Phenomenoloyy III - Elactrowech invacions
Lot us explare sorve low-enogs pheromalogy from the electrowede theory of legins. Far exurgte, conscler μ decay, $\mu \rightarrow \rightarrow e^{-} \bar{v}_{e} \nu_{\mu}$. At Leading ander in "g", the arpjitucle os

$$
i M=\bar{u}_{e}\left(-i g \frac{g}{\sqrt{2}} \gamma_{\mu} P_{L}\right) v_{v_{e}}\left(\frac{-i}{\varepsilon^{2}-m_{\omega}^{2}}\left(g^{n}-\frac{\varepsilon^{\prime} \varepsilon^{v}}{r_{\omega}}\right)\right) \bar{u}_{v}\left(-i_{s}^{\delta_{2}} \gamma_{\nu} P_{L}\right) u_{\mu}
$$

The whon mass $m_{\mu}<m_{w}$, so $\mathscr{O}^{\text {us contiot a }}$ effective जoration b_{y} taking $\varepsilon^{2} \ll m_{\omega^{2}}$

Sor

$$
\frac{1}{\varepsilon^{2}-m_{\omega}^{2}}=-\frac{1}{m_{\omega}^{2}}\left(\frac{1}{1-\varepsilon^{2} / m_{\omega}^{2}}\right)=-\frac{1}{m_{\omega^{2}}}+O\left(\frac{\varepsilon^{2}}{m_{\omega}^{4}}\right)
$$

$$
\Rightarrow i M=-\frac{i g^{2}}{8 m_{\omega}}{ }^{2} \bar{u}_{e} \gamma_{-}\left(1-r_{5}\right) v_{v_{c}} \bar{u}_{\nu_{\mu}} \gamma^{\mu}\left(1-\gamma_{5}\right) u_{\mu}+O\left(\frac{\varepsilon^{2}}{r_{\omega^{\gamma}}}\right)
$$

Define Ferni decay consan GF, $\quad \rightarrow$ deturned from $\tau_{\mu-}$

$$
\frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 m_{\omega}^{2}} \simeq \frac{1}{\sqrt{2}}\left(1.166 \times 10^{-5} \mathrm{GeV}^{-2}\right)
$$

This ftedive wirdion is known is the fow-Fori; isordion, which was histancaly devejaped firt to describe newtron β-decas.

We wait t. corpte the decy tate in the than त्को frane,

$$
d \Gamma=\frac{1}{2 m_{\mu}}\left\langle\left(\left.M\right|^{2}\right\rangle(2 \pi)^{4} \delta^{(r)}\left(p-p^{\prime}-c^{r}-n\right) \frac{d^{3} \vec{L}}{(2 \pi)^{3} 2 E_{e}} \frac{d^{3} \vec{L}^{r}}{(2 \pi)^{3} 2 E_{j_{e}}} \frac{d^{3} \vec{p}^{r}}{(2 \pi)^{3} 2 E_{v_{-}}}\right.
$$

Fiest, θ us compte $\left.\left.\langle | m\right|^{2}\right\rangle$

$$
\left.\left.\Rightarrow\langle | \mu\right|^{2}\right\rangle=\frac{1}{2} \sum_{s} \sum_{s_{s=i=-}}|\mu|^{2}
$$

Non,

$$
\begin{aligned}
& |\mu|^{2}=\mu^{+} \mu \\
& \longrightarrow \Gamma^{\alpha}=r^{\alpha}\left(1-r_{\sigma}\right) \\
& =\frac{G_{e}^{2}}{2}\left(\bar{v}_{v_{e}} \Gamma^{\alpha} u_{e}\right)\left(\bar{u}_{\mu} \Gamma_{\alpha} u_{v_{-}}\right)\left(\bar{u}_{c} \Gamma_{\rho} v_{v_{e}}\right)\left(\bar{u}_{v_{r}} \Gamma^{\mu} u_{r}\right) \\
& =\frac{G_{p}^{2}}{2} t_{1}\left[\bar{v}_{v_{e}} \Gamma^{\alpha} u_{e} \bar{u}_{e} \Gamma_{\beta} v_{v_{e}}\right] t_{r}\left[\bar{u}_{\mu} \Gamma_{\alpha} u_{\nu} \bar{u}_{v_{-}} \Gamma^{\Gamma} u_{\rho}\right] \\
& \left.\left.\Rightarrow\langle | \mu\right|^{2}\right\rangle=\frac{G_{F}^{2}}{4} t_{1}\left(\hbar^{\prime} \Gamma^{\alpha}\left(\hbar+m_{e}\right) \Gamma_{\mu}\right) t_{1}\left(\left(p+m_{\mu}\right) \Gamma_{\alpha} p^{\prime} \Gamma^{ल}\right)
\end{aligned}
$$

