

PHYS 303 – Classical Mechanics of Particles and Waves II

Example Problem Set

 $\mathbf{Due:}\ \mathrm{Not}\ \mathrm{for}\ \mathrm{Credit}$

Term: Fall 2024 Instructor: Andrew W. Jackura

Readings

Read chapter 2 of Taylor.

Problems

Problem 1. [30 pts.] – Projectile Motion in Linear Resistive Medium

A projectile of mass m is launched from the surface of the Earth with an initial velocity \mathbf{v}_0 at time t = 0. The projectiles trajectory is such that the gravity field \mathbf{g} is assumed constant. The projectile moves in a medium which retards its motion with a magnitude proportional to its velocity, $\mathbf{F}_{\text{drag}} = -b\mathbf{v}$, with b being the positive drag coefficient.

(a) [5 pts.] Determine the projectiles equations of motion. Show that the velocity \mathbf{v} as a function of time t is given by

$$\mathbf{v}(t) = \mathbf{g}\tau + (\mathbf{v}_0 - \mathbf{g}\tau) \ e^{-t/\tau} ,$$

where $\tau = m/b$. What are the physical dimensions of b and τ ?

(b) [5 pts.] If the projectile is launched from the origin, show that its position as a function of time is

$$\mathbf{r}(t) = \mathbf{g}\tau t + \tau \left(\mathbf{v}_0 - \mathbf{g}\tau\right) \left(1 - e^{-t/\tau}\right) \,.$$

Show that if the effect of drag is negligible, that is $b \sim \tau^{-1} \ll 1$, that $\mathbf{r}(t)$ reduces to the trajectory for a projectile in a uniform gravity field with no drag. *Hint:* Recall the Taylor expansion $e^x = 1 + x + \mathcal{O}(x^2)$.

(c) [10 pts.] Consider now a coordinate system such that $\mathbf{g} = (0, 0, -g)$ and $\mathbf{v}_0 = v_0(\cos\theta_0, 0, \sin\theta_0)$ where θ_0 is the launch angle with respect to the Earth's surface. Show that the equation for the range R of the projectile is of the form

$$\tan\theta_0 R + \frac{g\tau}{v_0 \cos\theta_0} R + g\tau^2 \ln\left(1 - \frac{R}{v_0 \tau \cos\theta_0}\right) = 0.$$

This equation is transcendental in R, and thus cannot be solved analytically. An approximate solution can be made for systems where the effect of drag is small, that is $b \sim \tau^{-1} \ll 1$. Use the Taylor expansion $\ln(1+x) = x - x^2/2 + x^3/3 + \mathcal{O}(x^4)$ to generate the approximate algebraic equation

$$\tan \theta_0 - \frac{g}{2} \frac{R}{v_0^2 \cos \theta_0} - \frac{g}{3} \frac{R^2}{\tau v_0^3 \cos^3 \theta_0} + \mathcal{O}(\tau^{-2}) = 0.$$

William & Mary

(d) [10 pts.] To solve the approximate equation for R in part (c), we construct a perturbative expansion for R of the form

$$R = R_0 - \alpha \tau^{-1} + \mathcal{O}(\tau^{-2}),$$

where R_0 is the range of the projectile when drag is ignored and α is a positive constant to be determined. Determine α , and the resulting shift in the range $\Delta R = R_0 - R$ in terms of v_0 , θ_0 , g, and τ . Verify that the shift decreases the range with respect to the vacuum case.

