Lepton Anomalous Magnetic Moment
The anomalous mantic moment, g-2, of the election is ane f the crowning achievements of QED.
Experimental measurement ad thearotial calculations agree to ane pant in a trillion! The g-2 of the muon is a strong test of the SM as it is sensitive to states beyond the SM. Measuring g-2 of the muon provides a probe into new BSM physics.

Here, its focus on the first radiAtive carretion of the lepton y^{-2}.
Recall that g is a measure of a leptons susent bility to mogntic fields,

$$
\vec{\mu}=g \frac{e}{2 m} \vec{s}
$$

To calculate y in QED, consider a lepton (here firs focus on electron) in a Classical (or bachyroud) EM field

$$
\mathcal{L}_{(n)}=-e \bar{\Psi}^{\mu} \mu \psi\left(A_{\mu}+A_{\mu}^{c 1}\right)
$$

quatur field classical fiche

We wait to compute the one-body scattering amplitude and conned it to the non-relativistic potential $\nu=-\vec{\mu} \cdot \vec{B}$.

$\left.q=p^{\prime}-p \uparrow\right\} \begin{aligned} & \text { classical EM fickle } \\ & \text { ecg, from static nudens }\end{aligned}$
One-body amplitude has generic structure

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| i T|p, s\rangle \equiv & \equiv 2 \pi \delta\left(E^{\prime}-E\right) i \mu \\
= & \bar{u}\left(p^{\prime}, s^{\prime}\right)\left[-i e \Gamma^{\mu}\left(p^{\prime}, p\right)\right] u(p, s) \tilde{A}_{\mu}^{c \mid}(q) \\
& \tilde{A}_{\mu}^{c l}(q)=\int d^{4} x e^{i q \cdot x} A_{\mu}^{(1 .}(x)
\end{aligned}
$$

The vertex fundia, Γ^{μ} in geneal coals 12 tensors formed from momenta and gamma matrices. We can simplify things by considering an-shell leptons only, that is we use the Dirac eqn.

$$
\begin{array}{lll}
(p-m) u(p, s)=0 & \text { with } & p^{2}=m^{2} \\
\bar{u}\left(p^{\prime}, s^{\prime}\right)\left(p^{\prime}-m\right)=0 & \text { with } & p^{\prime 2}=m^{2}
\end{array}
$$

This reduces the number of terms. From Lorentz invariance and C,P,T symentry (recall GED os ihuaitan under $(, P, T)$, we con waste generally

$$
\Gamma^{\mu}=A \gamma^{\mu}+B\left(p^{\prime}+\rho\right)^{\mu}+C\left(\rho^{\prime}-p\right)^{\mu}
$$

where A, B, C are scalar fundions of

$$
Q^{2} \equiv-q^{2}=-\left(p^{\prime}-p\right)^{2}=2 p^{\prime} \cdot p-2 m^{2}
$$

The EM current is consuved, so from Ward ielentity

$$
\begin{aligned}
0 & =q_{\mu} \Gamma^{m} \\
& =q_{\mu}\left(A \gamma^{\mu}+B\left(p^{\prime}+\rho\right)^{\mu}+C\left(p^{\prime}-p\right)^{\mu}\right) \\
& =A q+B \underbrace{q}+\underbrace{p+C q^{2}}_{\left(p^{\prime}\right) q u(p)=0} q \cdot p=p^{\prime 2}-p^{2}=0 \\
& =C_{\varepsilon^{2}} \\
\Rightarrow C & =0
\end{aligned}
$$

Also, by convetim, we use the Gondar Icletity,

$$
\bar{u} \gamma^{m} u=\bar{u}\left[\frac{\left(\rho^{\prime}+\rho\right)^{m}}{2 m}+\frac{i \sigma^{m v}}{2 m} q_{v}\right] u
$$

Where $\sigma^{\mu v}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{0}\right]$
to write the vertex fundion Γ^{n} in the form

$$
\Gamma^{\mu}\left(\rho^{\prime}, \rho\right)=\gamma^{\mu} F_{1}\left(Q^{2}\right)+\frac{i \sigma^{\mu v}}{2 n} \varepsilon_{v} F_{2}\left(Q^{2}\right)
$$

F_{1} is the Dirac Form-fator
F_{2} is the Pauli Form-fãor

The form-fatars contain complete information about the EM fields influence on the lepton.

To gan en understanding of their physical meaning, If us consider time-ondepudeI field configurations

$$
A_{\mu}^{c l}(x)=A_{\mu}^{c l}(\vec{x})
$$

or, $\quad \tilde{A}_{\mu}^{c l}(q)=2 \pi \delta\left(q^{\circ}\right) \tilde{A}_{\mu}^{c l}(\vec{q})$
Electric Coupling
Consider a static electric source $A_{\mu}^{c(1 .}(x)=(\varphi(\vec{x}), \overrightarrow{0})$ Must recover in non-relativistic limit $\Rightarrow \tilde{A}_{-}^{c 1}(\vec{q})=(\tilde{\varphi}(\vec{\varepsilon}), \overrightarrow{0})$

$$
V(\vec{x})=e \varphi(\vec{x})
$$

So,

$$
\begin{aligned}
& \underset{\text { suppression }}{ } i M=-i e \bar{u}_{\left(\rho^{\prime}, s^{\prime}\right)} \Gamma^{0}\left(\rho^{\prime}, \rho\right) u(\rho, s) \bar{\varphi}(\vec{q}) \\
& \underset{\sin \delta\left(E^{\prime}-\bar{E}\right)}{\operatorname{suprasin}}=-i e \bar{u}\left(\rho^{\prime}, s^{\prime}\right)\left\{\gamma^{0} F_{1}+i \frac{\sigma^{o v}}{2 m} \varepsilon_{v} F_{2}\right\} u(\rho, s) \bar{\varphi}(\vec{q})
\end{aligned}
$$

We wat to examine the non-relsivistic limit, $\vec{q}=\left(\vec{p}^{\prime}-\vec{p}\right) \rightarrow 0$ and $\vec{p} \rightarrow 0$.

So,

$$
\begin{aligned}
\bar{u}\left(\rho^{\prime}, s^{\prime}\right) \Gamma_{\left(\rho^{\prime}, p\right) u(\rho, s)}^{0} & =\bar{u}\left(\rho^{\prime}, s^{\prime}\right) \gamma^{0} u(\rho, s) F_{1} \\
& =u^{+}\left(\rho^{\prime}, s^{\prime}\right) u(\rho, s) F_{1}
\end{aligned}
$$

Recall the Dire spinous in Chiral basis

$$
u(p, s)=\left(\begin{array}{ll}
\sqrt{p \cdot \sigma} & \xi_{s} \\
\sqrt{p \cdot \sigma} & \xi_{s}
\end{array}\right) \quad \text { with } \quad \begin{aligned}
& \sigma=(1, \vec{\sigma}) \\
& \frac{\sigma}{\sigma}=(\mathbb{1},-\vec{\sigma})
\end{aligned}
$$

and $\xi_{+}=\binom{1}{0}, \xi_{-}=\binom{0}{1}$
In the non-relajivistic limit

$$
\begin{aligned}
& \sqrt{p \cdot \sigma}=\sqrt{m-\vec{p} \cdot \vec{\sigma}} \\
& \simeq \sqrt{m}\left(1-\frac{\vec{p}-\bar{\sigma}}{2 m}\right) \\
& \sqrt{p \cdot \vec{\sigma}}=\sqrt{m+\vec{p} \cdot \vec{\sigma}^{2}} \\
& \simeq \sqrt{m}\left(1+\frac{\vec{p} \cdot \vec{\sigma}}{2 m}\right) \\
& \Rightarrow u^{+}\left(\rho^{\prime}, s^{\prime}\right) u(\rho, s)=m\left(\xi_{s^{\prime}, \xi_{s^{\prime}}^{+}}^{+}\right)\binom{\eta_{s}}{\eta_{s}}+O\left(\vec{p}, \vec{p}^{\prime}\right) \\
&=2 m \eta_{s^{\prime}}^{+} \eta_{s}+O\left(\vec{p}, \vec{p}^{\prime}\right) \\
&=2 m \delta_{s^{\prime} s}+O\left(\vec{p}, \vec{p}^{\prime}\right) \\
& L_{\text {spin }} \text { preserving }
\end{aligned}
$$

