

PHYS 303 – Classical Mechanics of Particles and Waves II

Example Problem Set

Due: Not for Credit

Term: Fall 2024 Instructor: Andrew W. Jackura

Readings

Read chapter 2 of Taylor.

Problems

Problem 1. [30 pts.] – Projectile Motion in Linear Resistive Medium

A projectile of mass *m* is launched from the surface of the Earth with an initial velocity \mathbf{v}_0 at time $t = 0$. The projectiles trajectory is such that the gravity field g is assumed constant. The projectile moves in a medium which retards its motion with a magnitude proportional to its velocity, $\mathbf{F}_{drag} = -b\mathbf{v}$, with *b* being the positive drag coefficient.

(a) [5 pts.] Determine the projectiles equations of motion. Show that the velocity v as a function of time *t* is given by

$$
\mathbf{v}(t) = \mathbf{g}\tau + (\mathbf{v}_0 - \mathbf{g}\tau) e^{-t/\tau},
$$

where $\tau = m/b$. What are the physical dimensions of *b* and τ ?

(b) [5 pts.] If the projectile is launched from the origin, show that its position as a function of time is

$$
\mathbf{r}(t) = \mathbf{g}\tau t + \tau \left(\mathbf{v}_0 - \mathbf{g}\tau\right) \left(1 - e^{-t/\tau}\right).
$$

Show that if the effect of drag is negligible, that is $b \sim \tau^{-1} \ll 1$, that $\mathbf{r}(t)$ reduces to the trajectory for a projectile in a uniform gravity field with no drag. *Hint:* Recall the Taylor expansion $e^x = 1 + x + \mathcal{O}(x^2)$.

(c) [10 pts.] Consider now a coordinate system such that $g = (0, 0, -g)$ and $\mathbf{v}_0 = v_0(\cos \theta_0, 0, \sin \theta_0)$ where θ_0 is the launch angle with respect to the Earth's surface. Show that the equation for the range *R* of the projectile is of the form

$$
\label{eq:an} \tan\theta_0 R + \frac{g\tau}{v_0\cos\theta_0} R + g\tau^2 \ln\left(1 - \frac{R}{v_0\tau\cos\theta_0}\right) = 0\,.
$$

This equation is transcendental in *R*, and thus cannot be solved analytically. An approximate solution can be made for systems where the effect of drag is small, that is $b \sim \tau^{-1} \ll 1$. Use the Taylor expansion $\ln(1+x) = x - x^2/2 + x^3/3 + \mathcal{O}(x^4)$ to generate the approximate algebraic equation

$$
\tan \theta_0 - \frac{g}{2} \frac{R}{v_0^2 \cos \theta_0} - \frac{g}{3} \frac{R^2}{\tau v_0^3 \cos^3 \theta_0} + \mathcal{O}(\tau^{-2}) = 0.
$$

(d) [10 pts.] To solve the approximate equation for *R* in part ([c](#page-0-0)), we construct a perturbative expansion for R of the form

$$
R=R_0-\alpha\tau^{-1}+\mathcal{O}(\tau^{-2}),
$$

where R_0 is the range of the projectile when drag is ignored and α is a positive constant to be determined. Determine α , and the resulting shift in the range $\Delta R = R_0 - R$ in terms of v_0 , θ_0 , g , and $\tau.$ Verify that the shift decreases the range with respect to the vacuum case.

Physics 303 - Example Problem Set

1. pajurile \therefore \overrightarrow{n}
 $-\frac{\partial}{\partial t}$
 $\frac{\partial}{\partial t}$
 $-\frac{\partial}{\partial t}$

a) Find
$$
\vec{v}
$$
 (i)
From $N\vec{\perp}$: $m\vec{r} = m\vec{g} - b\vec{v}$

 Nx , recall $\dot{\vec{v}} = \vec{v}$, so form is
 $\dot{\vec{v}} = \vec{g} - \frac{b}{m}\vec{v}$

$$
Df(x \text{ for } \text{currence} \quad T = m/b
$$
\n
$$
Nf(x \text{ in } J = M, \boxed{b} = MT^{-1}
$$
\n
$$
\Rightarrow \boxed{[r]} = [m][b]^{\top} = T
$$

So, we solve
$$
\frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} = \vec{g}
$$

 $\vec{v} = \hat{d} \cos(\vec{v}) - \vec{v} = \vec{d}$
 $\mu = e^{t/\tau}$ s.t. $\frac{1}{\tau} = \frac{d}{dt}e^{t/\tau} \Rightarrow \frac{d}{dt}(\mu \vec{v}) = \mu \vec{v} + \frac{1}{\tau} \vec{v}$

