Hadrons
Beginning is the 1950's, then were loo's f paides being discoucred. H was obswred th? these new paiticles did nol intud like ebectras or phaters, ad had fegtues sirila to the pratom and natien. These panicles were called hadions. Atterतes t - undronal the "Hadion zos" Led to the applicaicans of symnctiy to undevean thur fundarest druadions.

Hadrans come in two types: Mesens and Baryons To distingish these two, we citroduce the quatim number Borjon number B_{n}

We assign $B_{n}= \begin{cases}+1 & \text { for } B \text { Burzon } \\ -1 & \text { for } A 刃 i: B u y a n s\end{cases}$ resurs have $B_{n}=0$.

Borgn number is always conseved!

$$
\Delta B_{n}=0
$$

In the SM, Bergen numbs is repravited by a global $U(1)$ symactry af $Q C D$.

The fat ing $\Delta B_{1}=0$ in rentions mems the rations like $p \rightarrow e^{+}+\pi^{0}$ are oD absuved!

In the mibuse we obsuve rare ration than Ginatin. Bergoguesis is the guuation f this aspen. Hyp $_{7}$. One f the caditions for such a process is $\Delta B_{n} \neq 0$ (ulayg with $C \& C P$ vidgion).

Resarances
How do we deter these shat-lived hadras? Straggly divinity, hadrons de resonances forgiving processes. Casider a propugior for a stable panicle.

$$
i \Delta=\frac{i}{p^{2}-m^{2}}
$$

The associate wave fanion is $\langle 0| \hat{\varphi}(x)|\vec{p}\rangle=e^{-i p \cdot x}$ For a stale 9 rest, $p=(E, \overrightarrow{0})$, and for anergies near the pole, is $\sim \frac{i}{2 m(E-m)}$

In NRQM, the wave fugion gives probadility anplitude,

$$
\psi^{*} \psi \sim e^{i m t} e^{-i n t}=1
$$

whe if a protide decay?
Exped $\psi^{*} \psi \sim e^{-t / \tau} T$ Lifetime of the paidec
This effectively shifts the pole chito the corplex energy plane

$$
i \Delta \sim \frac{i}{2 m(E-m+i \Gamma / 2)}
$$

wher Γ is the decny widte, $\Gamma=1 / \tau$

unstoble
wave findim, $\psi=e^{-i E_{\text {pin }}}=e^{-i(m-i \Gamma / 2)}$

$$
\begin{aligned}
\Rightarrow \psi^{\psi} \psi & =e^{i(m+i \Gamma / z) t} e^{-i(m-i \Gamma / 2) t} \\
& =e^{-\Gamma / 2 t} e^{-\Gamma / 2 t} \\
& =e^{-\Gamma t}=e^{-t / \tau}
\end{aligned}
$$

\Rightarrow unstalle hadrons are pole silgularities of Grea's findians or ScAlcing anditudes in the Complex urgy plane

Far a narrou, isolitad resunace, the Breit-wigne arplitude pheronudigically panametorzes the arplitude

$$
\begin{aligned}
& i M_{B \omega} \sim \frac{1}{s-m^{2}+i n \Gamma} \\
& \text { So th9 } \sqrt{ } 9 \text { sore cuisid } \\
& \sigma_{刀 \omega}=\frac{A}{\left(s-m^{2}\right)^{2}+m^{2} \Gamma^{2}} \\
& \text { Notc: } S=m^{2}-i m \Gamma \\
& \Rightarrow E=m \sqrt{1-i \Gamma / m} \\
& \simeq m-i \Gamma / 2 \longleftarrow \text { assumes } m \ll \Gamma
\end{aligned}
$$

Is sospin
There are other useful "syrnetries" to mravel haden phasics. I's cousider fing the protan and the newton.
It is obsund that $m_{p}=m_{n}$

$$
\left.\begin{array}{l}
m_{p} \simeq 938.3 \mathrm{rcV} \\
m_{n}=939.6 \mathrm{rcV}
\end{array}\right\} \Rightarrow \frac{\Delta m_{0}}{m}-0.14 \%
$$

This sugge9s the pius as having on "approxintz" syañr, under Etrong deration propintias
\Rightarrow p.n are 2 uspets f "singh" paitich N, "oudean"

$$
\boldsymbol{N}=\binom{p}{n} \quad \text { a } \text { doubld }
$$

Sinilarl : $\pi^{+} \pi^{\circ} \pi^{-} \Rightarrow \frac{\Delta m}{m} \sim 3.3 \%$

$$
\Delta^{++} \Delta^{+} \Delta^{0} \Delta^{-} \Rightarrow \frac{\Delta m}{m} \sim 1 \geqslant
$$

etc.