Therefore, the T-matrix element is

$$
i M \simeq-i e F_{1}(0) \bar{\varphi}(\vec{q}) \cdot 2 m \delta_{s^{\prime} s}
$$

Let us compare to the Ban amplitude ch non-relaivistic quatur mechanics

$$
\begin{aligned}
& \left\langle\vec{p}^{\prime}\right| i T|\vec{p}\rangle=-i \tilde{V}(\vec{q}) \cdot 2 \pi \delta\left(E^{\prime}-E\right) \\
& \quad\langle\text { stales i } N R Q M \\
& \quad \text { normalized as }\left\langle\vec{p}^{\prime} \mid \vec{p}\right\rangle=(2 \pi)^{3} \delta^{(3)}\left(\vec{p}^{\prime}-\vec{p}\right)
\end{aligned}
$$

So, conclude

$$
\begin{aligned}
\tilde{V}(\vec{q}) & =-\frac{1}{2 m} \mu \\
& =e F_{1}(0) \tilde{\varphi}(\vec{q}) \cdot \delta_{s^{\prime} s} \text { heep implicit in } V(\vec{x})
\end{aligned}
$$

Fowler transform

$$
V(\vec{x})=e F_{1}(0) \varphi(\vec{x})
$$

$\Rightarrow \quad F_{1}(0)=1 \quad$ to all orders in peatubation theory!
At zero momentum transfer, the Dirac form-fador is fixed to 1. This as known as the charge renormalization condition. In other words, " e " is a free paranter in $Q E D$, and we $f_{i x}$ it by requiring $f_{1}(0)=1$.

Magnetic Coupling
Let us repeat the previous analysis for a station magnetic field. The vedas potitial of a static magnetic field is $A_{\mu}=(0, \vec{A})$ with $\vec{B}=\vec{\nabla} \times \vec{A}$
consider the $k^{\text {th}}$-compones

$$
B^{k}=(\vec{\nabla} \times \vec{A})^{k}=\epsilon^{n i j} \partial_{i} A_{j}
$$

Now,

$$
\begin{aligned}
B^{k}(\vec{k}) & =\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{x}} \vec{B}^{k}(\vec{q}) \\
& =\epsilon^{h i j} \frac{\partial}{\partial x^{i}} \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} e^{i \vec{\varepsilon}-\vec{x}} \vec{A}_{j}(\vec{q}) \\
& =\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} e^{i \vec{\varepsilon} \cdot \vec{x}} \epsilon^{n i j} \frac{\partial}{\partial x^{i}}\left(i q^{l} x^{l}\right) \tilde{A}_{j}(\vec{q})
\end{aligned}
$$

so, $\tilde{B}^{k}(\vec{q})=\epsilon^{k i j} \cdot i q^{l} \delta_{i l} \tilde{A}_{j}(\stackrel{\rightharpoonup}{q})$

$$
\begin{aligned}
& =i \epsilon^{h i j} q_{i} \bar{A}_{j}(\vec{\varepsilon})=i \epsilon^{h i j} q_{i} \tilde{A}_{j}(\bar{q}) \\
& =+i \epsilon^{i j k} q_{i} \bar{A}_{j}(\vec{q}) \Leftarrow \epsilon^{k i j}=-\epsilon^{i k j}=+\epsilon^{i j k}
\end{aligned}
$$

$$
\Rightarrow \widetilde{B}^{k}(\vec{q})=i \epsilon^{i j u} q_{i} \tilde{A}_{j}^{c 1}(\vec{q})
$$

we was to hap terms
Note: Peskin \& Schroeder report

$$
\tilde{B}_{k}(\vec{q})=-i \epsilon^{i j k} q_{i} \tilde{A}_{j}^{c \mid}(\bar{q})
$$

The scattering amplitude is then

$$
\begin{aligned}
i M & =-i e \bar{u}\left(\rho^{\prime}, s^{\prime}\right) \Gamma^{\sim}\left(\rho^{\prime}, \rho\right) u(\rho, s) \tilde{A}_{\mu}^{c 1}(\vec{q}) \\
& =+i e \bar{u}\left(\rho^{\prime}, s^{\prime}\right) \Gamma^{k}\left(\rho^{\prime}, \rho\right) u(\rho, s) \bar{A}_{k}^{c \prime \cdot}(\vec{q}) \\
& =+i e \bar{u}\left(\rho^{\prime}, s^{\prime}\right)\left[\gamma^{k} F_{1}+\frac{i \sigma^{u v}}{2 m} \varepsilon_{v} F_{2}\right] u(\rho, s) \tilde{A}_{u}^{c \mid}(\vec{q})
\end{aligned}
$$

It is useful to use the Gordon identity

$$
\bar{u} \gamma^{m} u=\bar{u}\left[\frac{\left(\rho^{\prime}+\rho\right)^{\mu}}{2 m}+\frac{i \sigma^{\mu v}}{2 m} q_{v}\right] u
$$

such that

- Spin-dependent term

$$
i M=i e \bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\frac{\left(\rho^{\prime}+\rho\right)^{\mu}}{2 m} F_{1}+\frac{i \sigma^{u v}}{2 m} q_{v}\left(F_{1}+F_{2}\right)\right] u(\rho, s) \tilde{A}_{k}^{c 1}(\vec{q})
$$

$\imath_{\text {spin-inclependen }}$
\Rightarrow contributes only to kinetic energy $\sim \vec{P} \cdot \vec{A}$
Keeply only the spin-dependen piece

$$
i M=i e\left[F_{1}+F_{2}\right] \bar{u}\left(\rho^{\prime} s^{\prime}\right) \frac{i \sigma^{k v}}{2 m} \varepsilon_{v} u(p, s) \tilde{A}_{u}^{c 1}(\bar{q})
$$

We now take the non-relativistic limit.
Recall

$$
u(p, s) \simeq \sqrt{m}\binom{\left(1-\frac{\vec{p} \cdot \vec{\sigma}}{2 m}\right) \xi_{s}}{\left(1+\frac{\vec{p} \cdot \vec{\sigma}}{2 m}\right) \xi_{s}}=\sqrt{m}\binom{z_{s}}{\xi_{s}}
$$

since we acre already working linear in q in the verier fundion.

So,

$$
\begin{aligned}
i M & \left.=i e\left[F_{1}(0)+F_{2}(0)\right] u^{+} \varphi_{p^{\prime}} s^{\prime}\right) i \frac{\gamma^{0} v^{k v}}{2 m} q_{v} u(p, s) \tilde{A}_{n}^{c 1}(\vec{q}) \\
& \simeq i e\left[F_{1}(0)+F_{2}(0)\right] m\left(\xi_{s^{\prime}, \xi_{s}^{+}}^{+}\right) \frac{i \gamma^{\circ} \sigma^{n v}}{2 m} q_{v}\binom{\xi_{s}}{\xi_{s}} \tilde{A}_{n}^{c 1}(\vec{q})
\end{aligned}
$$

Now,

$$
\begin{aligned}
\sigma^{\mu v} & =\frac{i}{2}\left[\gamma^{\mu}, \gamma^{v}\right] \\
& =\frac{i}{2}(\gamma^{\sim} \gamma^{v}-\underbrace{\gamma^{\nu}}_{\left\{\gamma^{\nu}, \gamma^{v}\right\}}) \\
& =i \gamma^{\mu} \gamma^{\nu} \gamma^{v}+\gamma^{v} \gamma^{\nu}=2 g^{\mu v}
\end{aligned}
$$