Evaluating the traces, cig., with Mgtematica, we find the following,

$$
\begin{aligned}
& t\left(\hbar^{\prime} \Gamma^{\alpha}\left(t+m_{e}\right) \Gamma_{\beta}\right) \\
& =8\left(k^{\beta} h^{\prime \alpha}+k^{\alpha} h^{\prime \beta}-\left(u \cdot h^{\prime}\right) g^{\alpha \beta}+i \epsilon^{\alpha \beta \Gamma^{\nu}} k_{-} h_{\nu}^{\prime}\right) \\
& t_{1}\left(\left(p+m_{\mu}\right) \Gamma_{\alpha} p^{\prime} \Gamma^{\Gamma}\right) \\
& =8\left(\rho^{\rho} \rho^{\prime \alpha}+\rho^{\alpha} \rho^{\prime \beta}-\left(p \cdot \rho^{\prime}\right) g^{\alpha \beta}-i \epsilon^{\alpha \beta \mu^{\nu}} p_{\mu} p_{\nu}^{\prime}\right.
\end{aligned}
$$

ceatrothy these clemens, and using the arisyandty properties of $\epsilon^{\sim v \rho o}$, we finch,

$$
\left\langle\mid \mu \|^{2}\right\rangle=64 G_{F}^{2}\left(\rho \cdot h^{\prime}\right)\left(h \cdot \rho^{\prime}\right)
$$

Thus, the decay rate is

$$
\begin{aligned}
& \left.\Gamma=\left.\frac{1}{2 m_{\mu}} \int \frac{d^{3} \vec{h}_{b}}{(2 \pi)^{2} 2 E_{e}} \quad \frac{d^{3} \vec{h}^{r}}{(2 \pi)^{3} 2 E_{v_{e}}} \frac{d^{3} \vec{p}^{r}}{(2 \pi)^{2}} 2 E_{\nu_{-}}(2 \pi)^{4} \delta^{(n)}\left(p-p^{r}-L^{r}-n\right)\langle | M\right|^{2}\right\rangle \\
& =\frac{64 G_{F}^{2} \cdot(2 \pi)^{4}}{2^{4}(2 \pi)^{9} m_{\mu}} \int \frac{d^{3} \vec{h} d^{3} \vec{h}^{\prime} d^{3} \vec{p}^{\prime}}{G_{e} E_{\tilde{v}_{e}} E_{v_{r}}} \delta^{(r)}\left(\rho-\rho^{\prime}-L^{\prime}-L\right)\left(\rho \cdot u^{\prime}\right)\left(u \cdot \rho^{\prime}\right) \\
& =\frac{G_{F}^{2}}{8 \pi^{5} m_{\mu}} \int \frac{d^{3} \vec{L}}{E_{e}} \int \frac{d^{3} \vec{L}^{r} d^{3} \vec{p}^{\prime}}{\mid \overrightarrow{F^{\prime}| | \vec{p}^{\prime} \mid}} \delta^{(-1)}\left(p-k-p^{\prime}-L^{\prime}\right)\left(p-L^{\prime}\right)\left(h \cdot p^{\prime}\right) \\
& \uparrow E_{\bar{u}_{e}}=\left|\vec{h}^{\prime}\right|, E_{v_{y}}=\left|\vec{p}^{\prime}\right| \text { since } m_{v}=0
\end{aligned}
$$