It is observed thit the strong stration cmant distiguish compentis f these "grouped"paitcles, e.g:

$$
\begin{aligned}
& \pi^{+} \rho \\
\sim \pi^{+} \rho & \sim \pi^{\circ} n \\
\sim \pi^{-} \rho & \sim \pi^{-} n
\end{aligned}
$$

To distinguish the states, ditodnce the iden of csospin $\vec{I}=\left(I_{1}, I_{2}, I_{3}\right)$, genoted
b) $\operatorname{su}(2)$ algcsa $\left[I_{j}, I_{L}\right]=i \epsilon_{i n l} I_{l}$.

Stites leselad by eignuches of $\vec{I}^{2}(i(i+1))$ and $I_{3}\left(i_{3}\right)$
Explicit, $N \quad i=\frac{1}{2} \quad i_{3}= \begin{cases}+\frac{1}{2} & \rho \\ -\frac{1}{2} & n\end{cases}$

$$
\pi \quad i=1 \quad i_{3}=\left\{\begin{aligned}
+1 & \pi^{+} \\
0 & \pi^{0} \\
-1 & \pi^{-}
\end{aligned}\right.
$$

Sterey is ospin only applizs to hadrons. Fen Nm-Etrange hadrons,

$$
Q=I_{3}+\frac{1}{2} B_{n}
$$

eleteric chage \downarrow
\rightarrow Baryon nunbr

Can lewn a lot abolt reations jus by isospin considedotias. If SM Manitanion is decorpored as $H_{s m}=H_{s}+H_{E M}+H_{w}$

Then $\left[H_{s}, \vec{I}\right]=0$ sidece we definal cirospin t. be consurual in steang iturations. Nov, cassidu the NuDzon $N, N=(p, n)$. Isospin \rightarrow beoken expicitly b, $E M$ ivvalions $\Rightarrow\left[H_{E M}, \vec{I}\right] \notin 0$ since one stae is changed. BN, $Q=T_{3}+\frac{1}{2} B$ and Q \& B are good Quatun sunsus $\Rightarrow I_{3}$ is a good quatum number $\Rightarrow\left[\mathrm{H}_{\mathrm{Em}}, I_{3}\right]=0$?

B9, it is obsrued the $\left[H_{w}, \vec{I}\right] \notin 0$ \& $\left[H_{w}, I_{3}\right] \neq 0$ \Rightarrow isospin is comptod, beoken by weak itverstions

Exanple
Consich $\Lambda^{\circ} \rightarrow \rho^{\bar{"}^{-}}$decay (BR~64\%)
Estimbe lifetine of Λ^{-}

Consider isxaph numbens

$$
\begin{aligned}
\Lambda^{\circ} & \rightarrow p \\
i & \pi^{-} \\
i: 0 & \rightarrow \frac{1}{2} 1 \\
i_{3}: 0 & \rightarrow \frac{1}{2}-1 \leftarrow \Delta I_{0} \leftarrow \text { sice } 2 \times 3 \ngtr \frac{1}{\sim}
\end{aligned}
$$

Therfore, since \vec{I} \& I_{3} not consurved, thos must be a weak decay!

$$
\Rightarrow \tau_{1^{\circ}} \sim 10^{-9} \mathrm{scc} \quad\left(\tau_{1^{\prime}}=2.6 \times 10^{-10} \mathrm{~s}\right)
$$

Exarale
Cansider dewtorm produdir. NN $\rightarrow \pi d$ whre devtera is a boud gte $f p$ ad n.
Given thit dentern has $i_{d}=0$, estingte the ratio f cooss-sedians σ_{a} / v_{b} where

$$
\begin{aligned}
& a: \rho \rho \rightarrow \pi^{+} d \\
& b: n_{\rho} \rightarrow \pi^{0} d
\end{aligned}
$$

Recall this

$$
\sigma \sim|\langle f| T| i\rangle\left.\right|^{2} \times(\text { kinemDic fadors })
$$

To goal approx, ω_{y} diffonce btween σ_{a} \& σ_{b} cones from the anpituck. Maroun, the arl Difforence is in $|\delta\rangle$ and $|f\rangle$. which is curtained is Clebsch-Gordon coetficiets