So,

$$
\begin{aligned}
\gamma^{0} \sigma^{k v} q_{v}= & i \gamma^{0}\left(\gamma^{k} \gamma^{v}-g^{k v}\right) q_{v} \\
= & i \gamma^{0} \underbrace{0} \gamma^{k} \gamma^{0} q_{0}-i \gamma^{0} \gamma^{k} \gamma^{j} q_{j}+i \gamma^{0} q^{k} \\
= & -i \gamma^{0} \gamma^{0} \gamma^{k} q_{0}+i \gamma^{0} q^{k}-i \gamma^{0} \gamma^{k} \gamma^{j} \varepsilon_{i} \\
& \text { In nom-raldavisic limit, } q_{0} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \gamma^{0} \sigma^{k v} q_{v} & =-i \gamma^{0} \gamma^{k} \gamma^{j} q_{j} \\
& =-i\left(\begin{array}{cc}
0 & 1 \\
\mathbb{1} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{j} & 0
\end{array}\right) \varepsilon_{j} \\
& =-i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
-\sigma^{k} \sigma^{j} & 0 \\
0 & -\sigma^{k} \sigma^{j}
\end{array}\right) q_{j} \\
& =i\left(\begin{array}{cc}
0 & \sigma^{k} \sigma^{j} \\
\sigma^{k} \sigma^{j} & 0
\end{array}\right) q_{j}
\end{aligned}
$$

So, the T-ritrix element is

$$
\begin{aligned}
& i \mu \simeq \operatorname{ie}\left[F_{1}(0)+F_{2}(0)\right] m\left(\xi_{s}^{+}, \xi_{s}^{+}\right) i{\frac{\gamma^{\prime}}{} \sigma^{n v}}_{2 n}^{\varepsilon_{\nu}}\binom{\xi_{s}}{\xi_{s}} \tilde{A}_{h}^{c l}(\vec{\xi}) \\
& =i e\left[F_{1}(0)+F_{2}(0)\right] m\left(\frac{i}{2 m}\right) \\
& \times\left(z_{s^{\prime}}^{+}, z_{s^{\prime}}^{+}\right) i\left(\begin{array}{cc}
0 & \sigma^{k} \sigma^{j} \\
\sigma^{k} \sigma^{j} & 0
\end{array}\right)\binom{z_{s}}{z_{s}} q_{j} \bar{A}_{u}^{c l}(\vec{\varepsilon}) \\
& =-i\left(\frac{e}{2 m}\right) m\left[F_{1}(0)+F_{2}(0)\right] z_{s^{\prime}}^{+}\left(\sigma^{h} \sigma^{j}+\sigma^{n} \sigma^{j}\right) \xi_{s} q_{j} \tilde{A}_{h}(\vec{\varepsilon}) \\
& =-i\left(\frac{e}{m}\right) 2 m\left[F_{1}(0)+F_{2}(0)\right] \xi_{s^{\prime}}^{+} \sigma^{k} \sigma^{\prime} \xi_{s} q_{j} \tilde{A}_{n}^{(1)}(\vec{\varepsilon})
\end{aligned}
$$

Recall

$$
\sigma^{k} \sigma^{j}=\delta^{j n} \mathbb{1}+i \epsilon^{n_{j} l} \sigma_{l}
$$

therefore

$$
\begin{aligned}
& \text { therefore } \sigma^{h} \sigma^{j} q_{j}=\underbrace{q^{n} \mathbb{1}}+i \epsilon^{n j l} \sigma_{l} q_{j} \\
& \Rightarrow i \mu=+i\left(\frac{e}{2 m}\right) 2 m\left[F_{1}(0)+F_{2}(0)\right] \underbrace{i \epsilon^{j h e} q_{j} \tilde{A}_{n}^{c l}(\vec{\varepsilon}) \xi_{s^{\prime}}^{+} \sigma_{l} \xi_{s}}_{\overline{B^{l}}(\vec{q})}
\end{aligned}
$$

Recall

$$
\langle\vec{s}\rangle=\xi_{s^{\prime}}^{+} \frac{\vec{\sigma}}{2} \xi_{s}
$$

Therefor, we find

$$
i M=i(2 m) \cdot 2\left[F_{1}(0)+F_{2}(0)\right]\left(\frac{e}{2 m}\right)\langle\vec{S}\rangle \cdot \overrightarrow{\vec{B}}(\vec{q})
$$

Compare with Born approximation

$$
\begin{aligned}
\tilde{V}(\vec{q}) & =-\frac{1}{2 m} M \\
& =-\frac{e}{2 m} \cdot 2\left[F_{1}(0)+F_{2}(0)\right]\langle\vec{s}\rangle \cdot \stackrel{\vec{B}}{ }(\vec{q})
\end{aligned}
$$

Fourier transform

$$
\begin{aligned}
V(x) & =-\frac{e}{2 m} \cdot 2\left[F_{1}(0)+F_{2}(0)\right]\langle\vec{s}\rangle \cdot \vec{B}(\vec{x}) \\
& =-\langle\vec{\mu}\rangle \cdot \vec{B}(\vec{x})
\end{aligned}
$$

Lepton magnetic moment

$$
\langle\vec{\mu}\rangle=2\left[F_{1}(0)+F_{2}(0)\right] \frac{e}{2 m}\langle\vec{S}\rangle
$$

Generally, $\vec{\mu}=g \frac{e}{2 m} \vec{S}$
LLandé g-factor
so, $g=2\left[F_{1}(0)+F_{2}(0)\right]$

$$
=2\left[1+F_{2}(0)\right]
$$

Change renormalization
The Dirac eqn. predicts $g=2$, i.e., to leading order in QED

$$
\begin{aligned}
& g=2+O(\alpha) \\
& \Rightarrow F_{2}(0)=O(\alpha)
\end{aligned}
$$

Unlike the eledric charge, g is not a prancer of $Q E D \Rightarrow g$ is a pure prediction!
Therefore, we can compute the form-fagor corder-by-ardes in $\alpha=e^{2} / 4 \pi$.

$$
\begin{gathered}
F_{2}(0)=F_{2}^{(1)}(0)+F_{2}^{(2)}(0)+\cdots \\
O(\alpha) \quad O\left(\alpha^{2}\right)
\end{gathered}
$$

It is convention to define $F_{2}(\rho)=a_{l}$, the cuomalons magnetic moment of the lepton ℓ

$$
\begin{aligned}
a_{l} & =F_{2}(0) \\
& =\frac{g-2}{2}
\end{aligned}
$$

A comet on the UV behavior $f a_{l}$. Since y is Not a prancer of the then, it cannot be used to absorb UV divergences of radiative corrections. We would require an operator of the form

$$
\mathcal{L}=g \cdot e \bar{\psi} \frac{i \sigma^{m v}}{2 m} F_{\mu v} \psi
$$

L this can cancel a divergence.

However, if $Q E D$ is to be a renomalizable QFT, this operator is NUT allowed as it is a dimension -5 operator. Without such an operator, there can be no UV diverguce, ar the theory is not cored or not "renormalizable".

Perturbative corrections to " $9-2$ "
Let us begin the computation of the anomalous magnetic mores f the electron in QED. We will concentrate an the leading $O\left(\alpha^{\circ}\right)$ and next-to-leading $O(\alpha)$ perturbative corrections in $\alpha=e^{2} / 2 \mathrm{~m}$. From the Feynman rules for an election in a classical EM field

$$
-i e \Gamma^{\mu}\left(\rho^{\prime}, \rho\right)=-i e \sum_{n=0}^{\infty} \Gamma_{n}^{\mu}\left(\rho^{\prime}, \rho\right)
$$

The quantum corrections have the form

$$
\Gamma_{n}^{r}=\left(\frac{\alpha}{\pi}\right)^{n} \Gamma_{n}^{r} \text { no } \alpha-\text { depudence }
$$

The corresponding Form-factars have the expansion

$$
F_{j}=\sum_{n=0}^{\infty} F_{j}^{(n)} \quad \text { for } j=1,2 .
$$

Leading order
At leading order,

$$
\begin{aligned}
& =-i e \bar{u}\left(\rho^{\prime}, s^{\prime}\right)\left[\gamma^{\mu}+O(\alpha)\right] u(p, s) \tilde{A}_{\mu}^{c}(\bar{q})
\end{aligned}
$$

So, we find $\Gamma_{0}^{r}=\gamma^{m}$. Comparing to the guncic Lorentz decomposition, he conclude

$$
F_{1}^{(0)}=1, F_{2}^{(0)}=0
$$

So, $\quad g=2+O(x) \quad$ Dircces triumph!

