Feynman Rules - Quantum Electrodynamics

The Lagrangian density for a Quantum Electrodynamics (QED) is given by

$$\mathcal{L} = \frac{1}{2} i \bar{\psi} D \psi + \text{h.c.} - m \bar{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\xi} (\partial^{\mu} A_{\mu})^2$$
(1)

where *m* is the mass of the fermion, D_{μ} is the gauge covariant derivative is $D_{\mu} = \partial_{\mu} + iqA_{\mu}$, and the field strength tensor is $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. The charge of the fermion is *q*, e.g., for the electron q = -e while the up-quark has q = +2e/3, where $e = \sqrt{4\pi\alpha}$ is the magnitude of the electron charge in natural units, and α is the fine-structure constant. The CODATA value for the fine-structure constant is $\alpha = 7.2973525693(11) \times 10^{-3}$. The gauge fixing parameter ξ is arbitrary, and physical observables must be independent of ξ . The Fermi-Feynman gauge, $\xi = 1$, is a common choice especially for tree-level calculations. Note below we use indices α, β for spinor space, while μ, ν for Lorentz space.

Feynman Rules

Here we give the Feynman rules for the scattering amplitude \mathcal{M} ,

 $i\mathcal{M} = \text{sum of all connected, amputated diagrams},$

where the diagrams are evaluated according to the following rules:

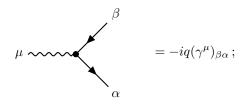
- Draw all topologically distinct diagrams at a given order;
- For each internal photon line, attach a propagator

$$\stackrel{\mu \longrightarrow \nu}{\longrightarrow} \qquad = \frac{-i}{p^2 + i\epsilon} \left(g_{\mu\nu} - (1-\xi) \frac{p_{\mu} p_{\nu}}{p^2} \right) ;$$

• For each internal spinor line, attach a propagator

$$\stackrel{\alpha \longrightarrow \beta}{\longrightarrow} = \frac{i(\not \! p + M)_{\alpha\beta}}{p^2 - M^2 + i\epsilon};$$

• For each vertex, assign



• For each external line, place the particle on the mass-shell, $p^2 = m^2$ for the fermion and $p^2 = 0$ for the

"incoming photon"	$\bigcap_{\substack{\mu\\p,\lambda}}\mu$	$=\epsilon_{\mu}(p,\lambda);$
"outgoing photon"	$\bigcirc \overset{\mu}{\underset{p,\lambda}{\longrightarrow}} \mu$	$=\epsilon_{\mu}^{*}(p,\lambda);$
"incoming fermion"	$\bigcirc \underbrace{\bullet}_{\overrightarrow{p,s}} \alpha$	$=u_{\alpha}(p,s);$
"outgoing fermion"	$\bigcirc _{\overrightarrow{p,s}} \alpha$	$=\bar{u}_{\alpha}(p,s);$
"incoming anti-fermion"	$\bigcirc _{\overbrace{p,s}} \alpha$	$= \bar{v}_{\alpha}(p,s);$
"outgoing anti-fermion"	$\bigcirc \underbrace{\bullet}_{\overrightarrow{p,s}} \alpha$	$=v_{\alpha}(p,s);$

photon, and attach a wavefunction factor

- Impose momentum conservation at each vertex;
- For each internal loop momentum k not fixed by momentum conservation, integrate $\int \frac{\mathrm{d}^4 k}{(2\pi)^4}$;
- For each fermion loop, multiply the diagram by (-1);
- For each set of diagram which are only distinguished by interchanging two external fermion lines, multiply one of the diagrams by (-1);