Phenomendoy II - QCD
Quantum Chrorodynamics (QCD) is a non-abdim gange thear, desorising the colver iserotions of quarks and gluans. The Lagronge density is

$$
2=\frac{1}{2} i \sum_{f} \bar{q}_{f} \nabla q_{f}+h_{1} c \cdot-\sum_{f} m_{f} \bar{q}_{f} q_{f}-\frac{1}{2} t_{r}\left[G_{f v} G^{n v}\right]
$$

Where $D_{\mu}=\partial_{\mu}+i g_{s} A_{r}, A_{r}=A_{\mu}^{a} T_{a}$
and

$$
G_{r v}=\frac{1}{i g_{s}}\left[D_{r}, D_{\nu}\right]
$$

There are 6 flaves, $f=\{u, d, s, c, b, t\}$

QCD, in priceiple, describes all
\rightarrow "decoys" vian wealk hadruic and nudear pheorenes ne observe be the miverse. It depends on 6 quarh rasses, cul 1 coupling, g_{s}. Defue $\alpha_{s} \equiv \frac{g_{s}^{2}}{4 \pi}$

This coupling gourns the Eterations f rassless gluons with quarhs, e.g.,

$$
\begin{aligned}
&=-i g_{s}\left(T^{a}\right)_{j k} \gamma_{\alpha \beta}^{m} \\
& \uparrow_{\text {curries } 2}^{2} \\
& \text { colar indices }
\end{aligned}
$$

The some conding also gourns eftuctions f gluan with Therselves, $\quad P_{2}, \geqslant v$

In pirtubstion thew, highes order cavections angnet the coppling, Presen a QED

Cn show (carsel QRT II), the the coploy gs cuns with the monite truati Q^{2}, and is described by a differoin equation

$$
\begin{aligned}
& \frac{d g_{s}}{d \ln Q}=\beta\left(g_{s}\right) \stackrel{\text { bdt fugion" }}{\longleftrightarrow} \quad \Gamma \# f_{\text {quals with } r_{f}<Q} \\
& =\frac{-g_{s}^{3}}{16 \pi^{2}} \frac{\left[11-\frac{2}{3} N_{f}\right]}{\longrightarrow L O}+\mathscr{O}\left(\mathrm{s}_{s}^{5}\right)
\end{aligned}
$$

NDice thit for $N_{f}<16, \rho\left(g_{s}\right)<0$
$\Rightarrow g_{s}$ decreases as Q acreves. Thir is Gnom as Asp-ntic freedom

Conursdy, as Q decrases, Is ucrases, ad cuitall, pertarbation theny breaks down. This dadictes the lou-augy physics rist be conpited with ran-petwbilue tedniques. His is the corfimenen raion. Gluons ce estential for this, df. QED with deters and platas

$$
\frac{d e}{d l \alpha}=\frac{e^{3}}{16 \pi} \cdot \frac{4}{3}+O\left(e^{s}\right)>0
$$

Can urite is guva) for α_{s},

$$
\begin{gathered}
\frac{d \alpha_{s}}{d \ln Q^{2}}=-\alpha_{s}\left[\left(\frac{\alpha_{s}}{4 \pi}\right) \beta_{0}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \beta_{1}+\cdots\right] \\
\left\lfloor 11-2 N_{f / 3}\right.
\end{gathered}
$$

Solving the 1-loop equation, Le $x=1 / \alpha_{s}, L=h Q^{2}$

$$
\begin{gathered}
\Rightarrow \frac{d x}{d L}=-\frac{1}{\alpha_{s}^{2}} \frac{d \alpha_{s}}{d L}=\frac{\beta_{0}}{4 \pi} \Rightarrow x=\frac{\mu_{0}}{4 \pi} L+\cos \Gamma_{1} \\
\left.\Rightarrow \alpha_{s}\left(Q^{2}\right)=\frac{4 \pi}{\beta_{0}} \frac{1}{h\left(Q^{2} / \Lambda_{Q \infty}^{2}\right.}\right)
\end{gathered}
$$

This is the runing coupling.
$\Lambda_{G C D}$ is value f $Q 9$ whod $\alpha_{s}=1$. Curicher massless QD, with at, the dincasialess couplyy (1 paraneto). BSt, the ruming Atrednces a dimersionfal scale. Tis \geqq Unom a dirusional trusritation. In effet, 人acs sOs the scale for strang dituations involuing ligit gianks.

To staly Low-angy hadrus, we nead a non-poturstive technigue to access obscuables. Ther is cuotle ussure we need to decl with, and the is we 0 . nat obsure giades and gluons, sT abseve them wt as caffined wisich Ladeons.