Next-to-Leading Order
At next-to-leading order (NLO), we find fou diagrams contributing to the amplitude at $O(\alpha)$

$+O\left(\alpha^{2}\right)$

The firs two terms at $O(\alpha)$ contribute to the mass and wavefundion renormalization of the electron.

The third teem contributes to the vacuum polarization f the EM field. The last diagram is the only correction to the vertex fundion

It is convenic γ to define $\Gamma^{\mu}=\gamma^{\mu}+\Lambda^{\mu}$, with the expansion

$$
\Lambda^{\mu}=\sum_{n=0}^{\infty} \Lambda_{n}^{\mu}
$$

Since $\Gamma_{0}^{\mu}=\gamma^{m}, \Rightarrow \Lambda_{0}^{\mu}=0$.
From the GEED Feynman rules, the vertex correction is

where Λ_{1}^{r} is

$$
\begin{aligned}
\Lambda_{1}^{-}\left(p^{\prime}, p\right) & =(-i e)^{2} \int \frac{d^{4} k}{(2 \pi)^{4}}-i g_{\alpha} \beta \\
k^{2} & \gamma^{\alpha} \frac{i}{\rho^{\prime}-k-m} \gamma^{\mu} \frac{i}{p-\hbar-m} \gamma^{\beta} \\
& =-c^{2} \int \frac{d^{4} h}{(2 \pi)^{4}} \frac{-i^{3} N^{\mu}\left(\rho^{\prime} \rho, h\right)}{k^{2}\left[\left(p^{\prime}-h\right)^{2}-m^{2}\right)\left[(p-k)^{2}-m^{2}\right]}
\end{aligned}
$$

with $N^{\mu}=\gamma_{\nu}\left[\left(p^{\prime}-x\right)+m\right] \gamma^{r}[(p-k)+m] \gamma^{\nu}$

Note that we will always be interested in the an-shell case, $p^{\prime 2}=p^{2}=m^{2}$, and the Dirac spinous acting an Λ_{1}^{\sim}.

Farm - Factor Extraction
Our task is now to compute Λ_{1}^{μ}. In geneal, loop integrals are diverges and require regularization.
we know that g is a finite prediction, which means that the catribition t. F_{2} mug be finite and does not need regularization. It is convenient to isolate the contribution to F_{2}, sud that we Con avoid the corplictions f regularization. Let us then construed projegars for the form-fadors.
Recall

$$
\Gamma^{n}=\gamma^{\mu} F_{1}+i \frac{\sigma^{n v}}{2 m} q_{v} F_{2}
$$

The vertex is evaluIad an-mass-shell, $\bar{u}\left(p^{\prime} s^{\prime}\right) \Gamma^{m} u(p, s)$. The Dirac spires themselves satisfy Diracs eqn.

$$
(p-m) u=0 \text { and } \bar{u}(p-m)=0
$$

Since completeness ration is $\sum_{s} u(p, s) \bar{u}_{(\rho, s)}=p+m$ we expat thY $\left(p^{\prime}+m\right) \Gamma^{n}(p+m)$ has the same decomposition

$$
\left(p^{\prime}+m\right) \Gamma^{m}(p+m)=\left(p^{\prime}+m\right)\left[\gamma-F_{1}+\frac{i \sigma^{n}}{2 m} q_{0} F_{2}\right](p+m)
$$

provided $p^{2}=p^{\prime 2}=m^{2}$.

We now multiply an the left and contrast with both $P_{\mu}=\left(\rho^{\prime}+p\right)_{\mu}^{*}$ and γ_{μ}, and then take the trace

$$
\begin{aligned}
\operatorname{tr}\left[\left(p^{\prime}+m\right) P_{\mu} \Gamma^{-}(p+m)\right]= & \operatorname{tr}\left[\left(p^{\prime}+m\right) P_{(\beta+m)}\right] F_{1} \\
& +\operatorname{tr}\left[\left(\beta^{\prime}+m\right) P_{\mu} \sigma^{\sim} q_{\nu}(\beta+m)\right] \frac{i F_{2}}{2 m} \\
\operatorname{tr}\left[\gamma_{\mu}\left(p^{\prime}+m\right) \Gamma^{r}(p+m)\right]= & \operatorname{tr}\left[\gamma_{\mu}\left(p^{\prime}+m\right) \gamma^{r}(\beta+m)\right] F_{1} \\
& +\operatorname{tr}\left[\gamma_{\mu}\left(p^{\prime}+m\right) \sigma^{\sim} q_{\nu}(\beta+n)\right] \frac{i F_{2}}{2 m}
\end{aligned}
$$

Recall the trace identities

$$
\begin{aligned}
& \operatorname{tr}[\mathbb{1}]=4 \\
& \operatorname{tr}\left[\gamma_{\alpha_{1}} \cdots \gamma_{\alpha_{2 n+1}}\right]=0 \\
& \operatorname{te}\left[\gamma_{\mu} \gamma_{\nu}\right]=4 g_{\mu v} \\
& \operatorname{tr}\left[\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma}\right]=4\left(g_{\mu \nu} g_{\rho \sigma}-g_{\mu \rho} g_{\nu \sigma}+g_{\mu \sigma} g_{\nu \rho}\right) \\
& \gamma_{\mu} \gamma^{\sim}=4 \mathbb{1} \\
& \gamma_{\mu} \gamma^{v} \gamma^{\mu}=-2 \gamma^{\nu} \\
& \gamma_{\mu} \gamma^{v} \gamma^{\rho} \gamma^{\rho}=4 g^{v \rho} \\
& \gamma_{\mu} \gamma^{v} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu}=-2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu}
\end{aligned}
$$

We note some useful kinematic relations, with ${p^{\prime 2}}^{\prime 2}=p^{2}=m^{2}$

$$
\left[\begin{array}{l}
P^{2}=\left(p^{\prime}+p\right)^{2}=2 m^{2}+2 p^{\prime} \cdot p \\
q^{2}=\left(p^{\prime}-p\right)^{2}=2 m^{2}-2 p^{\prime} \cdot p
\end{array}\right\} \quad p^{2}+q^{2}=4 m^{2}, ~ \begin{aligned}
& p \cdot q=\left(p^{\prime}+p\right) \cdot\left(p^{\prime}-p\right)=p^{\prime 2}-p^{2}=0 \\
& p^{\prime} \cdot P=p \cdot p=2 m^{2}-\frac{q^{2}}{2} \\
& p^{\prime} \cdot q=-p \cdot q=\frac{\varepsilon^{2}}{2}
\end{aligned}
$$