LI's focus on the $\bar{\nu}_{e}-\nu_{\mu}$ sabsysten.
$19 Q_{2}=p-k$, and define

$$
I_{\mu \nu}(Q) \equiv \int \frac{d^{3} \vec{u}^{r} d^{3} \vec{p}^{\prime}}{\left|\overrightarrow{\left.\right|^{\prime}| | \vec{p}} \vec{p}^{\prime}\right|} \delta^{(1)}\left(Q-u^{\prime}-\rho^{\prime}\right) \quad u_{\mu}^{\prime} p_{\nu}^{\prime}
$$

From Lorntz covainace,

$$
I_{\mu \nu}(Q)=A\left(G^{2}\right) Q_{\mu} Q_{\nu}+B\left(Q^{2}\right) g_{\mu \nu} Q^{2}
$$

Real scalus -
So,

$$
g^{\mu \sim} I_{\sim v}=(A+4 B) Q^{2}
$$

and $\quad g^{\mu v} I_{\Delta v}=\int \frac{d^{3} \vec{u}^{r} d^{3} \vec{p}^{\prime}}{\left|\vec{k}^{\prime}\right|\left|\vec{p}^{\prime}\right|} \delta^{(1)}\left(Q-u^{\prime}-p^{\prime}\right) u^{r} \cdot p^{\prime}$
Ba, $\left(u^{\prime}+p^{\prime}\right)^{2}=u^{\prime 2}+p^{\prime 2}+2 u^{\prime} \cdot p^{\prime}=2 u^{\prime} \cdot p^{\prime}$
Masshoss nevtion
alse from ronètum consuuclion

$$
p-L=p^{r}+h^{r}=Q
$$

So,

$$
\begin{aligned}
& \Rightarrow \quad k^{\prime} \cdot p^{\prime}=\frac{1}{2} Q^{2} \\
& \Rightarrow \quad A+4 B=\frac{I}{2}=\frac{1}{2} \int \frac{d^{3} \vec{h}^{\prime} d^{3} \vec{p}^{\prime}}{\left|\vec{k}^{\prime}\right|\left|\vec{p}^{\prime}\right|} \delta^{(+1)}\left(Q-u^{\prime}-p^{\prime}\right)
\end{aligned}
$$

Consider instead,

$$
\begin{aligned}
Q^{\mu} Q^{\nu} I_{\mu \nu} & =(A+B) Q^{4} \\
& =\int \frac{d^{3} \vec{h}^{\prime} d^{3} \vec{p}^{\prime}}{\left|\vec{p}^{\prime}\right|\left|\dot{p}^{\prime}\right|} \delta^{(-1)}\left(Q-u^{\prime}-\rho^{\prime}\right)\left(h^{\prime} \cdot Q\right)\left(p^{\prime} \cdot Q\right)
\end{aligned}
$$

Ban,

$$
\begin{array}{ll}
& Q=p-h=p^{\prime}+h^{\prime} \\
\Rightarrow & h^{\prime} \cdot Q=h^{\prime} \cdot p^{\prime} \quad \text { since } h^{\prime 2}=0 \\
& p^{\prime} \cdot Q=h^{\prime} \cdot \rho^{\prime} \quad \text { since } p^{\prime 2}=0
\end{array}
$$

and $\left(u^{\prime} \cdot p^{\prime}\right)^{2}=\frac{1}{4} G^{4}$

$$
\begin{aligned}
& \Rightarrow \quad A+B=\frac{I}{4} \\
& \left.\Rightarrow \quad \begin{array}{l}
A+4 B=\frac{1}{2} I \\
A+B=\frac{1}{4} I
\end{array}\right\} \Rightarrow \begin{array}{l}
A=\frac{1}{6} I \\
B=\frac{1}{12} I
\end{array}
\end{aligned}
$$

se, computing I

$$
\begin{aligned}
I & =\int \frac{d^{3} \vec{h}^{\prime} d^{3} \vec{p}^{\prime}}{\left|\overrightarrow{L^{\prime}}\right|\left|\vec{p}^{\prime}\right|} \delta^{(-1)}\left(Q-\vec{h}^{\prime}-\rho^{\prime}\right) \\
& =\int \frac{d^{3} \vec{h}^{\prime}}{\left|\vec{h}^{\prime}\right|} \frac{d^{3} \vec{p}^{\prime}}{\left|\vec{p}^{\prime}\right|} \delta\left(Q^{0}-\left|\vec{h}^{\prime}\right|-\left|\vec{p}^{\prime}\right|\right) \delta^{(3)}\left(\vec{Q}-\vec{h}^{\prime}-\vec{p}^{\prime}\right) \\
& =\int \frac{d^{3} \vec{h}^{\prime}}{\left|\overrightarrow{\vec{h}}^{\prime}\right|^{2}} \delta\left(Q^{-}-2\left|\vec{h}^{\prime}\right|\right) \quad \quad \rightarrow \text { choose frame }
\end{aligned}
$$