Wht on the allowed quark \& gluan combhitions the ca give a valid hudian? We have seen froo the Quark Model

$$
\begin{aligned}
& q \bar{q}-\text { Mesons } \\
& 9 q q \text { - Thayons, } \bar{\varepsilon} \bar{q} \bar{q} \text { - A } \bar{\lambda}: \text { bargans }
\end{aligned}
$$

In $Q D$, we need calur suglt objcts nade fron q_{j}, \bar{q}_{j}, and $A_{j k}^{\mu}$ (Field opulaus)
■-colar indices I
Fw liadrus to exid, there mult be a colw sight operger to crele it fron the GCD vacum c.s.,

$$
\begin{aligned}
& \bar{q}_{j} r_{5} \varepsilon_{j}^{\prime} \text { for } J^{p c}=0^{-+} \text {herons } \\
& \epsilon_{j u l} q_{j} q_{h}^{\prime} q_{l}^{\prime \prime} \text { for borzors }
\end{aligned}
$$

3Э, also con have

- $G_{j u}^{m v} G_{v r i n j} \quad f_{r}$ scalor gluebull
$-\bar{q}_{j}\left[\gamma^{\mu}, \gamma^{\nu}\right] G_{-v, j h} q_{n}$ for qigy h,brid
- $\bar{q}_{j} \gamma^{r} \varepsilon_{j}^{\prime} \bar{\varepsilon}_{h}^{\prime \prime} \gamma_{r} \varepsilon_{L}^{\prime \prime \prime} \quad f-\quad$ titraqudb"
. $\epsilon_{j h l} q_{j} q_{h}^{\prime} q_{l}^{\prime \prime} \bar{q}_{n}^{\prime \prime} q_{r}^{\prime \prime \prime}$ fo "peतtagnal
... ay man (∞) maxe.

The problem is the there is no 1-7,-1 carespardence bOween operates and SJes in QFT. Oprutors with the sare quatum numbers can creste the sare IDte
e.s.,

$$
\begin{array}{ll}
O_{1}=\bar{u} r_{s} u+\bar{d} r_{s} d+\bar{s} r_{s} s & \text { lads like } \overline{\varepsilon \varepsilon} \\
O_{2}=\epsilon_{\mu \nu \rho \sigma} G_{j \omega}^{\beta \nu} G_{j \omega}^{\rho \sigma} & \text { loubs lim psenduscdu } \\
\text { glucboll }
\end{array}
$$

Beth c_{n} crate $\eta \& \eta^{\prime},\langle 0| 0_{1,2}\left|\eta^{(1)}\right\rangle \neq 0$
From a GFT pou, ashig whether y^{\prime} is a $\bar{\varepsilon} \varepsilon$ stte or a gluebcll is almos meaninghass.

Mareours, छोגes creaid b, a given operator can consio f miltiple hodrens, e.g:
$\left.\left.\bar{u} r_{5} d \bar{u} r_{5} d 10\right\rangle \sim 1 \pi^{+} \pi^{+}\right\rangle$
\Rightarrow Erituce f an aprater Does Nof unply exolduce f a new hadron.

How can ure access such conpicded son-peotublive ojeet from GCD? Lattice QCD is a nurvical techaigue to stechasticily compute the ran-petublive GCD path ettegra). Ca now cakalle light hadran rasses w/ $\leqslant 1 \%$ anceltaities and necotion a-plitude, auobing a couple f hadrans. This is the arly unom method for raling quanitalue predictions from OCD ch the low-erogy zgion.

To conple with LStire QQCD, we rote the adion $S_{Q C D}$ t Eldiden time, $t \rightarrow-i \tau_{\epsilon}$

$$
\Rightarrow e^{-i E t} \rightarrow e^{-E \tau_{\epsilon}}
$$

and discoite spacetine (ws spacing a) \& use a fuite size box $L^{3} \times T$

The QCD pith eltegral is formulded as

$$
Z_{G C D}=\int \mathcal{D}_{\varepsilon} D_{\bar{\xi}} \mathcal{D} \cup e^{-S_{G C D}^{(\varepsilon)}[\varepsilon, \bar{\xi}, 0]}
$$

\rightarrow Nagde our sll filld "cufig-Iions"
On a latice, this is millians oftegrals. We wse mote carb rethods to stachasically estirde cerrelaion fuscims. Fo exaple, to git proton nass, wat $\left\langle O_{p}\left(\tau_{\varepsilon}\right) O_{p}^{+}(0)\right\rangle$ wher $O_{\rho}<c \epsilon_{j, e} u_{j} u_{h} d_{l}$ crede pritan $=Z_{\rho} e^{-m_{\rho} T_{c}}+Z_{\rho} e^{-m_{\rho} \cdot T_{\varepsilon}}+\cdots$ at $\gamma_{E}=0$, and deste, 9 O δ_{8}.
$\tau_{\text {groad sole }}$

Deep Inclustic Scattering
IF QCD is s, complicated, how did we accent the theon as an explanetion for hadrons? Conside the high-enugy linit, $Q^{2} \rightarrow \infty$, the the compling is snall, al QCD exkibits asy-तोजेic frecelon. TVT is, at ligh-enogres gurks ad gloons "behave" as "Free" pawichs, befre they hadinize.

Thue are many tipes expeinits that show this, we will facus on a paticuler process called Deep inelasic scattring (DIS).

