

### PHYS 303 - Classical Mechanics of Particles and Waves II

#### Problem Set 8

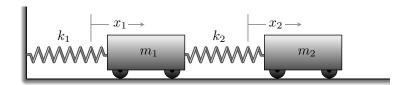
Due: Thursday, November 21 at 5:00pm

Term: Fall 2024

Instructor: Andrew W. Jackura

## Readings

Read sections 11.1–11.6 and sections 16.1–16.5 of Taylor.

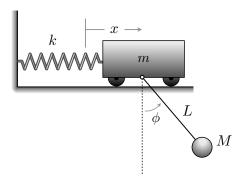

#### **Problems**

Please indicate the time taken to complete the problem set.

### Problem 1. [30 pts.] - Coupled Oscillators I

A cart is connected to the wall and to another cart via a springs, as shown below. Each cart has a mass  $m_1 = m_2 = m$  and the springs have spring constant  $k_1 = k_2 = k$ .

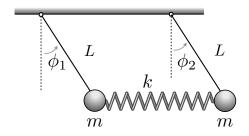
- (a) [10 pts.] Use Newton's laws of motion to derive the equations of motion in terms of the positions  $x_1$  and  $x_2$ , which are measured from their respective equilibria.
- (b) [10 pts.] Find the normal mode frequencies,  $\omega_1$  and  $\omega_2$ , for the two carts.
- (c) [10 pts.] Find and describe the motion for each of the normal modes in turn.




William & Mary Page 1 of 2 Department of Physics

# Problem 2. [30 pts.] - Coupled Oscillators II

A simple pendulum (mass M and length L) is suspended from a cart (mass m) that can oscillate on the end of a spring of force constant k, see the figure below.


- (a) [10 pts.] Assuming that both x and  $\phi$  are small, write down the Lagrangian in terms of the two coordinates x and  $\phi$ , where x is the extension of the spring from its equilibrium length and  $\phi$  is the angle of the pendulum measured from its equilibrium position.
- (b) [10 pts.] Find the two Lagrange equations of motion for small oscillations.
- (c) [10 pts.] For M=m=L=g=1 and k=2 (in some units), find the normal frequencies and corresponding normal modes.



#### Problem 3. [20 pts.] – Another Double Pendulum

Consider two identical plane pendulums (each of length L and mass m) that are joined by a massless spring (force constant k) The pendulums' positions are specified by the angles  $\phi_1$  and  $\phi_2$  as shown in the figure below. The natural length of the spring is equal to the distance between the two supports, so the equilibrium position is at  $\phi_1 = \phi_2 = 0$  with the two pendulums vertical.

- (a) [10 pts.] Assuming the angles remain small, write down the Lagrangian and the corresponding Euler-Lagrange equations of motion. Small angles means that the extension of the spring is well approximated by  $L(\phi_2 \phi_1)$ .
- (b) [10 pts.] Find and describe the normal modes for these two coupled pendulums.



William & Mary Page 2 of 2 Department of Physics