Phenomenology I - QED
It is useful to examine some conman GED processes. There are man impuitit processes, we will cancentiole ald a a few. LJ us figs consider high -nagy $\mu^{-\mu+}$ pain production from $e^{-} e^{+}$analulation.

$$
e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}
$$

we acre iferested in the mpolarized differential and total cross-sedians. This is often the desired quality, given the 9 the spins of the incoming paitides acre arbitron (beacons are unpolarized), ad are does nat measure the spins f the find Ste.
(d) us dfthe some khemaircs

$$
\begin{aligned}
& \Gamma_{s}^{-}(p)+e_{,}^{+}(h) \rightarrow \mu_{s^{\prime}}^{-}\left(p^{\prime}\right)+\mu_{r^{\prime}}^{+}\left(h^{\prime}\right)
\end{aligned}
$$

spu'projetio
LOt's wank of the ch frame,

To simpify the anwlusis, li's considen the uttenceltivistic limit, $\sqrt{s} \gg m_{p} \gg m_{e}$. So, we have (coocise)

$$
E=E^{\prime}=\frac{\sqrt{s}}{2},|\vec{p}|=\left|\vec{p}^{r}\right| \sim \frac{\sqrt{s}}{2}
$$

At leady coder in α, there is a single Fezaran digiom

$$
\begin{aligned}
& i \mu=
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{i q^{2}}{s} a^{\mu} b_{\rho} \\
& =-i \frac{4 \pi \alpha}{s} a^{m} b_{r}
\end{aligned}
$$

Now, the diffuntial cross-sedion is

$$
\frac{d \sigma}{d r}=\int d \Phi_{2}\langle | \mu| \rangle^{2}
$$

where $\left.\langle | \mu\left\rangle^{2}=\frac{1}{4} \sum_{r, s} \sum_{c=s s^{e}}\right| \mu\right|^{2}$

5\%

$$
\begin{aligned}
\mid \mu l^{2} & =\mu^{*} \mu=\mu^{+} \mu \\
& =\left(\frac{4 \pi \alpha}{s}\right)^{2}\left[a^{\mu} a^{v^{+}}\right]\left[b_{\mu} b_{v}{ }^{+}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
& a^{m}=\bar{u} \gamma^{n} v \Rightarrow a^{n^{+}}=\left(\bar{u} r^{\mu} v\right)^{+} \\
& =\nu^{+} \gamma^{+} \bar{u}^{+}=v^{+} \gamma^{0} \gamma^{m} r^{0}\left(u^{+} \gamma^{0}\right)^{+} \\
& \gamma^{-+}=\gamma^{\circ} \gamma^{\wedge} \gamma^{\prime} \\
& =\bar{v} \gamma^{\mu}{\underset{\gamma}{ } \gamma^{\circ} \gamma^{\circ} u=\gamma^{\circ} \text { \& } \gamma^{\circ}=\mathbb{v} \gamma^{m} u}^{1}
\end{aligned}
$$

$$
\& b^{\mu}=\bar{v} \gamma^{\sim} n \Rightarrow b^{\mu^{+}}=\left(\bar{v} \gamma^{\sim} n\right)^{+}=\bar{u} \gamma^{\wedge} \nu
$$

So, we find

$$
\begin{aligned}
\sum_{s, r} b_{\mu} b_{\nu}{ }^{+} & =\sum_{s, r} \bar{v}_{r}(h) \gamma_{\mu} u_{s}(\rho) \bar{u}_{s}(\rho) \gamma_{v} v_{r}(h) \\
& =\sum_{s, r} t_{r}\left[v_{r}(h) \bar{v}_{r}(b) \gamma_{\mu} u_{s}(\rho) \bar{u}_{s}(\rho) \gamma_{v}\right] \\
& =t_{r}[\underbrace{\left.\sum_{r} v_{r}(h) \bar{v}_{r}(b) \gamma_{r} \sum_{s} u_{s}(\rho) \bar{u}_{s}(\rho) \gamma_{v}\right]}_{=t_{r}-m_{c} \rightarrow \hbar} \\
& =t_{r}\left[t r_{c} \rightarrow p\right. \\
& =4\left(\gamma_{m} p v_{v}\right]+O\left(m_{c}^{2} / s\right)
\end{aligned}
$$