Physics 303 - Example Problem Set

1. p_{qj} with p_{rot} and p_{rot} an

a) Find
$$\vec{v}_{tt}$$

from NI: $\vec{mr} = \vec{mg} - \vec{v}\vec{v}$
Now, recall $\vec{r} = \vec{v}$, so EOM is
 $\vec{v} = \vec{g} - \vec{b}\vec{v}$

Define for convioue
$$T = m/b$$

Note the $Tm] = M, [b] = MT^{-1}$
 $\Rightarrow [T] = [m][b]^{1} = T$

So, we solve
$$d\vec{v} + \frac{1}{\tau}\vec{v} = \hat{g}$$
 via integrating faith
 $\mu = e^{t/\tau}$ s.t. $\frac{1}{\tau} = \frac{1}{2t}e^{t/\tau} \Rightarrow d(\mu \vec{v}) = \mu \vec{v} + \frac{1}{\tau}\vec{v}$
So, EOM is $d(e^{t/\tau}\vec{v}) = \hat{g}e^{t/\tau}$

We can integrate easily

$$\Rightarrow \int dt \frac{d}{dt} (e^{t/\tau} \vec{v}) = \int dt \vec{g} e^{t/\tau}
\Rightarrow e^{t/\tau} \vec{v} = \tau \vec{g} e^{t/\tau} + \vec{c}
From $T(c_{5}, \vec{v} = \vec{v}_{0}, e^{t} t = 0)
\Rightarrow \vec{v}_{0} = \tau \vec{g} + \vec{c} \Rightarrow \vec{c} = \vec{v}_{0} - \tau \vec{g}
so, solution is
$$\vec{v}(t) = \vec{g} \tau + (\vec{v}_{0} - \vec{g} \tau) e^{-t/\tau}
as regulared
b) We now wat $\vec{r}(t)$ such that $\vec{r}(0) = \vec{o}$.
Recall $\frac{d\vec{r}}{dt} = \vec{v}$

$$\Rightarrow \vec{r}(t) - \int dt' \vec{v}(t')
= \int_{0}^{\tau} dt' [\vec{g} \tau + (\vec{v}_{0} - \vec{g} \tau) (e^{-t/\tau}]
= \vec{g} \tau t' |_{0}^{t} + (\vec{v}_{0} - \vec{g} \tau) (-\tau) e^{-t/\tau} |_{0}^{t}
\vec{r}(t) = \vec{g} \tau t + \tau(\vec{v}_{0} - \vec{g} \tau) (1 - e^{-t/\tau})$$$$$$$

ð

If drag is negligible,
$$b \ll 1 \Rightarrow T^{-1} = \frac{1}{n} \ll 1$$

Taylor exposion $e^{x} = 1 + x + \frac{1}{2}x^{2} + O(x^{3})$
 $\Rightarrow e^{t/T} = 1 - \frac{1}{t} + \frac{1}{2}(\frac{t}{t})^{2} + O(t^{-3})$

$$\begin{cases} \times (t) = \tau v, cos \vartheta. (1 - e^{-t/\tau}) \\ \gamma (t) = 0 \\ \overline{z}(t) = -g \tau t + \tau (v, s \cdot \vartheta. + g \tau) (1 - e^{t/\tau}) \end{cases}$$

Solution for
$$t = f(x)$$
,

$$\frac{x}{\tau v_{0}} = 1 - e^{-t/\tau} \Rightarrow e^{-t/\tau} = 1 - \frac{x}{\tau v_{0}}$$

$$\omega, \quad t = -\tau \ln \left(1 - \frac{x}{\tau v_{0}}\right)$$
So, $z = \overline{z}(x)$ is

$$\overline{z}(x) = g\tau^{2} \ln \left(1 - \frac{x}{\tau v_{0}}\right) + \left(\frac{v \cdot 5 \sqrt{9} \cdot 4g\tau}{v_{0}}\right) \times \frac{v \cdot 9}{v_{0}}\right)$$
When $x = R$, $\overline{z}(R) = 0$

$$\Rightarrow 0 = t \omega \vartheta \cdot R + \frac{g\tau}{\sqrt{2}} \cdot R + g\tau^{2} \ln \left(1 - \frac{R}{\tau v_{0}}\right)$$
If drog is soll, $b = \tau^{-1} \ll 1$,

$$\tau u_{0} t w \exp(us) \ln \ln \left(1 + x\right) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + O(x^{4})$$