So, EOM is $\frac{d}{dt}(e^{t/\tau}\vec{v}) = \vec{g} e^{t/\tau}$

$$
Wc \text{ cm } \text{intj/2c } \text{ cm } \text{ inj}
$$
\n
$$
\Rightarrow \int dt \frac{1}{dt} (e^{t/\tau} \vec{v}) = \int dt \vec{g} e^{t/\tau}
$$
\n
$$
\Rightarrow e^{t/\tau} \vec{v} = \tau \vec{g} e^{t/\tau} + \vec{c}
$$
\n
$$
\Rightarrow \vec{v}_{s} = \tau \vec{g} + \vec{c} \Rightarrow \vec{c} = \vec{v}_{s} - \tau \vec{g}
$$
\n
$$
\Rightarrow \vec{v}_{s} = \tau \vec{g} + \vec{c} \Rightarrow \vec{c} = \vec{v}_{s} - \tau \vec{g}
$$
\n
$$
S_{s}
$$
\n
$$
S_{t}(\theta_{t-1})
$$
\n
$$
S_{t}
$$
\n
$$
S_{t}(\theta_{t-1})
$$
\n
$$
S_{t}
$$
\n
$$
S_{t}(\theta_{t-1})
$$
\n
$$
S_{t}
$$
\n
$$
S_{t}(\theta_{t-1})
$$

 $\mathbf t$

 $\ddot{\mathbf{o}}$

If
$$
\deg
$$
 is negligible, $6 \le 1 \Rightarrow 7^{-1} = \frac{1}{n} \le 1$
\nT_{light expansion} $e^x = 1 + x + \frac{1}{2}x^2 + O(x^3)$
\n $\Rightarrow e^{-\tau/\tau} = 1 - \frac{t}{\tau} + \frac{1}{2}(\frac{t}{\tau})^2 + O(\tau^{-3})$

$$
5^{3}
$$
, $\vec{r}(t) = 9^{\text{C}} t$
+ $\tau(\vec{v} - \vec{y} \vec{v}) [1 - (1 - \frac{t}{\tau} + \frac{1}{2} \frac{t^{3}}{\tau} + \cdots)]$
= $\vec{y} \vec{v} t + (\vec{v} - \vec{y} \vec{v}) [t - \frac{1}{2} \frac{t^{3}}{\tau} + O(\tau^{2})]$
= $\vec{v} t + \frac{1}{2} \vec{v} t^{2} - \frac{1}{2} \vec{v} t^{2} + O(\tau^{2})$
= $\vec{v} t + \frac{1}{2} \vec{v} t^{2} + O(\tau^{1})$
= $\vec{v} t + \frac{1}{2} \vec{v} t^{2} + O(\tau^{1})$
 $\frac{1}{2} + \frac{1}{2} \vec{v} t^{3} + O(\tau^{1})$
 $\frac{1}{2} + \frac{1}{2} \vec{v} t^{2} + O(\tau^{1})$
 $\frac{1}{2} + \frac{1}{2} \vec{v} t^{3} + O(\tau^{1})$
 $\frac{1}{2} + \frac{1}{2} \vec{v} t^{2} + O(\tau^{1})$
 $\frac{1}{2} + \frac{1}{2} \vec{v} t^{3} + O(\tau^{2})$
 $\frac{1}{2} + \frac{1}{2} \vec{v} t^{2} + O(\tau^{1})$
 $\frac{1}{2} + \frac{1}{2} \vec{v} t^{3} + O(\tau^{2})$

$$
\begin{cases}\n x(t) = \tau v, \text{cs. } (1 - e^{-t/T}) \\
\gamma(t) = 0 \\
\bar{z}(t) = -g \tau t + \tau(v, \text{ss. } +g\tau)(1 - e^{-t/T})\n\end{cases}
$$