Hon, $N \sim \rightarrow \pi d$

$$
\begin{aligned}
i: \underbrace{\frac{1}{2}} \frac{1}{2} & \rightarrow \underbrace{1}_{\text {rescicel }} 0 \\
\text { t, } i=1 \text { ail }, & \leftarrow
\end{aligned}
$$

So, for $i=1$ fo thir process, find a:

$$
\begin{array}{ll}
\rho \rho & \left|\frac{1}{2} \frac{1}{2}\right\rangle \times\left|\frac{1}{2} \frac{1}{2}\right\rangle=|11\rangle \\
\pi^{+} d & |11\rangle \times|00\rangle=|11\rangle
\end{array}
$$

b: n \quad. $\left.\left|1-\frac{1}{2}\right\rangle \times\left|\frac{1}{2} \frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(|10\rangle-100\rangle\right)$

$$
\pi d \quad|10\rangle \times 100\rangle=|10\rangle
$$

sor $\frac{\sigma_{a}}{\sigma_{b}}=\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{2}}=2$, whid is experiratilly obsenvel.

Isospin is part f a lugg conesent called Flaum symert, Anothas quatuan number, stremgess S, was assigned to hadrons pooduced b, stry subtians, yet decajed via Weak dituations.
Exagles of steage hadras indude:

$$
\begin{aligned}
& k^{0}, k^{+}-s=+1 \\
& k^{0}, k^{-}-s=-1 \\
& \Lambda^{0}-S=-1 \Rightarrow \Lambda^{0} \rightarrow \begin{cases}\rho+\pi^{-} & -64 \% \\
n+\pi^{0} & \sim 36 \%\end{cases} \\
& \begin{aligned}
\Delta S \neq 0 & \Rightarrow \text { Weah decy } \\
& \Rightarrow \text { Lang lifetine }
\end{aligned} \\
& \tau_{1^{0}} \sim 2.6 \times 10^{-10} \mathrm{~s}
\end{aligned}
$$

Corran to consine S \& B_{n}, to Helpachoge Y

$$
Y=B_{1}+S
$$

There are other flowo quanu- nunders, Charmess C ad Zottimness B. We will see these are associded w/ the guork contid. Wan' dixuss rae on these for time.

$$
Q=I_{3}+\frac{1}{2} Y, \quad Y=B_{1}+S+C+B
$$

G-puit,
There is mithu dascule quatur numbor usfol fow strang iturations, G-panit, This is an extasion f C-party valicl ton stos w/ $Q \neq 0 \quad(B=s=0$ st:ll) and $I \neq 0$.
Dd. $\quad G=C \exp \left(i \pi I_{2}\right)$

Cansider sore stye $1 i_{3}>$

$$
\begin{aligned}
G\left|i_{3}\right\rangle & =C \exp \left(i \pi T_{2}\right)\left|i_{3}\right\rangle \\
& \propto C\left|-i_{3}\right\rangle \\
& \propto\left|i_{3}\right\rangle \quad \text { An eigntal? }
\end{aligned}
$$

Example: The $\pi=\left(\pi^{+}, \pi^{\circ}, \pi^{-}\right)$ralided
Since $\left.\left\langle\mid \pi^{\prime}\right\rangle=+1 \pi^{\circ}\right\rangle$
$\hat{L}_{\text {defwitio }} \quad \quad R\left|i i_{3}\right\rangle=(-1)^{i}\left|i-i_{3}\right\rangle$
and $R\left|\pi^{\circ}\right\rangle=R|10\rangle=(-1)^{1}|10\rangle=-|10\rangle=-\left|\pi^{\circ}\right\rangle$

$$
\begin{aligned}
& \exp \left(i \pi I_{2}\right) \\
\Rightarrow & \left.G\left(\pi^{\circ}\right\rangle=-l \pi^{\circ}\right\rangle
\end{aligned}
$$

So, assign $G\left|\pi^{ \pm}\right\rangle=-\left|\pi^{ \pm}\right\rangle$

Rerfac, ve have fo the π-rulting

$$
\begin{aligned}
G(\pi\rangle=-|\pi\rangle \\
\left.\Rightarrow G|n \pi\rangle=(-1)^{n} \ln \pi\right\rangle \\
Q_{n=1 n}
\end{aligned}
$$