Evaluating the traces

$$
\begin{aligned}
& {\left[\operatorname{tr}\left[\left(p^{\prime}+m\right) P_{(q+m)}\right]=m \operatorname{tr}\left[p^{\prime} P\right]+m \operatorname{tr}\left[P_{p}\right]\right.} \\
& =4 m\left(p^{\prime} \cdot P+p \cdot P\right) \\
& =4 m\left(4 m^{2}-q^{2}\right) \text { want to express } \\
& \text { scalars do tors } \\
& \text { of morestum transf } q^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { with, }
\end{aligned}
$$

$$
\begin{aligned}
& i \operatorname{tr}\left[\left(p^{\prime}+m\right) P \mathscr{q}(p+m)\right]=i t_{r}\left[p^{\prime} P q \cdot \beta\right]+i m^{2} \operatorname{tr}[P q] \\
&=4 i\left(p^{\prime} \cdot P q \cdot p-p^{\prime} \cdot q P \cdot p+p^{\prime} \cdot p P / q\right)+4 i m^{2} P / q \\
&=-4 i \frac{q^{2}}{2}\left[P \cdot p^{\prime}+P \cdot \rho\right] \\
&=-2 i q^{2}\left(4 m^{2}-\varepsilon^{2}\right) \\
& \Rightarrow \operatorname{tr}\left[\left(p^{\prime}+m\right) P_{r} \sigma^{\prime} q_{v}(p+n)\right]=-2 i q^{2}\left(4 m^{2}-\varepsilon^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\operatorname{tr}\left[\gamma_{\mu}\left(\beta^{\prime}+m\right) \gamma^{r}(\beta+m)\right]=\operatorname{tr}\left[\gamma_{\mu} p^{\prime} \gamma^{\prime} p\right]+m^{2} \operatorname{tr}\left[\gamma_{\mu} \gamma^{r}\right]\right.} \\
& =-2 \operatorname{tr}\left[p^{\prime} p\right]+4 m^{2} \operatorname{tr}[\mathbb{1}] \\
& =-8 p^{\prime} \cdot p+16 m^{2} \\
& =4\left(q^{2}+2 n^{2}\right) \\
& {\left[\begin{array}{rl}
\operatorname{tr}\left[\gamma_{\mu}\left(\beta^{\prime}+m\right) \sigma^{\sim v} q_{\nu}(\beta+m)\right]= & i t_{1}\left[\gamma_{\rho}\left(\beta^{\prime}+m\right) \gamma^{\wedge} q(\beta+m)\right] \\
\sigma^{\mu v}=i \gamma^{-} \gamma^{v}-i g^{v} \quad & -i \operatorname{tr}\left[q\left(\beta^{\prime}+m\right)(\beta+m)\right]
\end{array}\right.} \\
& =i m t_{r}\left[\gamma_{\mu} p^{\prime} \gamma^{\sim} q\right]+i m t r\left[r_{\mu} \gamma^{\prime} q p\right] \\
& \text {-imtr }[q p]-i m \operatorname{te}\left[\xi p^{\prime}\right] \\
& =-2 i m t_{r}\left[p^{\prime} q\right]+4 i m t_{r}[q p] \\
& \text {-imtr }[q p]-i m \operatorname{tr}\left[q p^{\prime}\right] \\
& =\operatorname{3im}[p q]-3 i n t c\left[p^{\prime} \xi\right] \\
& =12 i m\left(p-p^{-}\right) \cdot q \\
& =-12 i m q^{2}
\end{aligned}
$$

Therefore, the collations

$$
\begin{aligned}
\operatorname{tr}\left[\left(\beta^{\prime}+m\right) P_{\mu} \Gamma^{\sim}(\beta+m)\right]= & \left.\operatorname{tr}\left[\left(\beta^{\prime}+m\right) P_{(}+m\right)\right] F_{1} \\
& +\operatorname{tr}\left[\left(\beta^{\prime}+m\right) P_{\mu} \sigma^{\sim} q_{\nu}(\beta+m)\right] \frac{i F_{2}}{2 m} \\
\operatorname{tr}\left[\gamma_{\mu}\left(p^{\prime}+m\right) \Gamma^{r}(p+m)\right]= & \operatorname{tr}\left[\gamma_{\mu}\left(\beta^{\prime}+m\right) \gamma^{r}(\beta+m)\right] F_{1} \\
& +\operatorname{tr}\left[\gamma_{\mu}\left(\beta^{\prime}+m\right) \sigma^{\sim} q_{\nu}(\beta+m)\right] \frac{i F_{2}}{2 m}
\end{aligned}
$$

simplify to

$$
\begin{aligned}
& \operatorname{tr}\left[\left(p^{\prime}+m\right) P_{r} \Gamma^{-}(p+m)\right]= 4 m\left(4 m^{2}-q^{2}\right) F_{1} \\
&-2 i \varepsilon^{2}\left(4 m^{2}-\varepsilon^{2}\right)\left(\frac{i F_{2}}{2 m}\right) \\
& \operatorname{tr}\left[\gamma_{-}\left(p^{\prime}+n\right) \Gamma^{r}(p+m)\right]=4\left(q^{2}+2 m^{2}\right) F_{1} \\
&-12 i m q^{2}\left(\frac{i F_{2}}{2 m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tr}\left[\left(\beta^{\prime}+m\right) P_{r} \Gamma^{r}(\beta+m)\right]=4 m\left(4 m^{2}-q^{2}\right)\left[F_{1}+\frac{q^{2}}{4 m^{2}} F_{2}\right] \\
& \operatorname{tr}\left[\gamma_{\sim}\left(p^{\prime}+n\right) \Gamma^{r}(p+m)\right]=4\left(q^{2}+2 m^{2}\right) F_{1}+6 q^{2} F_{2}
\end{aligned}
$$

We then solve the resulting 2×2 system for F_{1} and F_{2}

$$
\begin{aligned}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F_{1}}{F_{2}} & =\binom{T_{1}}{T_{2}} \\
\Rightarrow\binom{F_{1}}{F_{2}} & =\frac{1}{A D-B C}\left(\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right)\binom{T_{1}}{T_{2}} \\
& =\frac{1}{A D-B C}\binom{D T_{1}-B T_{2}}{-C T_{1}+A T_{2}}
\end{aligned}
$$

The determinat.

$$
\begin{aligned}
A D-B C & =4 m q^{2}\left(4 m^{2}-q^{2}\right)\left[6-\frac{1}{4 m^{2}} \cdot 4\left(q^{2}+2 m^{2}\right)\right] \\
& =4 m q^{2}\left(4 m^{2}-q^{2}\right)\left(4-q^{2} / m^{2}\right) \\
& =\frac{4 q^{2}}{m}\left(4 m^{2}-q^{2}\right)^{2}
\end{aligned}
$$

F. form-factor

$$
\begin{aligned}
F_{1}= & \frac{1}{A D-B C}\left(D T_{1}-B T_{2}\right) \\
= & \frac{m}{4 \varepsilon^{2}\left(4 m^{2}-\varepsilon^{2}\right)^{2}} \\
& \times \operatorname{tr}\left[\left(6 q^{2} p_{r}-4 m\left(4 m^{2}-q^{2} \frac{q^{2}}{4 m^{2}} \gamma_{r}\right)\left(\beta^{\prime}+m\right) \Gamma^{\prime}(p+m)\right]\right. \\
= & \frac{1}{4\left(q^{2}-4 m^{2}\right)} t \cdot\left[\left(\gamma \mu-\frac{6 m\left(p^{\prime}+p\right)}{4 m^{2}-q^{2}}\right)\left(\beta^{\prime}+m\right) \Gamma^{n}(p+r)\right]
\end{aligned}
$$

F_{2} form-factor

$$
\begin{aligned}
F_{2}= & \frac{1}{A D-B C}\left(-C T_{1}+A T_{2}\right) \\
= & \frac{m}{4 \varepsilon^{2}\left(4 m^{2}-\varepsilon^{2}\right)^{2}} \\
& \times t r\left[\left(-4\left(q^{2}+2 m^{2}\right) P_{r}+4 m\left(4 m^{2}-q^{2}\right) \gamma_{\mu}\right)\left(p^{\prime}+m\right) \Gamma^{-}(p+m)\right] \\
= & \frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} t_{1}\left[\left(\gamma_{\mu}+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{\left(p^{\prime}+p\right)}{m}\right)\left(p^{\prime}+m\right) \Gamma^{m}(p+m)\right]
\end{aligned}
$$

Therefore, we can prayed the form-fators $F_{\text {, and }} F_{2}$ from Γ^{m} using

$$
\begin{aligned}
& F_{1}=\frac{1}{4\left(q^{2}-4 m^{2}\right)} t_{1}\left[\left(\gamma \mu-\frac{6 m\left(p^{\prime}+p\right)_{\mu}}{4 m^{2}-q^{2}}\right)\left(\beta^{\prime}+m\right) \Gamma^{n}(p+r)\right] \\
& F_{2}=\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} t_{1}\left[\left(\gamma \mu+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{\left(p^{\prime}+p\right)_{\mu}}{m}\right)\left(\rho^{\prime}+m\right) \Gamma^{m}(\beta+m)\right]
\end{aligned}
$$

Notice that these projectors are a non-perturbStre result, and prove useful when evaluating higher-order diagrams. If we were to consider a regularization procedure, e.g., dimensional regularization, then we would need to derive profetars within that regularization, e.y., defining pröetors in d-spacetime dimensions in dimensional regularization. This is especially inpatient far finding F_{1}.