So,

$$
\longrightarrow Q^{*}=\sqrt{Q^{2}}
$$

$$
\begin{aligned}
I & =\int \frac{d^{3} \vec{L}^{\prime}}{\left|\vec{h}^{\prime}\right|^{2}} \delta\left(Q^{-}-2\left|\vec{h}^{\prime}\right|\right) \\
& =4 \pi \int_{0}^{\infty} d\left|\vec{h}^{\prime}\right| \delta\left(Q^{-}-2\left|\vec{h}^{\prime}\right|\right) \\
& =2 \pi \int_{0}^{\infty} d\left|\vec{h}^{\prime}\right| \delta\left(\left|\vec{h}^{\prime}\right|-Q^{\prime} / 2\right) \\
& =2 \pi
\end{aligned}
$$

Ser

$$
\begin{aligned}
I_{\mu \nu} & =\frac{2 \pi}{6} Q_{\mu} Q_{\nu}+\frac{2 \pi}{12} Q^{2} g_{\mu \nu} \\
& =\frac{\pi}{6}\left(2 Q_{\mu} Q_{\nu}+Q^{2} g_{\mu \nu}\right), \quad Q_{\mu}=P_{\mu}-u_{\mu}
\end{aligned}
$$

The Decoy rite is then,

$$
\begin{aligned}
\Gamma & =\frac{G_{F}^{2}}{8 \pi^{5} m_{\mu}} \int \frac{d^{3} \vec{h}}{E_{e}} \int \frac{d^{3} \vec{h}^{r} d^{3} \vec{\rho}^{\prime}}{\left|\bar{h}^{\prime}\right|\left|\vec{p}^{\prime}\right|} \delta^{(-1)}\left(p-h-\rho^{\prime}-h^{\prime}\right)\left(\rho-h^{\prime}\right)\left(h \cdot p^{\prime}\right) \\
& =\frac{G_{E}^{2}}{8 \pi^{5} m_{p}} \int \frac{d^{3} \vec{L}}{E_{e}} I_{\mu v} \rho^{m} h^{v} \\
& =\frac{G_{F}^{2}}{48 \pi^{4} m_{\mu}} \int \frac{d^{3} \vec{h}}{E_{e}}\left(2(\rho-h) \cdot \rho(p-h) \cdot h+(p-h)^{2} p \cdot h\right)
\end{aligned}
$$

In the rest frame $f \mu, p^{2}=n_{c}^{2}, h^{2}=m_{e}^{2}$

$$
p \cdot h=E_{\mu} E_{e}=m_{\mu} E_{e}
$$

Now, $\frac{m_{e}}{m_{p}} \simeq 0.0048 \ll 1$
\Rightarrow Assume $m_{e}=0 \Rightarrow E_{e}=|\vec{h}|$
therefore,

$$
\begin{aligned}
\Gamma & =\frac{G_{P}^{2}}{48 \pi^{4} r_{\mu}} \int d^{3} \vec{h} \\
& =\frac{G_{f}^{2} m_{\mu}}{48 \pi^{4}} \int d^{3} \vec{h}\left(3 r_{\mu}^{3} E_{e}-4\left(m_{\mu} E_{e}\right)^{2}\right) \\
& =\frac{G_{f}^{2} m_{r}}{48 \pi_{4}^{4}} \cdot 4 \pi \int d E_{e} E_{e}^{2}\left(3 r_{\mu}-4 E_{e}\right)
\end{aligned}
$$