Cusider eletton scAtuing off a sitic classica) chage dotrissita,

The elecriotite potilu is

$$
\begin{aligned}
A^{n}(x) & =(\varphi(a \vec{x}), \overrightarrow{0}) \\
\vec{\nabla}^{2} \varphi & =-e z_{\rho}
\end{aligned}
$$

$$
\int d^{3} \vec{x} \rho(\vec{x})=1
$$

Fowin transforn, $\tilde{A}^{\mu}(q)$

$$
\begin{aligned}
& \tilde{A}^{0}(\varepsilon)=2 \pi \delta\left(\xi^{0}\right) \int d^{3} \vec{x} e^{i \vec{\varepsilon} \cdot \vec{x}} \varphi(\vec{x}) \\
&=2 \pi \delta\left(\varepsilon^{\prime}\right)\left(-\frac{1}{|\vec{q}|^{2}} \int d^{3} \vec{x} e^{i \vec{\varepsilon} \cdot \vec{x}} \vec{\nabla}^{2} \varphi(\vec{x} \mid)\right. \\
&=2 \pi \delta\left(\varepsilon^{\prime}\right)\left[\frac{e z}{|\vec{q}|} \int d^{3} \vec{x} e^{i \vec{q} \cdot \vec{x}} \rho(\vec{x})\right] \\
& \equiv F(\vec{q}) \quad \text { "farn }-f_{a t o} \\
& Q^{2}=-\varepsilon^{2}
\end{aligned}
$$

Scattuing ampituch is

$$
\begin{aligned}
i \mu=\lambda^{n^{\prime}} \neq u & =i e \bar{u}\left(h^{\prime}\right) \gamma^{\mu} u(n) \tilde{A}_{\mu}(q) \\
& =2 \pi i e \delta\left(E-E^{\prime}\right) \frac{z e}{|\vec{q}|^{2}} F(\vec{q})
\end{aligned}
$$

Se cross-scetion is

$$
\begin{array}{rlrl}
\frac{d \sigma}{d \Omega} & =\frac{Z \alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}|F(\vec{q})|^{2} & ;|\vec{q}|^{2}=2 E^{2}(1-\cos \theta) \\
& =4 E^{2} \sin ^{2} \frac{\theta}{2} \\
& =\frac{Z \alpha^{2}}{Q^{4}}|F(\vec{q})|^{2} &
\end{array}
$$

\longrightarrow can leann abor clange ditc: bป̃

W's Taplar expand the Fwor-facs,

$$
F(\vec{q})=\int d^{3} \vec{x}\left[1-i \vec{\varepsilon} \cdot \vec{x}-\frac{(\vec{\varepsilon} \cdot \vec{x})^{2}}{2}+O\left(\varepsilon^{3}\right)\right] \rho(\vec{x})
$$

\longrightarrow assure splevically syandtic

$$
\begin{aligned}
& =1-\frac{|\vec{\varepsilon}|^{2}}{6} \int d^{3} \vec{x}|\vec{x}|^{2} \rho(\vec{x})+O\left(\varepsilon^{4}\right) \\
& \left.\equiv 1-\left.\frac{|\vec{\varepsilon}|^{2}}{6}\langle | \vec{x}\right|^{2}\right\rangle+O\left(\varepsilon^{4}\right)
\end{aligned}
$$

\longrightarrow mean squad chorge radius

$$
\left.\left.\Rightarrow\left\langle r^{2}\right\rangle \equiv\langle | \vec{x}\right|^{2}\right\rangle=\left.6 \frac{d F}{d q^{2}}\right|_{q^{2}=0} \quad q^{2}=-|\vec{q}|^{2}
$$

For exaple, the proton is desuved to have (t, loned approxir $\Theta_{\text {i-2 }}$)

$$
\left.F(\vec{\varepsilon})=\frac{1}{\left(1-\frac{q^{2}}{\Lambda^{2}}\right.}\right)^{2} \Rightarrow \rho(\vec{x}) \propto e^{-\lambda|\vec{x}|}
$$

Wher $\Lambda \simeq 1 \mathrm{fn}^{-1} \simeq 1 \mathrm{GCV}$.
e.s.j pals putrde

In a realitic experimst, the protan recoils.
Carsider elastic $e^{-} p \rightarrow e^{-p}$ satteing, where the proton is a polv paitck. To leading arlun i α, we have

In the proton rest frume

Cross-setion is (exucise)

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin } \times \frac{\theta}{2} \frac{E^{\prime}}{E}\left(\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 m_{p}^{2}} \sin ^{2} \frac{\theta}{2}\right)
$$

lementics: $k=(E, 0,0, E)$
where $E \gg m e$

$$
\begin{aligned}
& G^{\prime}=\left(E^{\prime}, E_{s, 0}^{\prime} \theta, 0, E_{c \rightarrow 0}^{\prime} \theta\right) \\
& P=\left(m_{p,} 0,0,0\right)
\end{aligned}
$$

and $q^{2}=\left(h-h^{r}\right)^{2}=-2 E E^{r}(1-\cos \theta)=-Q^{2}$

For a realisic protion, we need to accomot for it bely a corposite porich. As in QED, cm parar Ouize a tors f Forr-fators,

$$
P^{r} Z_{p}^{\downarrow q}<P \Rightarrow \Gamma^{m}=F_{1}\left(\theta^{2}\right) \gamma^{m}+\frac{i \sigma^{m \nu}}{2 r_{p}} \varepsilon_{v} F_{2}\left(\theta^{2}\right)
$$