$$\Rightarrow 0 = t \omega \vartheta \cdot R + \frac{g\tau}{\sqrt{2}} \cdot R$$

$$+ g\tau^{2} \left[-\frac{R}{\tau v_{0}}\right] - \frac{R^{2}}{2\tau^{2}} \frac{v^{3}}{v^{3}} \cos^{2}\theta, \quad \frac{3\tau^{3}}{3\tau^{4}} \frac{v^{3}}{v^{5}} \cos^{2}\theta, + \cdots \right]$$
Since $R = 0$ is not physical,

d) Now, we construct expansion $R = R_0 - \alpha \tau^{-1} + O(\tau^{-2})$

- With \$ 70, & Ro = Mye with no drug. We want to deturne $\Delta R = R_0 - R$.
- $lnsuling R = R_0 \alpha \tau^{-1} info$ $0 = ton \theta_0 - \frac{9}{2\nu_1^{3}(s^{2}\theta_1, s^{2}\theta_1, s^{2}\theta_2, s^{2}\theta_1, s^{2}\theta_2, r^{2}\theta_1, r^{2}\theta_2, r^{2}\theta_1, r^{2}\theta_2, r^{2}\theta_1, r^{2}\theta_2, r^{2}\theta_1, r^$
- $\Rightarrow 0 = t \omega \theta_{0} \frac{g}{2v_{0}^{2} (\omega^{2} \theta_{0})} (R_{0} \alpha \tau^{-1})$ $\frac{g}{3\tau v_{0}^{3} (\omega^{3} \theta_{0})} (R_{0}^{2} 2 \alpha R_{0} \tau^{-1} + \alpha^{2} \tau^{-2}) + O(\tau^{-2})$ $\Rightarrow c_{0} i g_{me} O(\tau^{-1})$ $\Rightarrow 0 = (t_{m} \theta_{0} \frac{g}{2v_{0}^{2} (\omega s \theta_{0})} R_{0})$ $+ (\frac{g}{2v_{0}^{2} (\omega s \theta_{0})} \alpha \frac{g}{3v_{0}^{3} (\omega s^{3} \theta_{0})} T^{-1} + O(\tau^{-2})$ Ead coefficient of τ^{-1} had unich
- $O(\tau^{\circ}) : t_{m} \theta = \underbrace{g}_{2v_{s}^{2} c_{s}^{2} \theta_{s}} R_{o}$ $\Rightarrow R_{o} = \underbrace{z v_{s}^{2} c_{s} \theta_{s}}_{g} c_{s} \theta_{s} c_{s} \theta_{s}$

$$\mathcal{O}(\tau^{-1}): \frac{g}{2\nu_0^2\cos^2\theta_0} \propto -\frac{g}{3\nu_0^2} R_0^2 = 0$$

$$\Rightarrow \quad \forall = \frac{2}{3\nu_0\cos^2\theta_0} R_0^2$$

$$= \frac{2}{3\nu_0\cos^2\theta_0} R_0^2$$

$$= \frac{2}{3\nu_0\cos^2\theta_0} \left(\frac{4\nu_0}{g_1} \sin^2\theta_3\cos^2\theta_0\right)$$

$$= \frac{8}{3} \frac{\nu_0^3}{g^2} \sin^2\theta_0 \cos^2\theta_0$$
Muchan $R = R_0 - \varkappa \tau^{-1}$

$$S_{P_0} \Delta R = R_0 - R$$

$$= \varkappa \tau^{-1}$$

$$\Rightarrow \Delta R = \frac{8}{3} \frac{v_0}{g^2} \sin^2 \theta_0 \cos \theta_0$$

= $\frac{4}{3} \frac{v_0}{g^2} \sin^2 \theta_0 \sin \theta_0$
) $\sin 2\theta = 2 \cos \theta \cos \theta_0$

Note that $v_0, v_0, v_0, v_0, v_0, v_0 \in Cos \Theta_0, v_0 \in \Theta_0 \in \mathbb{T}_2$ So, $\Delta R > O$, Mus the shift devecuses