Here, we are andy interested in the mantic monet momaly, $a_{l}=F_{2}(0)$. Therefore, it is useful to expand the projedor about $q^{2}=0$, ar more specifically $q^{m}=0$.

To do the expansion, it is useful to take P, q as the independent kinematic variables instead of p, p^{\prime},

$$
\left.\begin{array}{l}
p_{\mu}=p_{\mu}^{\prime}+p_{\mu} \\
q_{\mu}=p_{\mu}^{\prime}-p^{\prime}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
p_{r}^{\prime}=\frac{1}{2}(p+q)_{\mu} \\
p_{\mu}=\frac{1}{2}(p-\varepsilon)_{\mu}
\end{array}\right.
$$

such that $\Gamma^{\mu}\left(p^{\prime}, p\right)=\Gamma^{r}(P, \varepsilon)$. The form-factar is then

$$
\begin{aligned}
& F_{2}\left(Q^{2}\right)=\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} t_{r}\left[\left(\gamma \mu+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{\mu}}{m}\right)\right. \\
&\left.\times\left(\frac{1}{2}(P+q)+m\right) \Gamma^{m}\left(\frac{1}{2}(P-q)+m\right)\right]
\end{aligned}
$$

Now, as $q^{\mu} \rightarrow 0$

$$
\begin{aligned}
\Gamma^{\mu}(P, q) & =\Gamma^{\mu}(P, 0)+\left.\varepsilon^{\nu} \frac{\partial}{\partial q^{v}} \Gamma^{\sim}(P, q)\right|_{q^{\rho}=0}+O\left(q^{v} q^{\rho}\right) \\
& \equiv V^{\mu}(P)+q^{v} \delta V_{v}^{\mu}(P)
\end{aligned}
$$

Note th i at $q^{2}=0, P^{2}=4 m^{2}-\varepsilon^{2}=4 m^{2}$. Hewer, we will consider $P^{2} \neq 0$ throughout the derivation, and tale $P^{2} \rightarrow 4 m^{2}$ at the end.

Using the cyclic property of the trace, we write the Feern-tator as

$$
\begin{aligned}
F_{2}\left(Q^{2}\right)= & \frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} t^{t}\left\{\left[\left(\frac{1}{2}(P-q)+m\right) \gamma_{\mu}\left(\frac{1}{2}(P+q)+m\right)\right.\right. \\
& \left.\left.+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{r}}{m}\left(\frac{1}{2}(P-q)+m\right)\left(\frac{1}{2}(P+q)+m\right)\right] \Gamma^{m}\right\}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left(\frac{1}{2}(P-q)+m\right)\left(\frac{1}{2}(P+q)+m\right) & =\frac{1}{4}\left(P^{2}-\mathscr{q}^{2}+[P, r]\right) \\
& +\frac{1}{2} m(P-\pi)+\frac{1}{2} m(P+r)+m^{2} \\
& =\frac{1}{4}\left(P^{2}-\varepsilon^{2}\right)+\frac{1}{4}[P, r]+m P+m^{2}
\end{aligned}
$$

Recall,

$$
P^{2}+\varepsilon^{2}=4 m^{2} \Rightarrow P^{2}-\varepsilon^{2}=4 m^{2}-2 \varepsilon^{2}
$$

and $[P, r]=P r-q P=P q+P_{r}-P / q=2 P r$
So,

$$
\begin{aligned}
\left(\frac{1}{2}(P-r)+m\right)\left(\frac{1}{2}(P+r)+m\right) & =m^{2}-\frac{\varepsilon^{2}}{2}+\frac{1}{2} P r+m P+m^{2} \\
& =2 m^{2}-\frac{\varepsilon^{2}}{2}+P\left(m+\frac{r}{2}\right)
\end{aligned}
$$

also,

$$
\begin{aligned}
& \left(\frac{1}{2}(P-r)+m\right) \gamma_{\mu}\left(\frac{1}{2}(P+g)+m\right) \\
& =\frac{1}{4}(P-q) \gamma_{\mu}(P+q)+\frac{m}{2}(P-r) \gamma_{\mu}+\frac{m}{2} \gamma_{\mu}(P+r)+m^{2} \gamma_{\mu} \\
& =\frac{1}{4}(P-r)\left[2(P+\varepsilon)-(P+r) \gamma_{\mu}\right]+m^{2} \gamma_{\mu} \\
& +\frac{m}{2}\left[(P-\mu) \gamma_{\mu}+2(P+\varepsilon)_{\mu}-(P+q) \gamma_{\mu}\right] \\
& =\frac{1}{2}(P+q)_{r}(P-q)-\frac{1}{4}(P-q)(P+q) \gamma_{r} \\
& +m\left(P_{+\varepsilon}\right)_{\mu}-m q \gamma_{\mu}+m^{2} \gamma_{\mu}
\end{aligned}
$$

Now,

$$
\begin{aligned}
(P-r)(P+r) & =P^{2}-r^{2}+[P, r] \\
& =P^{2}-q^{2}+2 P r=4 n^{2}-2 q^{2}+2 P r
\end{aligned}
$$

So,

$$
\begin{aligned}
&\left(\frac{1}{2}(P-q)+m\right) \gamma_{\mu}\left(\frac{1}{2}(P+q)+m\right) \\
&= \frac{1}{2}(P+\varepsilon)_{\mu}(P-q)-n^{2} \gamma_{\mu}+\frac{1}{2} \varepsilon^{2} \gamma_{\mu}-\frac{1}{2} P q \gamma_{r} \\
&+m(P+q)_{\mu}-m r \gamma_{r}+m^{2} \gamma_{r} \\
&=(P+q)_{r}\left[\frac{1}{2}(P-r)+m\right]+\left[\frac{1}{2} \varepsilon^{2}-\frac{1}{2} P r-m q\right] \gamma_{r}
\end{aligned}
$$

So, we find the form-fagor takes the form

$$
\begin{aligned}
& F_{2}\left(Q^{2}\right)=\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} \\
& \times \operatorname{tr}\left\{\left[\left[\frac{1}{2} q^{2}-\frac{1}{2} P q-m q\right] \gamma_{r}+(P+q)_{r}\left[\frac{1}{2}(P-r)+m\right]\right.\right. \\
& \left.\left.\quad+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{\mu}}{m}\left[2 m^{2}-\frac{\varepsilon^{2}}{2}+P\left(m+\frac{\xi}{2}\right)\right]\right]\left(V^{m}+q^{v} \delta V_{v}\right)\right\}
\end{aligned}
$$