What ae the bounds for Ec?
Minimum is uhlan $E_{\text {rit }}=0$ (election at "reg")
Maximum is when \bar{v}_{c}, v_{μ} are collinen, opposite e^{-}.
So, $E_{\text {ing }}$ comarisin $\Rightarrow E_{c}+E_{\overline{v_{e}}}+E_{\nu_{-}}=m_{n}$ Monde consarion $\Rightarrow E_{e}-\left(E_{\bar{v}_{e}}+E_{v_{\mu}}\right)=0$

Sa, $E_{r_{a x}}=\frac{m_{m}}{2}$

$$
\Rightarrow \Gamma=\frac{G_{p}^{2} m_{r}}{12 \pi^{3}} \int_{0}^{m_{m} / 2} d E_{e} E_{c}^{2}\left(3 m_{r}-4 E_{c}\right)=\frac{G_{p}^{2} m_{m}^{5}}{192 \pi^{3}}
$$

The $\mu \rightarrow e^{-} \bar{v}_{i} v_{r}$ is the dorinnot deccy mode, $B R \sim 100 \%$. Si, ue can measue the lifetire,

$$
\tau_{\mu}=2.1870 \times 10^{-6} \mathrm{~s}
$$

and deduce th9 $G_{F}=1.164 \times 10^{-5} \mathrm{GeV}^{2}$
we find the $\tau \rightarrow e \bar{v}_{e} v_{\tau}$ is courtev with ths $G_{F} \Rightarrow$ lepton mivasality
Z-Tosen Phenorendy?
The z-basem is mistable, and thas we cangt dety it diretty. Howern, we cm lean asot it as

unstable paiticles have a decay width, and thas are poles in the corplex causy plane.

Cassiden the Dysen sures for the Z-bosen propgrat $\stackrel{q}{2}$

Dessed $\downarrow=\ldots \quad b$ quitu- connetions $i \pi\left(\varepsilon^{2}\right)$ propugtar

$$
\begin{aligned}
& =\frac{1}{\varepsilon^{2}-m_{z}^{2}+\pi\left(q^{2}\right)}\left(-g^{\mu v}+\frac{\varepsilon^{r} q^{\nu}}{m_{z}^{2}}\right) \\
& \mapsto \text { parmis, } z \text {-bom russ! } \\
& \equiv D\left(q^{2}\right)\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{m_{z}^{2}}\right)
\end{aligned}
$$

The plysical z-bason mass is the real part f the pale f the propagator. LI m_{z}^{R} be the pharical resenct pale mass, \& Γ_{z}^{R} the physical decay widts.
(J's expand $\operatorname{Re} \Pi\left(\varepsilon^{2}\right)$ aso $\theta \quad \varepsilon^{2}=m_{z}^{e^{2}}$

$$
\operatorname{Re} \pi\left(\varepsilon^{2}\right)=R_{c} \pi\left(m_{z}^{e^{2}}\right)+\left.\frac{d R_{c} \pi}{d \varepsilon^{2}}\right|_{\varepsilon^{\frac{1}{2}=n_{z}^{2}}}\left(\varepsilon^{2}-m_{z}^{2^{2}}\right)+\cdots
$$

5%

$$
\begin{aligned}
D\left(\varepsilon^{2}\right) & =\frac{1}{\varepsilon^{2}-r_{z}^{2}+\operatorname{Re} \pi\left(\varepsilon^{2}\right)+i I_{-} \pi\left(\varepsilon^{2}\right)} \\
& =\frac{1}{\varepsilon^{2}-r_{z}^{2}+\operatorname{Rc}_{c} \pi\left(r_{z}^{2}\right)+\left(\varepsilon^{2}-r_{z}^{n 2}\right) \operatorname{Rc} \pi^{\prime}\left(r_{z}^{2}\right)+i I_{r} \pi\left(\varepsilon^{2}\right)}
\end{aligned}
$$

the denor)ater is

$$
\begin{aligned}
& \varepsilon^{2}-\underbrace{m_{c}^{2} \pi\left(\varepsilon^{2}-r_{z}^{0^{2}}\right) R c \pi^{\prime}\left(r_{z}^{e^{2}}\right)+\cdots+i I_{r} \pi\left(\varepsilon^{2}\right)}_{z_{z}^{R^{2}}=m_{z}^{2} \pi\left(m_{z}^{2}\right)} \\
& =\left(\varepsilon^{2}-m_{z}^{R^{2}}\right) \frac{\left[1+R_{c} \pi^{\prime}\left(m_{z}^{2^{2}}\right)+\cdots\right]}{h \equiv z^{-1}}+i I_{n} \pi\left(\varepsilon^{2}\right)
\end{aligned}
$$