In $e-\mu$ scating $f Q E D, \quad F_{1}\left(Q_{1}{ }^{2}\right)-F_{1}\left(Q^{2}\right)$
Far ep scatterng, it is
obswed th,9

$$
\simeq-\frac{\alpha}{4 \pi} \log \left(\frac{Q_{1}^{2}}{Q_{2}^{2}}\right)
$$

- raltiv) y vill charge

$$
\left.F_{1}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\Lambda^{2}}\right.}\right)^{2}
$$

with $\Lambda^{2} \simeq 0.71 \mathrm{GeV}^{2}$
This cucludes non-potublive QCD effests.
Can slow, in protan nest frame

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{-}}{E}\left[\left(F_{1}^{2}+\frac{Q^{2}}{4 r_{p}^{2}} F_{2}^{2}\right) \cos ^{2} \frac{\theta}{2}\right. \\
&\left.+\frac{Q^{2}}{2 r_{p}^{2}}\left(F_{1}+F_{2}\right)^{2} \sin ^{2} \frac{\theta}{2}\right]
\end{aligned}
$$

Cavnient to elfine eletare and rygotre forn-faters

$$
\begin{aligned}
& G_{E} \equiv F_{1}-\tau F_{2} \\
& G_{M} \equiv F_{1}+F_{2}
\end{aligned}
$$

Sor,
Rounbll furak

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left[\frac{G_{\epsilon}^{2}+\tau G_{\mu}^{2}}{1+\tau} \cos ^{2} \frac{\theta}{2}+2 \tau G_{n}^{2} \sin ^{2} \frac{\theta}{2}\right]
$$

ExpuinIdly, far protan $G_{E}(0)=1, G_{m}(0)=2.79$
nention $G \in(0)=0, G_{\mu}(0)=-1.91$
Recell for point poside, Diruc showed

$$
g=2 G_{M}(0)=2\left(1+F_{2}(0)\right)=2(1+\theta(\alpha))
$$

For the proten $F_{2}(0)=G_{M}(0)-1=1.79 \neq O(\alpha)$
nution $F_{2}(0)=G_{n}(0)-1=\frac{-2.91 \neq O(\alpha)}{\downarrow}$
proten \& netion on 9 t elenotry furions!

At highe virtudalities $Q^{2} \gg m_{p}{ }^{2}$, then we con blow the praten apat on an inelastic collision $e^{-} p \rightarrow e^{-} x$
$\longrightarrow A$ buch f habrans

In ths process, we do 19 meascore x (incurive process).
Cuntarin of this as a Ligh-energy pita probing the struture of the protan.
Wis cletive a feu rare useful hinemaic variables,

$$
U=E-E^{r}=\frac{p \cdot q}{r p} \quad \text { cuops loss }
$$

Fu DIS, $Q^{2} \gg m_{p}^{2} \Rightarrow v \gg m_{p}$

$$
\mapsto \Rightarrow \lambda \ll \frac{1}{r_{p}}<r_{p}
$$

"pura probes intiond stentive
"Binkn x

$$
x=\frac{Q^{2}}{2 r_{p} \nu}=\frac{Q^{2}}{2 p \cdot \varepsilon}
$$

Since $P^{\prime 2}=M_{x}^{2} \geq m_{p}^{2}$

$$
\begin{aligned}
& =(\varepsilon+p)^{2} \\
& =-Q^{2}+2 \rho \cdot \varepsilon+m p^{2}
\end{aligned}
$$

S.,

$$
\begin{aligned}
x=\frac{Q^{2}}{Q^{2}+M_{x}^{2}-m_{p}^{2}} \quad & 0 \leqslant x \leq 1 \\
& x=0 \text { if } Q^{2}=0 \\
& x \text { if } M_{x}^{2}=m_{p}^{2}
\end{aligned}
$$

It is comuint t paranture DIs $l_{7} x \& Q^{2}$,
Anther usdul varidele,

$$
\begin{aligned}
y & =\frac{E-E^{\prime} \quad \text { celdive cuyy loss }}{E} \\
& =\frac{\nu}{E}=\frac{\rho \cdot \varepsilon}{\rho \cdot k}
\end{aligned}
$$

Can show TIS the cross-section for DIS 5 f the form

$$
\frac{d \sigma}{d \Omega d E^{\prime}}=\frac{\alpha^{2}}{4 \pi r_{p} Q^{*}} \frac{E^{\prime}}{E} L^{\mu \nu} \omega_{\mu}
$$

\rightarrow Mar d.o.f. slue $M_{x}>\mathrm{mp}_{\mathrm{p}}$
Where $L^{r^{\prime}}=\frac{1}{2} t r\left[\hbar^{\prime} r^{-k} \gamma^{\nu}\right]$ uston tusw
$\&$

$$
W^{m \nu}=F_{1}\left(-g^{\mu \nu}+\frac{\varepsilon^{\mu} q^{\nu}}{q^{2}}\right)+F_{2}\left(\rho^{\mu}-\frac{\rho \cdot q}{q^{2}} \varepsilon^{\mu}\right)\left(p^{\nu}-\frac{p \cdot \varepsilon}{\varepsilon^{2}} q^{\nu}\right)
$$