Solving
$$
f_{w}
$$
 $t = t(x)$
\n
$$
\frac{x}{Tv_{0}CD_{0}} = 1 - e^{-t/T} \Rightarrow e^{-t/T} = 1 - \frac{x}{Tv_{0}CD_{0}}
$$
\n
$$
v_{0} = t - T L(1 - \frac{x}{Tv_{0}CD_{0}})
$$
\n
$$
= 2E(X) \text{ is}
$$
\n
$$
Z(x) = gT^{2}L(1 - \frac{x}{Tv_{0}CD_{0}}) + (\frac{v_{0}S\sqrt{\theta_{0}+gT}}{v_{0}C\sqrt{\theta_{0}}}) \times
$$
\n
$$
L(x) = gT^{2}L(1 - \frac{x}{Tv_{0}CD_{0}}) + (\frac{v_{0}S\sqrt{\theta_{0}+gT}}{v_{0}C\sqrt{\theta_{0}}})
$$
\n
$$
= 0 - t_{\infty}D_{0}R + \frac{gT}{v_{0}CD_{0}}R + gT^{2}L(1 - \frac{R}{Tv_{0}CD_{0}})
$$
\nIf dv_{0} is small, $b \propto T^{-1} \ll 1$.
\n
$$
T\omega_{0}L(\omega_{0}C_{0}) = \frac{1}{2} + \frac{x^{2}}{3} + O(x^{2})
$$
\n
$$
= 0 - t_{\infty}D_{0}R + \frac{gT}{v_{0}CD_{0}R}
$$
\n
$$
+ gT^{2}(\frac{R}{2v_{0}CD_{0}R}) - \frac{R^{2}}{2T^{2}v_{0}CD_{0}R} - \frac{R^{3}}{3T^{3}v_{0}CD_{0}R} + O(T^{2})
$$
\n
$$
= 0 - t_{\infty}D_{0}R + \frac{gT}{2v_{0}CD_{0}R}
$$
\n
$$
= 0 - \frac{g}{2v_{0}CD_{0}R} - \frac{g}{2v_{0}CD_{0}R} - \frac{g}{2Tv_{0}CD_{0}R^{2}} + O(T^{2})
$$

d) Now, we custicate expersion $R = R_o - \alpha \tau^{-1} + \mathcal{O}(\tau^{-2})$

 L/H \propto $>$ o , L R_o = r_{\sim} , L \sim dr_{\sim} . Le vout te déterme $\Delta R = R_o - R$.

 1.52π $R = R_0 - 0.8$ π ⁻ ω $0 = \tan\theta_o - \frac{9}{2v^3}c s^3\theta$. $3\pi v^3 c s^3\theta$, $R^2 + D(\tau^2)$

 $\Rightarrow 0 = \text{tun-}\frac{g}{2v^3} \cos^3\theta \cdot \frac{(R_{0}-\alpha \tau^{-1})}{2v^3}$ $-\frac{9}{3523638}(\frac{22}{3}-2007^{1}+617^{2})+0(7^{2})$ $\Rightarrow O = \left(t \omega \partial_{\theta} - \frac{g}{2 \omega^2 \omega^2 \Omega} R_{\theta} \right)$ $+\left(\frac{q}{2v_0^2\cos\theta_o}\times-\frac{q}{\pi v_0^3\cos^3\theta_o}\right)\Upsilon^{-1}+O(\tau^{-2})$

Each coefficient $5\sigma^{-1}$ most union $\mathcal{O}(\tau^{\circ})$: $t_{\mathfrak{a}}\theta = \frac{g}{2v^2 c s^2 \theta_o} R_{\mathfrak{a}}$ $\Rightarrow R_{0} = 2v_{0}^{2} \sin \theta_{0} cos \theta_{0}$ Laje with no dry

$$
O(\tau^{-1})
$$
 $\frac{q}{2v_0^2\cos\theta_o} \times \frac{q}{\pi v_0^2 \cos^3\theta_o} \approx -\frac{q}{2v_0^2 \cos^3\theta_o}$
\n
$$
\Rightarrow \propto = \frac{2}{3v_0 \cos\theta_o} R_o^2
$$

\n
$$
= \frac{2}{3v_0 \cos\theta_o} \left(\frac{q}{\theta} \frac{v_0}{\theta} \right) \sin^3\theta_o \cos^3\theta_o
$$

\n
$$
= \frac{8}{3} \frac{v_0^3}{\theta^2} \sin^3\theta_o \cos\theta_o
$$

\n
$$
M = R_o - \kappa \tau^{-1}
$$

\n
$$
= \kappa \tau^{-1}
$$

$$
\Rightarrow \Delta R = \frac{8}{3} \frac{v_0^3}{g^2} \sin^2 \theta_0 \cos \theta_0
$$

= $\frac{4}{3} \frac{v_0^3}{g^2} \sin^2 \theta_0 \sin \theta_0$

Ware that v. 70, g ? 0, 5x D. 70 2 CSO. 70 2 USD. $5\frac{\pi}{2}$ So, AR 20, Ans the shift devenues