Next, we can average over the spatial direction of q^{μ}, since $\int d \Omega_{q} F_{2}\left(Q^{2}\right)=4 \pi F_{2}\left(Q^{2}\right)$.
For terms linear on ε^{m},

$$
\int \frac{d \Omega_{q}}{4 \pi} \varepsilon_{\rho}=A P_{\mu}
$$

where A is undetermined, and $P_{\text {r }}$ is the canty fou-vedor remaining. $B=P \cdot Q=0$

$$
\Rightarrow 0=\int \frac{d \Omega_{a}}{4 \pi} P \cdot q=A P^{2}
$$

the only way this warless is if $A=0$
So,

$$
\int \frac{d \Omega}{4 \pi} q_{r}=0
$$

For term proportional to $q_{n} q_{v}$, we have

$$
\int \frac{d \Omega_{u}}{4 \pi} q_{\mu} q_{v}=A g_{\mu v}+B P_{\mu} P_{v}
$$

where A and B are undermine. Now, contract with g mv,

$$
\begin{aligned}
g^{\mu v} \int \frac{d \Omega_{q}}{4 \pi} \varepsilon_{\mu} q_{v} & =\int \frac{d R_{q}}{4 \pi} q^{2}=q^{2} \\
& =4 A+B P^{2}
\end{aligned}
$$

so, $\quad q^{2}=4 A+B P^{2}$
Also, contract with $P^{M} P^{\nu}$, recalling $P \cdot \varepsilon=0$

$$
\Rightarrow 0=\int \frac{d \Omega}{4 \pi} \varepsilon \cdot \varepsilon P \cdot q=A P^{2}+B P^{2} P^{2}
$$

so, $\left(A+B P^{2}\right) P^{2}=0$

$$
\Rightarrow \quad B=-\frac{A}{\mathcal{P}^{2}}
$$

which gives $q^{2}=4 A+B P^{2}=4 A-A=3 A$

$$
\Rightarrow A=\varepsilon^{2} / 3
$$

therefore,

$$
\int \frac{d \Omega}{4 \pi} q_{\mu} q_{\nu}=\frac{1}{3} q^{2}\left(g_{\mu \nu}-\frac{P_{\mu} P_{v}}{P^{2}}\right)
$$

Finally, note that terms with $q_{r} q_{v} q_{p}$ will also give a zero angular average, $\int d \Omega_{q} q_{p} q_{\nu} q_{p}=0$ S_{3}, auouging our the form factor

$$
\begin{aligned}
& F_{2}\left(Q^{2}\right)=\int \frac{d \Omega_{2}}{4 \pi} F_{2}\left(Q^{2}\right) \\
& =\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} \int \frac{d \Omega a}{4 \pi} \operatorname{tr}\left[\left\{\left(\frac{1}{2} q^{2}-\left(\frac{p}{2}+m\right) q\right) r_{r}\right.\right. \\
& +P_{\mu}\left(\frac{1}{2}(P-q)+m\right)+\varepsilon_{\mu}\left(\frac{1}{2}\left(P^{\top}-r\right)+\cdots\right) \\
& \left.\left.+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{\mu}}{m}\left[2 m^{2}-\frac{\varepsilon^{2}}{2}+P\left(m+\frac{\xi}{2}\right)\right]\right\} V^{m}\right] \\
& +\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} \int \frac{d \Omega}{4 \pi} \operatorname{tr}\left[\left\{\left(\frac{1}{2} q^{\pi}-\left(\frac{P}{2}+n\right) \pi\right) \gamma_{r}\right.\right. \\
& +P_{r}\left(\frac{1}{2}\left(P^{\top}-q\right)+M\right)+q_{\mu}\left(\frac{1}{2}(P-q)+m\right) \\
& \left.\left.+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{\mu}}{m}\left[2 \hat{m}^{2}-\frac{q^{2}}{2}+P\left(m+\frac{\xi}{2}\right)\right]\right\} q^{2} \delta V_{v}\right] \\
& \int \frac{d \Omega_{r}}{4 \pi}=1, \quad \int \frac{d \Omega_{q} q_{r}}{4 \pi}=0, \quad \int \frac{d \Omega}{4 \pi} q_{r} q_{v}=\frac{1}{3} q^{2}\left(g_{v}-\frac{P_{r} P_{v}}{P^{2}}\right) \\
& \int \frac{d \Omega_{i}}{4 \pi} q_{2} q_{v} q_{p}=0
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}\left(\mathcal{Q}^{2}\right)=\int \frac{d \Omega}{4 \pi} F_{2}\left(Q^{2}\right) \\
& =\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} \int \frac{d \Omega}{4 \pi} \operatorname{tr}\left[\left\{\frac{1}{2} q^{2} \gamma_{r}+P_{\mu}\left(\frac{1}{2} P+m\right)-\frac{1}{2} q_{-} q_{\alpha} \gamma^{\alpha}\right.\right. \\
& \left.\left.+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{\mu}}{m}\left[2 m^{2}-\frac{\varepsilon^{2}}{2}+P m\right]\right\} V^{m}\right] \\
& +\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} \int \frac{d \Omega}{4 \pi} \operatorname{tr}\left[\left\{-\left(\frac{P}{2}+m\right) q_{\alpha} r^{\alpha} \gamma_{r}-\frac{1}{2} q_{\alpha} P_{r} r^{\alpha}\right.\right. \\
& \left.\left.+\varepsilon_{\mu}\left(\frac{1}{2} P+m\right)+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{\mu}}{m}\left[\frac{P}{2} \gamma^{\alpha} \varepsilon_{\alpha}\right]\right\} q^{v} \delta V_{\nu}\right] \\
& F_{2}\left(Q^{2}\right)=\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} \\
& x \operatorname{tr}\left[\left\{\frac{1}{2} \varepsilon^{2} \gamma_{\mu}+\underset{r}{P}\left(\frac{P}{2}+r\right)-\frac{1}{2} \cdot \frac{1}{3} \varepsilon^{2}\left(\gamma_{\mu}-\frac{P_{\mu} P}{P^{2}}\right)\right.\right. \\
& \left.\left.+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{r}}{m}\left(2 m^{2}-\frac{\varepsilon^{2}}{2}+P m\right)\right\} V^{-}\right] \\
& +\frac{-m^{2}}{q^{2}\left(q^{2}-4 m^{2}\right)} t\left(\left[\left\{-\frac{1}{3} q^{2}\left(\frac{P}{2}+m\right)\left(\gamma^{v}-\frac{P^{v} P}{P^{2}}\right) \gamma_{\sim}\right.\right.\right. \\
& -\frac{1}{2} P_{\mu} \frac{1}{3} q^{2}\left(r^{\nu}-\frac{P^{\nu} P}{P^{2}}\right)+\left(\frac{1}{2} P+m\right) \frac{1}{3} \varepsilon^{2}\left(g_{r}^{\nu}-\frac{P}{P^{2}}\right) \\
& \left.\left.+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{c}}{m}\left(\frac{P}{2} \frac{1}{3} \varepsilon^{2}\left(r^{\nu}-\frac{P^{\nu} \not P}{P^{2}}\right)\right)\right\} \delta V_{v}\right]
\end{aligned}
$$

Notice that the δV_{i}^{r} term is propositional to ε^{2}. Let un manipulate two expressions" in the firs tern

Manipulating the two expressions

$$
\begin{aligned}
& \mathcal{P}_{r}\left(\frac{P}{2}+r\right)+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{r}}{m}\left(2 m^{2}+P m\right) \\
& =\frac{1}{q^{2}-4 m^{2}} P_{\mu}\left[q^{2}-4 m^{2}+2\left(\varepsilon^{2}+2 n^{2}\right)\right]\left(\frac{P}{2}+m\right) \\
& =\frac{1}{\varepsilon^{2}-4 m^{2}} P_{r} \cdot 3\left(\frac{P}{2}+n\right)
\end{aligned}
$$

Thus, every term in the trace is propational to q^{2}, which cancels the $\frac{1}{g^{2}}$ pre-factas. Canceling this factor allows us to take the limit $q \rightarrow 0$.