\rightarrow ward sditity effacel
Hadric tuas (paraniuize)
\& $F_{1,2}=F_{1,2}\left(x, Q^{2}\right)$ have ben measurad.
\rightarrow strutire findias (NO fun-fadors)
we find,

$$
\begin{aligned}
\frac{d \sigma}{d \Omega d E^{\prime}}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}\left[\frac{1}{V}\right. & F_{2}\left(x, Q^{2}\right) \cos ^{2} \frac{\theta}{2} \\
& \left.+\frac{2}{r_{p}} F_{1}\left(x, Q^{2}\right) \sin ^{2} \frac{\theta}{2}\right]
\end{aligned}
$$

It has been expeingally obsurad the

Resit looks approx. cuncol \Rightarrow
looks like sattury off pontrile cunditions.
usfal to reformulde cross-sedtion as

$$
\frac{d^{2}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{2}}\left[(1-y) \frac{\left.F_{2}\left(x, Q^{2}\right)+y^{2} F_{1}\left(x, Q^{2}\right)\right]}{x}\right]
$$

Can rasure sepuctily due to y-depaclence
Form y-depndece, $0 \leq y \leq 1$, find
cs $y \sim 0 \quad \Rightarrow \quad \frac{d^{2} s}{d x \partial Q^{2}} \propto \frac{F_{2}\left(x, a^{2}\right)}{x}$
cs $y \sim 1 \quad \Rightarrow \quad \frac{d^{2} \sigma}{d y d Q^{2}} \propto f,\left(x, a^{2}\right)$

Sore featwes of F^{\prime} s

- Far sufficiolly loge Q^{2} (deep probe)

$$
\begin{aligned}
& F_{1}\left(x, 0^{2}\right) \simeq F_{1}(x) \\
& F_{2}\left(x 0^{2}\right) \simeq F_{2}(x)
\end{aligned}
$$

Ce inlepulece!
Bjawken Scaling

- Fr suffidult 7 lage Q^{2}

$$
2 F_{1}(x)=\frac{F_{2}}{x}(x)
$$

This is the Callon-Gross ration

The Partan Model
Fron the d dite, $d^{2} v / d \times d Q^{2}$ looks litm a cosisedic for a paw paricle for large Q^{2}. Suce F_{1}, F_{2} ar G^{2} indepude for DIS, It sugseds ther the protur is rade up af polit-like consituns. Feynmm called these Patus. We now hase the these on consiting quan \& gluas is $Q C D$. The idea f DIS is illutrded as

\Rightarrow find susicuatur f patio de tars f pard like oficos

Dis consists f elastic scattering off individual
"puts", fallowed by "hidraitots".
Each paton carries a frotion if f the pitons nomism,

$$
P_{p a r}^{r}=\xi p^{r}
$$

Recall the $x=\frac{Q^{2}}{2 \rho \cdot \xi} \quad, 0 \leq x \leq 1$
for echoic scatterly, $M_{x}=m_{\rho} \Rightarrow x=1=\frac{Q^{2}}{2 \rho \cdot \xi}$
For a paton, $p_{\text {pasta }}=\{\rho$
ser x_{f} (fraction for pita) is

$$
x_{f}=\frac{G^{2}}{2 \rho_{\text {est }}-\varepsilon}=\frac{G^{2}}{2 \xi \rho \cdot \xi}=\frac{1}{\xi} x
$$

Bn, panas scatto elasicall, $\Rightarrow x_{f}=1$

$$
\Rightarrow \quad x_{f}=\frac{1}{3} x=1 \Rightarrow x=\frac{Q^{2}}{2 \rho \cdot \varepsilon}=?
$$

Se, is the padton rolel, B_{j} muin x is the paters roncturn frotice.

Can shou HTS $\quad \rightarrow G_{f}$ from $G_{f} e$ chiyge

$$
\left.\frac{d \sigma}{d G^{2}}\right|_{p a d n}=\frac{4 \pi \alpha^{2}}{Q^{4}} Q_{f}^{2}\left[(1-y)+\frac{y^{2}}{2}\right]
$$

For c siugle patan.
Thurcture, जिgotigy ouv all pann distribotions,

$$
\Rightarrow \frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1->)+\frac{y^{2}}{2}\right] \sum_{+} f(x) Q_{f}^{2}
$$

$f(x)$ is called a panton destribsian functon (PDF)

$$
f(x) d x=\text { \# } f \text { f-tupe quads in praton }
$$

with monatur frations
botven x and $x+d x$

$$
f(x)=\{u(x), d(x), s(x), \ldots, \bar{u}(x), \bar{d}(x), \bar{s}(x), \ldots\}
$$

Con also have gluan dyribution $g(x)$.

