
small constan small period disubace

For largefimescales ,
the last two ters will swage

out
.

So
.
Ls ignore these

=> u = ((( +Ex + 2 psiny]

For Small 8
, Cosy = 1

, sing4=

=> u = y(z + = cs(y - [4)]
At t = 0

, y =0 as chosen
.
At successive periods

y - 24 = 2π



Solving for of,
y = = 2))+

So
, 14= = bi (G)

=> sy=(2)

For Mercury , &Yck = 43. 03 = 0 .03

* Lobs = 43 . 11 1 0 . 45

Excellent agreement !