Recall the Mandelstan vaichles

$$
\begin{aligned}
& s=(p+h)^{2}=\left(p^{r}+h^{\prime}\right)^{2} \\
& t=\left(p-p^{\prime}\right)^{2}=\left(h-h^{r}\right)^{2} \\
& h=\left(p-h^{\prime}\right)^{2}=\left(h-p^{\prime}\right)^{2}
\end{aligned}
$$

Fos $s \gg m_{r}^{2} \gg m_{c}^{2} \Rightarrow s \simeq 2 p-h, t \simeq-2 p \cdot p^{\prime}$
s.r $\sum_{s, r} b_{\mu} b_{\nu}{ }^{+}=4\left(k_{\mu} p_{v}+h_{v} p_{\mu}-g_{\mu v} k \cdot \rho\right)$

$$
=4\left(k_{\mu} \rho_{V}+k_{V} \rho_{\mu}-g_{\mu v} s / 2\right)
$$

Sinimal,$\sum_{s, r^{\prime}} a^{n} a^{v+}=t_{1}\left[\beta^{\prime} \gamma^{m} \hbar^{\prime} \gamma^{v}\right]$

$$
=4\left(p^{\prime m} u^{\prime v}+p^{\prime v} u^{\prime \mu}-g^{\mu v} s / 2\right)
$$

Sor

$$
\begin{aligned}
& \left.\left.\langle | \mu\right|^{2}\right\rangle=\left(\frac{4 \pi \alpha}{s}\right)^{2} \frac{1}{4} \sum_{s_{l}} b_{\mu} b_{v}^{+} \sum_{s^{\prime}, r r} a^{\mu} a^{v^{+}} \\
& =4\left(\frac{4 \pi \alpha}{s}\right)^{2}\left(u_{\mu} p_{v}+h_{v} \rho_{r}-g_{\mu v} s / 2\right)\left(p^{\prime m} h^{\prime v}+p^{\prime v} h^{\prime \mu}-g^{\mu v} s / 2\right) \\
& =4\left(\frac{4 \pi \alpha}{5}\right)^{2}[2 h \cdot \rho^{\prime} \rho \cdot h^{\prime}+2 h \cdot h^{r} \rho \cdot \rho^{\prime}-\underbrace{s h} \cdot \rho-s \omega^{\prime} \cdot \rho^{\prime}+s^{2}]^{?} \\
& =2\left(\frac{4 \pi \alpha}{5}\right)^{2}\left(u^{2}+t^{2}\right)
\end{aligned}
$$

bฟ, $s+t+u=0 \Rightarrow u=-s-t$

$$
\left.\left.\Rightarrow\langle | \mu\right|^{2}\right\rangle=2\left(\frac{4 \pi \alpha}{s}\right)^{2}\left(t^{2}+(s+t)^{2}\right)
$$

Si, 1 sice $s \rightarrow \infty$

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & \left.=\left.\frac{1}{64 \pi^{2} s} \frac{|\vec{p}| \mid}{|\vec{\rho}|}\langle | \mu\right|^{2}\right\rangle \\
& =\frac{1}{64 \pi^{2} s} \cdot 2\left(\frac{4 \pi \alpha}{s}\right)^{2}\left(t^{2}+(s+t)^{2}\right) \\
& =\frac{\alpha^{2}}{2 s^{3}}\left(t^{2}+(s+t)^{2}\right) \\
& =\frac{\alpha^{2}}{2 s}\left[\left(\frac{t}{s}\right)^{2}+\left(1+\frac{t}{s}\right)^{2}\right]
\end{aligned}
$$

