Feynman Rules - Scalar Electrodynamics

The Lagrangian density for quantum scalar electrodynamics field is given by

$$\mathcal{L} = (D_{\mu}\varphi)^{\dagger} (D^{\mu}\varphi) - m^{2}\varphi^{\dagger}\varphi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2\xi}(\partial_{\mu}A^{\mu})^{2}$$

where *m* is the mass of the boson, D_{μ} is the gauge covariant derivative is $D_{\mu} = \partial_{\mu} + iqA_{\mu}$, and the field strength tensor is $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. The charge of the boson is *q*, e.g., for the $\pi^+ q = +e$ while the K^- has q = -e, where $e = \sqrt{4\pi\alpha}$ is the magnitude of the electron charge in natural units, and α is the fine-structure constant. The CODATA value for the fine-structure constant is $\alpha = 7.2973525693(11) \times 10^{-3}$. The gauge fixing parameter ξ is arbitrary, and physical observables must be independent of ξ . The Fermi-Feynman gauge, $\xi = 1$, is a common choice especially for tree-level calculations.

Feynman Rules

Here we give the Feynman rules for the scattering amplitude \mathcal{M} ,

 $i\mathcal{M} = \text{sum of all connected, amputated diagrams},$

where the diagrams are evaluated according to the following rules:

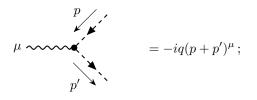
- Draw all topologically distinct diagrams at a given order;
- For each internal scalar line, attach a propagator

$$\xrightarrow{p} = \frac{i}{p^2 - m^2 + i\epsilon};$$

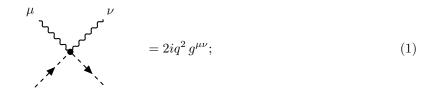
• For each internal photon line, attach a propagator

$$\stackrel{\mu \longrightarrow \nu}{\longrightarrow} \qquad = \frac{-i}{p^2 + i\epsilon} \left(g_{\mu\nu} - (1-\xi) \frac{p_{\mu} p_{\nu}}{p^2} \right) ;$$

• For each 3-point vertex, assign



• For each 4-point vertex, assign



"incoming photon"	$\bigcap_{\substack{\longleftarrow\\p,\lambda}}^{\mu}\mu$	$=\epsilon_{\mu}(p,\lambda);$
"outgoing photon"	$\underbrace{\bigcap_{\substack{ \atop p, \lambda}}}^{\mu}$	$=\epsilon_{\mu}^{*}(p,\lambda);$
"incoming boson"		=1;
"outgoing boson"	p	=1;
"incoming anti-boson"		= 1;
"outgoing anti-boson"		=1;

• For each external line, place the particle on the mass-shell, $p^2 = m^2$ for the boson and $p^2 = 0$ for the photon, and attach a wavefunction factor

- Impose momentum conservation at each vertex;
- For each internal loop momentum k not fixed by momentum conservation, integrate $\int \frac{\mathrm{d}^4 k}{(2\pi)^4}$;
- Multiply the contribution for each diagram by an appropriate symmetry factor \mathcal{S}^{-1} .