Corpare Pâton roclel with expuirctial dscudle,

$$
\begin{aligned}
\frac{d^{2}}{d x d Q^{2}} & =\frac{4 \pi \alpha^{2}}{Q^{2}}\left[(1-y) F_{2}\left(x, Q^{2}\right)+y^{2} F_{1}\left(x, Q^{2}\right)\right] \\
& =\frac{4 \pi \alpha^{2}}{Q^{2}}\left[(1-y)+\frac{y}{2}^{2}\right] 2 F_{1}\left(x, Q^{2}\right)
\end{aligned}
$$

\longrightarrow cssures Cullom-Gross
polo rodel,

$$
2 F_{1}=\frac{F_{2}}{x}
$$

$$
\frac{d^{2} \sigma}{d x d \Omega}=\frac{4 \pi \alpha^{2}}{Q^{2}}\left[(1-y)+\frac{y}{2}^{2}\right] \sum_{j} f(x) Q_{f}
$$

Find thed the Pan rodel predios

$$
2 F_{1}\left(x, Q^{2}\right)=\frac{F_{2}\left(x, Q^{2}\right)}{x}=\sum_{f} Q_{p}^{2} f(x)
$$

Callan-Gross
For protar,

$$
\frac{F_{2}}{x}=\frac{4}{9}[u(x)-\bar{u}(x)]+\frac{1}{9}[d(x)+\bar{d}(x)+s(x)+\bar{s}(x)]
$$

So, con measure cross-sedion for ep $\rightarrow e X$,
Con mensure then $F_{1}\left(x, Q^{2}\right) \& F_{2}\left(x, Q^{2}\right)$. sirilarly, can measue eD scctuing, t. infor neition Etruture fintions,

$$
F_{1,2}^{e D}=\frac{F_{1,2}^{e p}+F_{1,2}^{e n}}{2}
$$

For newtron, ushy iso spin smonetr, fid

$$
\begin{aligned}
f_{\frac{2}{x}}^{e n}= & \frac{4}{9}[d(x)+\bar{d}(x)]+\frac{1}{9}[u(x)+\bar{u}(x)+s(x)+\bar{s}(x)] \\
& \text { isupi : } u \leftrightarrow d, \bar{d} \leftrightarrow \bar{u}, \quad s \leftrightarrow s, \bar{s} \leftrightarrow \bar{s}
\end{aligned}
$$

If oue ignoes $s+\bar{s}$, cm we $f_{2}^{e p}$ ad $F_{2}^{e n}$ tegether to determine $u(x)+\bar{u}(x)$ \& $d(x)+\bar{d}(x)$.

To ostcin funther PDFs, cre uses (oini)-neverino DIs, results from $\rho^{(\prime} \rho^{\prime}$ soationg (es; Drell-in $\rho^{\prime} \mu^{\prime} \rightarrow \mu^{+} \mu^{-}+x$)

Find croughts) the folloning distribstions,

Here, "Valuce" PDF are $u_{v}(x) \equiv u(x)-\bar{u}(x)$

$$
d v(x)=d(x)-\bar{d}(x)
$$

Crudely, pestan is rade up $f u_{v}, u_{u}, d_{v}$ "valuce" quahs, with sea qualas if gluous

Note the sum rules (for protan)

$$
\int_{0}^{1} d x u_{v}(x)=2, \quad \int_{0}^{1} d x d v(x)=1, \int_{0}^{1} d x s_{v}(x)=0
$$

\& momethr sur rak

$$
\begin{aligned}
& \sum_{j} \int_{0}^{1} d x \times f_{j}(x)=1 \\
& \longrightarrow \text { sum our padous }
\end{aligned}
$$

Fid RT

$$
\begin{aligned}
& \int_{0}^{1} d x\left(u_{v}+d_{v}\right) x d x=0.38 \\
& \int_{0}^{1} d x g(x) x=0.5
\end{aligned}
$$

rest de sea guack
\Rightarrow Most nonation in gluas!

CT14 NNLO

Chiral Symmetry Breaking in QCD
In the Panto nobel, we find the glans cateibetic a significant frotion to the momentum diteistion f the proton. In geneva, we have "obscured that the light quark hus is very small,

$$
m_{n} \simeq 2.2 \mathrm{meV}, m_{d} \simeq 4.7 \mathrm{mcV}, m_{5} \simeq 95 \mathrm{mav}
$$

Compare this to $m_{p} \simeq 940 \mathrm{meV} \gg 2 m_{n}+m_{d}$. One Can show with Lattice OCD the the Nuder mars goes like

$$
m_{N} \simeq m_{N}^{(0)}+C_{1} m_{\pi}
$$

$L \rightarrow$ depends on $m_{l=u, d}$
$z_{\text {vo }}$ quark was

$$
m_{N}^{(0)}=800 \mathrm{maV}
$$

The pin nos is known to behove like

$$
\begin{aligned}
m_{\pi}^{2} \propto & m_{l} \\
& \longmapsto \text { so, is } m_{l} \rightarrow 0, m_{\pi} \rightarrow 0 \\
& \text { why is the } \pi \text { secs)? }
\end{aligned}
$$

The pin, as well as the lean e O Or, ploy a special role in $Q C D$ dynamics.