Now, $t=-2|\vec{p}||\vec{p}|(1-\cos \theta)$

$$
=-\frac{s}{2}(1-\cos \theta) \Rightarrow \frac{t}{5}=-\frac{1}{2}+\frac{1}{2} \cos \theta
$$

$$
s=\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{2 s}\left[\frac{1}{4}(1-\cos \theta)^{2}+\frac{1}{4}(1+\cos \theta)^{2}\right]
$$

$$
=\frac{\alpha^{2}}{85}\left[1+\cos ^{2} \theta-\cos \theta+1+\cos ^{2} \theta+\cos \theta\right]
$$

$$
=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right)
$$

$(d \delta / d \Omega) / \frac{\alpha^{2}}{4 s}$

Thirefure, $\quad \frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right)$
Natice: cross-sstion is sy-mPric a cuso

The cross-sedion is then

$$
\begin{aligned}
\sigma & =\int d \Omega \frac{d \sigma}{d \Omega} \\
& =2 \pi \int_{-1}^{1} d \cos \theta\left[\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right)\right] \\
& =\frac{\pi \alpha^{2}}{25}\left(\left.\cos \theta\right|_{-1} ^{1}+\left.\frac{\cos ^{3} \theta}{3}\right|_{-1} ^{1}\right) \\
& =\frac{\pi \alpha^{2}}{25}\left(2+\frac{2}{3}\right) \\
& =\frac{4}{3} \frac{\pi \alpha^{2}}{5} \quad \Rightarrow \quad 0=\frac{4}{3} \frac{\pi \alpha^{2}}{5}
\end{aligned}
$$

This reaction $\left(e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}\right)$sots the scale for many high-energy $e^{-} e^{+}$- reactions. \mathcal{L} us define R as

$$
R=\frac{\sigma\left(e^{-} e^{+} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}\right)}
$$

So, $\sigma\left(e^{-} e^{+} \rightarrow \mathrm{r}^{-}{ }^{+}\right)$sos the scale.

$$
\begin{aligned}
\sigma\left(e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}\right) & =\frac{4 \pi \alpha^{2}}{35}\left(t_{1} c\right)^{2} \\
& =\frac{4 \pi}{35}\left(\frac{1}{137}\right)^{2}\left(0.197 G e V \cdot f_{n}\right)^{2}\left(\frac{1 b}{100 f_{n^{2}}}\right) \\
& \simeq 86.8 \mathrm{nb}\left(\frac{G c V^{2}}{5}\right)
\end{aligned}
$$

Quark - ANiguch production
Fron the previous andzsts, we got diredly the cross-section for $q \bar{q}$ - final statas. We aly reed t. replace

$$
e \rightarrow Q_{\varepsilon} e
$$

wang with mattinging by N_{c} to accom fow $N_{c}=3$ Colors.

$$
\Rightarrow \sigma_{e^{-} e^{+} \rightarrow \varepsilon \bar{q}}=3 Q_{\varepsilon}^{2} \sigma_{e^{-e^{t} \rightarrow \text { r-r }^{+}}}
$$

of cowse, Free qualks are at obsured, bs hadrans

$$
=\sum_{h} \operatorname{mon}
$$

In expuinint, the $\varepsilon \bar{q}$ final ste is obsouved as two bach-to-back jess. The fad thI the cross-sedion for high-erugies ca be computed from

$$
\sigma_{e^{-} e^{+} \rightarrow \text { hadions }} \xrightarrow[{\sqrt{s} \rightarrow} \infty]{ }\left(3 \sum_{f=1}^{N_{f}} Q_{f}^{2}\right) \sigma_{e^{-e^{+}} \rightarrow \mu^{\prime} \mu^{+}}
$$

We will see thet this is a consequace of a irpavar propit f $Q C D$ - Asy-ntatic freedon:-
At high uogias, The phatars "see" throigh the clond of $Q D$ virtul stacs surronding ead quarh.