States w $B_{1} \neq 0$ or $S \neq 0$ cans be eigustes of G-paity. This docs' $'$ rally add nuch rew as it really is a canszzunce f isospin, bla it sives a slantent in andyring reations.
e.j. who troe of decy is $y^{0} \rightarrow 3 \pi$?

$$
i_{3} \quad \eta_{0}^{0} \rightarrow \pi^{+} \quad \pi^{0} \quad \pi^{-} \quad \Delta I_{3}=0
$$

\Rightarrow Nす डtemg decay!

$$
\begin{aligned}
G\left(\xi^{0}\right\rangle=+\left|\eta^{0}\right\rangle, G(3 \pi\rangle & =(-1)^{3}|3 \pi\rangle \\
& =-17 \pi\rangle
\end{aligned}
$$

\Rightarrow G-parity nit consorved! It is elegromagnic
To see that it is nel steng w/o G-paity requives andysis f the Doles anguler dictr:bSion unden gacentized Buce छीजisics.

Flavar SO(3)
We discussed the approxinte Cor bribenl Isosph and strangeness syancties, both gool for stroy用entions. Suggests aluging sul2 I_{I} to biggs gromp.

Paitich, is su(z) mwtiplats are "ensp" to fid (russes an siniler as I-spin any sligity brolien). Appropnide cloice for multipits with S harder.

Acceतted silhion is SU(3)f (flavem SU(3)), known as the "EigOf.ld way", proposed by Gell-Man and Ne'enan is 1961 .

Nie: Do nat cafure with $S U(3)_{c}$-colan

Esscint conted of $S U(3)_{f}$
(1) All bisyons fit wito $\underset{\sim}{1}, \underset{\sim}{8}, 10$ f $\operatorname{sU}(3)$
(2) All masus fit wito $1, \underline{8}$ f $S U(3)$

Quatun numbs f SU(3)f: $I, I_{3}, S a r, \ldots$
N.B. There are two Casiries f SU(3). Here we will focus just on these and the represention.

To corymize DIes, con repressed a panticulv rep by a "weight digger"

Fo example, su(2) \Rightarrow for given $i, ~ c u l y$ need ane number, i_{3}, to classify states

2

$\stackrel{3}{\sim}$

For a given rep in $\operatorname{sO}(3)$, seed two numbers. For su(3)f, lees tale I_{3} and Y for a given rep.

Exanple: The $J^{c c}=0^{-+}$resen singht

Mass/MiV - 958

Exarple: The $J^{0 c}=0^{-+}$reson oीd

PDice the we have larger hass difternces $\Rightarrow \operatorname{SO}()_{f}$ is "rave broken" tham $S U(2)_{I}$. Also, $S U(2)_{I}$ rultidgs are contined in $S U(3)_{\mathrm{f}}$ anes (prow subgrop). NJike the the "Gell-Man/Nishijin" "retion h.(ds,

$$
Q=I_{3}=\frac{1}{2} Y \text { with } Y=B_{n}+s \quad \text { (chach) }
$$

Example: The $J^{P}=\frac{1}{2}^{+}$barzon of

Since $B_{1} \neq 0$, bargas ad avibuyan live in diffocit rultiplets. (Execisc - curorid aitibazen odt)
Example: The $J^{p}=\frac{3}{2}^{+}$bugan decuplet

The predition of the Ω^{-}using SU(3) $N 1962$ ad subjequat discoury a 1964 led to the accertince f the "Eigiffold way".

$$
\begin{aligned}
K^{-}+\rho \rightarrow \Omega^{-} & +K^{+}+K^{0} \\
\longrightarrow & \Xi^{0}+\pi- \\
& \longleftrightarrow \Lambda^{0}+\pi^{0} \gamma+\gamma e^{-+}+e^{+} \\
& \longrightarrow e^{-}+\rho
\end{aligned}
$$

There are tany propurics f hadrons be con lawn sind by examining their symety, e.s, magnte manets f h.dias, mass redoimes, seletim sules a readias, Oc.

The symite itration sugge9t that there haders are corpsite partiches af sore nore fundornctal canstituals...