Consider $G C D$ of ant light \& Stegge qualas, $N_{f}=3$. Here, $m_{n}, m_{d}, m_{s}<\Lambda_{Q D D}$. So, puhops we treat the quark r ans as a porturdine curredion.
Massless $G D$ is

$$
\mathcal{L}=\frac{i}{2} \sum_{f} \bar{\psi}_{f} \nabla \psi_{f}-\frac{1}{2}+r\left[G_{\mu \nu} G^{\mu \nu}\right]
$$

There is now a local $S U(3)_{c}$ gange synnty, and a global chival spmer, $O(3)_{R, L}$.

$$
\begin{aligned}
\mathcal{L}=\frac{i}{2} \sum_{i} & \Psi_{f, L} \boxtimes \psi_{f L L}+\frac{i}{2} \sum_{f} \bar{\psi}_{f, R} \boxtimes \psi_{f, R} \\
& -\frac{1}{2} \operatorname{tr}\left[G_{\mu \nu} G^{m v}\right]
\end{aligned}
$$

Marsless furrias consuve hasicity, and Necdion with gluans cassorve helicity.

$$
\psi_{f, R} \rightarrow R \psi_{f, R}, \psi_{f, L} \rightarrow L \psi_{f, L}
$$

with $L, R \in U(3)_{L, R}$

Can rewrite thas globel syandiy as

$$
U(3)_{L} \times U(3)_{R}=S U(3)_{L} \times S U(3)_{R} \times U(1)_{V} \times U(1)_{1}
$$

Whoh has 18 jucuiors

$$
\begin{aligned}
& V_{\mu}^{a}=R_{\mu}^{a}+L_{\mu}^{a}=\Psi_{f} \gamma_{\mu} \frac{\lambda^{a}}{2} \psi_{f} \\
& A_{\mu}^{a}=R_{\mu}^{a}-L_{\mu}^{a}=\bar{\Psi}_{f} \gamma_{\mu} \gamma_{s} \frac{\lambda^{a}}{2} \psi_{f} \\
& V_{\mu}^{0}=R_{r}^{0}+L_{r}^{0}=\Psi_{f} \gamma_{\mu} \psi_{f} \rightarrow \text { Burgen aumbe } \\
& A_{\mu}^{0}=R_{\mu}^{0}-L_{\mu}^{0}=\bar{\psi}_{f} \gamma_{\mu} \gamma_{s} \psi_{f} \rightarrow \text { brohen by Anomal }
\end{aligned}
$$

Carsuved changes $Q=\int d^{3} \vec{x} J^{0}(x)$ comore with H $[H, Q]=0$

$$
\longrightarrow \text { c.j. protion }
$$

Sor \quad होte $\left|\psi_{p}\right\rangle, H\left|\psi_{p}\right\rangle=E_{p}\left|\psi_{p}\right\rangle$

$$
\begin{aligned}
\Rightarrow H e^{i Q}\left|\psi_{\rho}\right\rangle & =e^{i Q} H\left(\psi_{\rho}\right\rangle \\
& =E_{\rho}\left(e^{i Q}\left|\psi_{\rho}\right\rangle\right)
\end{aligned}
$$

Another gle f sume mars \Rightarrow deguerde mitifoss

However, there is a problem with coined guava $e^{i Q_{s}^{n}}\left|\psi_{p}\right\rangle$ is a ster f opposite pail? writ $\left|\psi_{p}\right\rangle$
bit, absolve $J^{D}=\frac{1}{2}^{+} m_{p} \simeq 938 \mathrm{rec}$
and $J^{p}=\frac{1}{2}^{-} \quad r_{N(1535)}^{\simeq} 1535 \mathrm{M}_{2} V$
ie, there is no parity doubling obsuvad in the hade spetinn

To resolve this issue, we rove the we have implictl? assured that the ground Ette/vacuum os moaned cuber the symonif \Rightarrow This seed not be true

We shall soon kean n details about symedey breaking rechmisns. Far QCD, we will fud the it has dynawcally broken chiral symery breaking.

Thus reams th et the quark conclensfe, $\langle 01 \bar{q}\{10\rangle \neq 0$ under $S U(3)_{L} \times S U(3)_{R}$. So, a mass torn is induced by ator.Jims, and

$$
\begin{aligned}
& S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{V} \\
& \uparrow \\
& \text { Doles Sy-anry }
\end{aligned}
$$

Sire Conseculuces for $Q Q$

- The remaing su(3)v is the flavar symory
- we will sae the there are 8 massless panicles cssocioled with this breaking (Golditme rodes) Howeves, ChNal syantif int exad since gual, have muss \Rightarrow can sill iblentify the lis θ_{2} I psendo scalons as thare in the speotion dae to the beoken coxin gurators

$$
\pi^{ \pm}, \pi^{0}, K^{ \pm}, \kappa^{-10}, \eta
$$

Chird Effetive Theary
Chirat dynanics is investey, and un would like to lewn mare. To do so , we cinstrut on cffedive theny for OCD where the syminties are those f QCD, bT the degees f freden are the light pseudo scalus. The reswiting effecine theary is valid for low erugies, and can be syDenstically expanded on a petaustion theary dn $O\left(\rho^{2}\right)$

Lİ's yp through a ourorew for SU(2) flauer (isosp.L).

