Feynman Rules - Scalar Electrodynamics

The Lagrangian density for quantum scalar electrodynamics field is given by

$$
\mathcal{L}=\left(D_{\mu} \varphi\right)^{\dagger}\left(D^{\mu} \varphi\right)-m^{2} \varphi^{\dagger} \varphi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

where m is the mass of the boson, D_{μ} is the gauge covariant derivative is $D_{\mu}=\partial_{\mu}+i q A_{\mu}$, and the field strength tensor is $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. The charge of the boson is q, e.g., for the $\pi^{+} q=+e$ while the K^{-}has $q=-e$, where $e=\sqrt{4 \pi \alpha}$ is the magnitude of the electron charge in natural units, and α is the fine-structure constant. The CODATA value for the fine-structure constant is $\alpha=7.2973525693(11) \times 10^{-3}$. The gauge fixing parameter ξ is arbitrary, and physical observables must be independent of ξ. The Fermi-Feynman gauge, $\xi=1$, is a common choice especially for tree-level calculations.

Feynman Rules

Here we give the Feynman rules for the scattering amplitude \mathcal{M},

$$
i \mathcal{M}=\text { sum of all connected, amputated diagrams },
$$

where the diagrams are evaluated according to the following rules:

- Draw all topologically distinct diagrams at a given order;
- For each internal scalar line, attach a propagator

$$
\xrightarrow[p]{--\rightarrow--} \quad=\frac{i}{p^{2}-m^{2}+i \epsilon}
$$

- For each internal photon line, attach a propagator

$$
\mu \underset{p}{\sim} \nu \quad=\frac{-i}{p^{2}+i \epsilon}\left(g_{\mu \nu}-(1-\xi) \frac{p_{\mu} p_{\nu}}{p^{2}}\right)
$$

- For each 3-point vertex, assign

- For each 4-point vertex, assign

- For each external line, place the particle on the mass-shell, $p^{2}=m^{2}$ for the boson and $p^{2}=0$ for the photon, and attach a wavefunction factor

- Impose momentum conservation at each vertex;
- For each internal loop momentum k not fixed by momentum conservation, integrate $\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}$;
- Multiply the contribution for each diagram by an appropriate symmetry factor \mathcal{S}^{-1}.