The Quark Model
Hypothesis: Hadros are forred from constitued panticles In 1964, Gell-Mon / Zweig posticlaed a triph of fundarnall poticles with $B_{n}=1 / 3$ to forn all hadras, including pin, 1,...
Thes is hnom as the Ouch rodel

Bask iden,

- Thrizas or bound sites f qaq $\left(B_{n}=1\right)$
- ANibajom are boud stis f q $\bar{q} \bar{q} \quad\left(B_{n}=-1\right)$
- Mesos de bound stàes f qघ $\quad\left(B_{n}=0\right)$

LDis focus an 3-flacon hadras.
Eo, $q=\{u, d, s\}$ flaucrs of quarhs $\begin{array}{ccc}\uparrow & \uparrow & \uparrow \\ \text { up } & \text { down } & \text { strugge }\end{array}$

Since bargons are fermions, colcucle quach (ε) is also funio, $v / B_{n_{\varepsilon}}=\frac{1}{3}$ ad $J^{p}=\frac{1}{2}^{+}$
N.B. $J=\frac{1}{2}$ is expoinatill, wrifted, $P=+$ is a choice.

Quark quantum numbers

The u, d, s quads form an $S U(3)_{f}$ triple 3
$\Rightarrow \bar{u}, \bar{d}, \bar{s}$ form 3^{*} af $S U(3)_{f}$.

See tho quack flamer mug be pressured by Stray and EM iterations, bit can be broken by weak iterations
isospin is still relatively good, $m_{n}=r_{d}$, bit Y breaking $\Rightarrow m_{s}$ is infferes.

Mesons on the Quach Model
A meson is a bound stte f \& \bar{q}

$$
\Rightarrow \quad \underline{3}^{*} \times \underline{3}^{*}=\underline{\sim}+\underset{\sim}{8}
$$

This explains the rasion Strnture in the Eightald way!

Fon non-flavar quatum nundss, consider two qualus de Cetu-at-morsim ferere

Since $s_{q}=s_{\bar{q}}=\frac{1}{2}$

$$
\begin{gather*}
\Rightarrow \quad 2 \times 2=1+3 \\
\Rightarrow S=0 \text { or } 1 \tag{q}
\end{gather*}
$$

(9)
$L=0,1,2, \ldots$ arbital agular momenan and $\vec{J}=\vec{\imath}+\vec{S} \Rightarrow|L-S| \leq J \leq|L+S|$

Can also show that paity $P=(-1)^{L+1}$ and C-panity $C=(-1)^{L+S}$ (and G-paity $G=(-1)^{I+c+s)}$

For exaple, the psende scele nosed $J^{p C}=0^{-+}$ $q \bar{q}$ in lowes stde $\Rightarrow L=0, S=0$ so, $P=-1, C=+1 \Rightarrow J^{p c}\left(2 s+1 L_{0}\right)=0^{-+}\left(s_{0}\right)$

$$
\begin{aligned}
& G_{\pi}=(-1)^{1+0+0}=-1 \\
& G_{\eta}=(-1)^{0+0+0}=+2
\end{aligned}
$$

Con add dynunics to quark models to predit decay cols, Dt. by assuring sore polvial in Schrödinger equation. Can gTt sore quadittive undustanding, bl many issues/ failures, e.gy no coupling to multihadra Eties abscued in readions.

Borgans is the Quach Model
A burgen is a bound bate f qqe

$$
\Rightarrow 3 \times 3 \times \underset{\sim}{3}=\underset{\sim}{1}+\underset{\sim}{8}+\underset{\sim}{8}+10
$$

Again, sec Eigणffld way arises from constituno guarls!

Con contrut quark rodel ware fugins, find sore quabitlive agreent, agy barjn magntic moncos, ad con extrad constituet qual rasses and predio new soles.

For exarple, cansider groundsta $J^{n}=\frac{3}{2}^{+}$baryns,

$$
\left.\begin{array}{l}
\Delta^{++}-I=\frac{3}{2}, m_{\Delta}=1230 \mathrm{mev}, \text { unu } \\
\Delta^{-}-I=\frac{3}{2}, m_{s^{-}}=1230 \mathrm{mev}, \text { ded }
\end{array}\right\} \Rightarrow m_{4} \simeq m_{d}
$$

Can deduce that $m_{0} \simeq 3 m_{n} \simeq 3 \mathrm{md}$ and $m_{\Omega}=3 r_{s}$

sof find

$$
\left.\begin{array}{l}
m_{n} \simeq m_{d}=410 \mathrm{MeV} \\
m_{s} \simeq 557 \mathrm{MzV}
\end{array}\right\} \text { SUCDP }
$$

B9, $m_{p}=440 m_{2} V \neq 2 m_{n}+m_{d}$
\Rightarrow Secas to indicte dynaics play a bigst role "t the bindiv
Maroun, $m_{\pi}=140 m_{2} V \underset{\neq}{\neq} m_{n}+m_{d} \simeq 820 \mathrm{miV}$. \Rightarrow scers to be a lige discuned wh psendoscidus

In QCD, most f a luadras ciug cones from wucdians af quarks (\sim feu MeV) with gluans!
And the psencloscaters play a role in dynmical chiral symatry breahy!