1. cugrent a comson fodd for the $\pi^{ \pm}, \pi^{\circ}$

$$
\begin{aligned}
U=\exp \binom{i \varphi}{\uparrow}, \varphi & =\varphi_{j} \sigma_{j} \\
\uparrow & =\sqrt{2}\left(\begin{array}{cc}
\pi^{0} / \sqrt{2} & \pi^{+} \\
\pi^{-} & -\pi^{0} / \sqrt{2}
\end{array}\right)
\end{aligned}
$$

Drasinfol concer
2. Specify tronsannstion cuble chiral simp

$$
\cup \rightarrow L \cup R^{+}
$$

3. Cancrit gaval \mathcal{L} invanid inder $u \rightarrow L \cup R^{+}$
4. argmize according to number forivitus $\left(\partial_{\mu} \leftrightarrow \rho_{\mu}\right)$

$$
Z=Z^{(0)}+Z^{(2)}+Z^{(y)}+\cdots
$$

- Far $\mathcal{L}^{(0)}$, fuld $\operatorname{trs}^{\left(0 U^{+}\right] \underset{u \rightarrow L U R^{+}}{\longrightarrow} t r\left[U U^{+}\right]}$
bS, $U U^{+}=\mathbb{1} \Rightarrow \mathbb{Z}^{(0)}$ is irrekual cmDt
- For $\mathbb{Z}^{(7)}$, find

$$
Z^{(2)}=\frac{F^{2}}{4} \operatorname{tr}\left(\partial_{\mu} v \partial^{m} v^{+}\right)
$$

if $U=\exp \left(\frac{i \varphi}{F}\right)=1+i \frac{\varphi}{F}-\frac{\varphi^{2}}{2 F^{2}}+\cdots$
thu,

$$
\begin{aligned}
\mathcal{L}^{(2)} & =\frac{1}{2} \partial_{\mu} \varphi_{j} \partial^{\mu} \varphi_{j}+\cdots \\
& =\frac{1}{2} \partial_{\mu} \pi^{0} \partial^{\mu} \pi^{0}+\partial_{\mu} \pi^{+} \partial^{\mu} \pi^{-}+\cdots
\end{aligned}
$$

WhJ is f ? Cansider veger and Ariad vetan connew

$$
\begin{aligned}
V_{j}^{m} & =-i \frac{F^{2}}{4} \operatorname{tr}\left(\sigma_{j}\left[\partial^{m} u, u^{+}\right]\right) \\
A_{j}^{n} & =i \frac{F^{2}}{4} \operatorname{tr}\left(\sigma_{j}\left\{\partial^{n} u, u^{+}\right\}\right) \\
\Rightarrow \quad A_{j}^{n} & =-F \partial^{m} \varphi_{j}+O\left(\varphi^{3}\right)
\end{aligned}
$$

Tale $\langle o| A_{j}^{\mu}\left|\varphi_{k}(p)\right\rangle=i p^{r} \delta_{j k} F$

So, F is pion deca casdor, masural be $\bar{\pi}^{-} \rightarrow \boldsymbol{f}^{-} v_{r}$

$$
\Rightarrow F_{\pi} \simeq 92.2 \mathrm{maV}
$$

Can alse duclude expicit mass breaking tun

$$
\begin{aligned}
& \mathcal{L}^{(\gamma)}=\frac{F^{2}}{4} \operatorname{tr}\left(\partial, v \partial^{-} U^{+}\right)+\frac{F^{2} B}{2} \operatorname{tr}\left(\mu v^{+}+\mu^{+} U\right) \\
& \text { Whore } \mu=\left(\begin{array}{cc}
m_{n} & 0 \\
0 & n_{d}
\end{array}\right) \\
& \Rightarrow \text { relizel to }\langle 0| \bar{q}|0\rangle
\end{aligned}
$$

Chiral Effitive thacy is linited, 59 cm pruduce sore usful disig日, e.g; mass idtos f psaceloscders, $\pi \pi$-sclAving, ...

Carsider $\pi \pi \rightarrow \pi \bar{\pi}$ scaltuing,

$$
\begin{gathered}
\mu\left(\pi^{j} \pi^{h} \rightarrow \pi^{l} \pi^{n}\right)=A(s, t, u) \delta_{j u} \delta_{l n}+A(t, u, s) \delta_{j l} \delta_{u n} \\
\\
+A(u, s, t) \delta_{j n} \delta_{u l}
\end{gathered}
$$

Find from $\boldsymbol{\chi}^{(2)}, \quad A(s, t, n)=\frac{s-m_{\pi}{ }^{2}}{F_{\bar{\pi}}} \quad$ pranste trac!

In tors f definte isospin amplitudes,

$$
\begin{aligned}
& \mu^{I=0}=3 A(s, t, u)+A(t, u, s)+A(u, s, t) \\
& \mu^{I=1}=A(t, u, s)-A(u, s, t) \\
& \mu^{I=2}=A(t, u, s)+A(u, s, t)
\end{aligned}
$$

The S-ware scattoing leagths are

$$
a_{0}^{I}=\frac{1}{32 \pi} M^{I}\left(s=4 m_{\pi}^{2}, t=0\right)
$$

Cरले.

$$
\begin{array}{rll}
\Rightarrow \quad a_{0}^{0} & =0.16 \mathrm{n}_{\pi}^{-1} & a_{0}^{0} \simeq 0.26(5) \mathrm{m}_{\pi}^{-1} \\
a_{0}^{2} \simeq-0.045 \mathrm{~m}_{\pi}^{-1} & a_{0}^{2} \simeq-0.028(12) \mathrm{m}_{\pi}^{-1}
\end{array}
$$