$$
\begin{aligned}
F_{2}\left(Q^{2}\right)= & \frac{-m^{2}}{\left(q^{2}-4 m^{2}\right)} \\
\times & \operatorname{tr}\left[\left\{\frac{1}{2} \gamma_{r}-\frac{1}{2} \cdot \frac{1}{3}\left(\gamma_{r}-\frac{P_{r} P}{P^{2}}\right)\right.\right. \\
& \left.\left.\left.+\frac{1}{q^{2}-4 m^{2}} P_{r} \cdot 3\left(\frac{P}{2}+n\right)-\frac{1}{2}\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P_{r}}{m}\right)\right\} V^{r}\right] \\
+ & \frac{-m^{2}}{\left(q^{2}-4 m^{2}\right)}+c\left[\left\{-\frac{1}{3}\left(\frac{P}{2}+m\right)\left(\gamma^{\nu}-\frac{P^{v} P}{P^{2}}\right) \gamma_{\rho}\right.\right. \\
& -\frac{1}{2} P_{\mu} \frac{1}{3}\left(r^{\nu}-\frac{P^{v} P}{P^{2}}\right)+\left(\frac{1}{2} P+m\right) \frac{1}{3}\left(g_{r}^{v}-\frac{P}{P^{2}} \frac{P^{2}}{P^{2}}\right) \\
& \left.\left.+\left(\frac{q^{2}+2 m^{2}}{q^{2}-4 m^{2}}\right) \frac{P}{m}\left(\frac{P}{2} \frac{1}{3}\left(\gamma^{v}-\frac{P^{v} P}{P^{2}}\right)\right)\right\} \delta V_{v}^{r}\right]
\end{aligned}
$$

So, as $\varepsilon \rightarrow 0$

$$
\begin{aligned}
& F_{2}(0)=+\frac{1}{4} \operatorname{tr}\left[\left\{\frac{1}{2} \gamma_{\mu}-\frac{1}{6}\left(\gamma_{r}-\frac{P_{\mu} P}{p^{2}}\right)\right.\right. \\
& \left.\frac{-3}{4 n^{2}} \operatorname{Pr}\left(\frac{P}{2}+n\right)+\frac{1}{4 m} P_{r}\right\} V^{r} \\
& +\left\{-\frac{1}{3}\left(\frac{A}{2}+n\right)\left(\gamma^{v}-\frac{P^{v} P}{P^{2}}\right) r_{r}+m \frac{1}{3}\left(g_{r}^{v}-\frac{P P^{v}}{P^{2}}\right)\right. \\
& -\frac{1}{2} P_{r} \frac{1}{3}\left(r^{2}-P^{\nu}-\mathscr{P} P^{2}\right)+\frac{1}{2} P \frac{1}{3}\left(g_{r}{ }^{2}-\frac{P P^{2}}{P^{2}}\right) \\
& \left.\left.-\frac{1}{2} \frac{P_{m}}{m}\left(\frac{1}{3} \frac{P}{2}\left(\gamma^{v}-\frac{P^{v} \not P}{P^{2}}\right)\right)\right\} \delta V_{v}\right] \\
& =\frac{+1}{4} t 1\left[\left\{\frac{1}{3} r_{r}+\frac{1}{6} P-\frac{P}{4 m^{2}}-\frac{3}{8 m^{2}} P P_{-}-\frac{3}{4 m} P_{r}+\frac{1}{4 m} P_{-}\right\} V^{m}\right. \\
& +\left\{-\frac{1}{3}\left(\frac{p^{p}}{2}+n\right) \gamma^{v} \gamma_{r}+\frac{1}{3}\left(\frac{p}{2}+n\right) P^{v} \frac{p}{p^{2}} \gamma_{r}+\frac{m}{3}\left(g_{\mu}^{v}-\frac{P_{r} p^{v}}{p^{2}}\right)\right. \\
& \left.\left.-\frac{1}{6} P_{\mu} \gamma^{v}+\frac{1}{6} P g_{\mu}^{\nu}-\frac{1}{12 m} P_{\mu} P \gamma^{\nu}+\frac{1}{12 n} P_{\mu} P^{v} \underset{P}{P} P^{2}\right\} \delta v_{\nu}^{r}\right] \\
& =+\frac{1}{12 m^{2}} \operatorname{tr}\left\{\left[m^{2} \gamma_{r}-P_{\mu} P-\frac{3}{2} m P_{r}\right] V^{-}\right. \\
& +\left[-m^{2}\left(\frac{P}{2}+m\right) \gamma_{\nu} \gamma_{\mu}+m^{2}\left(\frac{P}{2}+m\right) \frac{P_{\nu} P}{4 m^{2}} \gamma_{-}\right. \\
& +m^{3}\left(g_{r v}-P_{-P_{u}}^{4 r^{2}}\right)-\frac{r^{2}}{2} P_{\mu} r_{v}+\frac{m^{2}}{2} P g_{-v} \\
& \left.\left.-\frac{m}{4} P_{r} P_{\gamma_{v}}+\frac{m}{4} P_{r} P_{v}\right] \delta v_{v, r}\right\}
\end{aligned}
$$

$$
\begin{aligned}
F_{2}(0)= & +\frac{1}{12 m^{2}} \operatorname{tr}\left\{\left[m^{2} \gamma_{r}-P_{\mu} P-\frac{3}{2} m P_{r}\right] V^{r}\right. \\
+ & {\left[-m^{2}\left(\frac{P}{2}+m\right) \gamma_{v} \gamma_{r}+m^{2}\left(\frac{P}{2}+m\right) \frac{P P_{\nu}}{4 m^{2}} \gamma_{r}\right.} \\
& \left.\left.+m^{3} g_{\mu v}-\frac{m^{2}}{2} P_{\mu} \gamma_{v}+\frac{m^{2}}{2} P g_{\mu v}-\frac{m}{4} P_{r} P \gamma_{v}\right] \delta V^{v, r}\right\}
\end{aligned}
$$

For the second tern, note

$$
\left\{\gamma_{r}, \gamma_{v}\right\}=2 g_{\mu v} \text {, and } P^{2}=P^{2}=4 m^{2}
$$

So,

$$
\begin{aligned}
\text { 2nv term }= & m\left[-\left(\frac{P}{2}+m\right) \gamma_{v} \gamma_{r} m+\left(\frac{P}{2}+m\right) \frac{P P_{v}}{4 r_{2}} \gamma_{\mu} m\right. \\
& \left.+\left(\frac{P}{2}+m\right) g_{r v} m-\left(\frac{P}{2}+m\right) \gamma_{v} \frac{P}{2}\right] \\
= & m\left(\frac{P}{2}+m\right)\left[-\gamma_{\nu} \gamma_{r} m+\frac{P}{4 m^{2}} P_{v} \gamma_{r} m+g_{\mu v} m-\gamma_{v} \frac{P}{2}\right] \\
= & \frac{m}{2}\left(\frac{P}{2}+m\right)\left[\left[\gamma_{r} \gamma_{v}\right] m+\frac{P}{2 r_{2}^{2}} P_{v} \gamma_{v}+\frac{1}{2} \gamma_{v} \gamma_{r}-\gamma_{v} P_{r}\right]
\end{aligned}
$$

Once car show, cig. Matherdica, this the secund tor
Can be written as

$$
2^{\wedge \frac{d}{t e r}} \text { te } \frac{m}{4}\left(\frac{P}{2}+r\right)\left[\gamma_{\mu}, \gamma_{v}\right]\left(\frac{P}{2}+m\right)
$$

N-B. I'm stack of anaptically proving this, so Mathertica ca do the algesia faster than me...

So, we find th it the anomalous magnetic mowed can be found diredty by

$$
\begin{aligned}
a= & F_{2}(0) \\
= & \frac{1}{12 m^{2}} t c\left[\left(m^{2} \gamma_{r}-P_{r} P-\frac{3}{2} m P_{\mu}\right) V^{r}\right. \\
& \left.+\frac{m}{4}\left(\frac{P}{2}+m\right)\left[\gamma_{\mu}, \gamma_{\nu}\right)\left(\frac{P}{2}+m\right) \delta V^{v, r}\right]
\end{aligned}
$$

Where we tale $P^{2} \rightarrow 4 \mathrm{~m}^{2}$ after taking the trace, and where

$$
\begin{aligned}
& V^{\mu}(P)=\Gamma^{\mu}(P, 0) \\
& S V^{v \mu}(P)=\left.\frac{\partial \Gamma^{m}}{\partial q_{v}}(P, \varepsilon)\right|_{\varepsilon=0}
\end{aligned}
$$

Thus, we only need to find the vertex function linear on q^{n} to compute a.