Colar
There is an anteresting pazzle of we look of the Δ^{++}, It is the lowes $\frac{3}{2}^{+}$Stce, dously chonged (pecnlim?) with quark catcot uuu. Its spin Sirncture is

30, Since it is the lowest stac, expes $L=L^{\prime}=0$ arbital wave function
So, $\quad]=S=\frac{3}{2}$
 3 totyly symuric!

$$
\left.\left.\left|\Delta^{++}\right\rangle \propto \mid \text { û uT uT }\right\rangle \times \text { (symritic spatial piece }\right)
$$

But, Δ^{+t} is a forrion \Rightarrow wovefindion nceds to be atisyrnctric!

Accented soltion: Ther exists a rew deyree f freelon, colar. Each flauar f qualk comes is 3 colurs, which form the 3 of $S U(3)_{c}$. N.B. $S U(3)_{C} \neq S U(3) F$.

It is curretly belicued thet $\operatorname{SU(3)_{c}}$ is an exul symenty of natwe.

Nomuelation: $R G B \rightarrow$ white
Postulate: Hadios are colar singlets f $S U(3)_{c}$
\Rightarrow they sit in the $\frac{1}{2}$ f $\operatorname{SO}(3)_{c}$
Thas is Colar Confinerest

Fou example, bayus qq\&: $\square \times \square \times \square \supset \frac{1}{\sim}+\cdots$
\Rightarrow Coler wave fundian

$$
\underset{\sim}{1}=\frac{1}{\sqrt{6}}(R G B-G R B+\text { csdic posm. })
$$

This fixes Δ^{t+} becanse now we need spin x flaver \times spatial to corbine with colar.

Thee is theantical suppont for colar.
Consider the thecurical calcultion f decey rote
$\pi^{\circ} \rightarrow 2 \gamma$. One can show HIJ

$$
\Gamma\left(\pi^{0} \rightarrow 2 \gamma\right) \propto\left|\sum_{\substack{\gamma \\ \text { quards }}}^{I_{3, q}} Q_{\varepsilon} Q_{\varepsilon}^{2}\right|^{2}
$$

Le $N_{c}=$ number f quark colors. One finds

$$
\begin{aligned}
\mid \cdots 1^{2} & =\left|N_{c}\left[\left(\frac{1}{2}\right)\left(+\frac{2}{3}\right)^{2}+\left(\frac{-1}{2}\right)\left(\frac{-1}{3}\right)^{2}+0\right]\right|^{2} \\
& =\frac{N_{c}^{2}}{36}
\end{aligned}
$$

experimeatly ratc gives $N_{c}=3$.
Anothe cexarple is the R-ento,

$$
\begin{aligned}
R & =\frac{\sigma\left(e^{-} e^{+} \rightarrow \text { hadras }\right)}{\sigma\left(e^{-} e^{+} \rightarrow \mu^{-} r^{+}\right)} \propto \sum_{\varepsilon} Q_{2}^{2} \\
& =N_{c}\left[\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right]=\frac{2}{3} N_{c}
\end{aligned}
$$

\exp vires gives $R=2 \Rightarrow N_{c}=3$.

The quak rockl gives insight wo the hadion stenture f the hadron zoo. Howeron, Rere core seuve issues with dynanical quark rodels and the hada secetim. Quals thenselves are reuer obsuved, the, are pormatly confinzed into colw-newteal hudrons, howeves Rer is "indires" evidece for their exitance.

Due to the success of $Q E D$, we righ exped to forrulate a QFT of strung iternitions bused on quarls. As we will see, peomoting the color group SU(3) e gives rise to GuaNom Chrorochnanks (QCD), which is a gange theay of qualds and gluans, the gayje field associted wi SUC3)c. It is QCD ThI is curnt, the aceeतed theny of steng ideradians. We will see thit ray fatures f the Quak roolel will carry over, and is useful in constating operators for non-perturstive stadies f hadrons with Latice QCD.