SO

$$
i D\left(\varepsilon^{2}\right)=\frac{z}{\varepsilon^{2}-m_{\varepsilon}^{R^{2}}+i Z I_{n} \pi\left(\varepsilon^{2}\right)}
$$

Far Esble paicles, $\operatorname{In} \Pi_{\left(\varepsilon^{2}\right)}=0 \Rightarrow \varepsilon^{2}=m_{z}^{R^{2}}$ pole!
BD, for an uistable paidicle, Im $\left.\Pi \varepsilon^{2}\right)$ fo
Sy near $\varepsilon^{2}=m_{z}^{R^{2}}, \quad Z \operatorname{In} \pi\left(m_{z}^{2 c^{2}}\right) \equiv m_{z}^{R} \Gamma_{z}^{R}$
sy as $\varepsilon^{2}-m_{z}^{R^{2}}, \quad i D\left(\varepsilon^{2}\right) \sim \frac{2}{\varepsilon^{2}-\left(n_{i}^{R 2}-i m_{i}^{R} \Gamma_{z}^{R}\right)}$
if $\begin{aligned} \frac{\Gamma_{z}^{R}}{m_{z}^{R}} \ll 1, \Rightarrow q^{2} & =m_{z}^{R^{2}}-i m_{z}^{R} \Gamma_{z}^{R} \\ & \simeq\left(m_{z}^{R}-i \Gamma_{z}^{R}\right)^{2}\end{aligned}$

$$
\simeq\left(m_{z}^{R}-\frac{i}{2} \Gamma_{z}^{R}\right)^{2}
$$

This is the re⿴iwsic Breit-Wings anditude.

One can show the rear the Z-boson mors, the Cross-sedion for $e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}$is

$$
\sigma \simeq \frac{4 \pi \alpha^{2}}{3 s}\left[1+\frac{1}{16 \sin ^{2} 2 \theta_{\omega}} \frac{s^{2}}{\left(s-n_{z}^{2}+\frac{\Gamma}{2}_{4}^{2}\right)^{2}+r_{z}^{2} \Gamma_{z}^{2}}\right]
$$

The opt: ca) theorem cedes $\left.\operatorname{In} T_{i(\varepsilon \eta}\right) \leftrightarrow \Gamma_{2}$

$$
\text { In men }=\sum_{f}\left|m+\frac{1}{f}\right|^{2}
$$

Wes convie the decy rite for $z \rightarrow f \bar{f}, f=l, v$ at leading ochr.

$$
\begin{aligned}
& \Rightarrow i \mu=\bar{u}(p, s)\left[-i \frac{g}{c, s \theta_{\omega}} \gamma^{\mu}\left(\frac{1}{2} T_{3}-Q_{4} \sin ^{2} \theta_{v}-\frac{1}{2} T_{3} \gamma_{5}\right)\right] v\left(\varphi^{\prime}, s^{\prime}\right) \epsilon_{-}(b, \lambda) \\
& \equiv-i \frac{g}{\cos \partial_{\omega}} \bar{u}\left(\rho_{p} s\right) \gamma^{m}\left(v_{+}-a_{f} \gamma_{s}\right) v\left(\rho_{i}^{\prime}, s^{\prime}\right) \epsilon_{\mu}(n, \lambda) \\
& z-b=x \\
& \text { poluizain }
\end{aligned}
$$

$s=\Gamma_{z}=\frac{|\vec{p}|}{32 \pi^{2} m_{z}^{2}} \int d \Omega \frac{1}{3} \sum_{s^{\prime} ;, \lambda}|\mu|^{2}$
\longrightarrow aurye our duitid eelwizdias
Non,

$$
\begin{gathered}
|M|^{2}=\frac{g^{2}}{\cos ^{2} \theta_{\omega}} \\
\quad \bar{u}(\rho s) \gamma^{-}\left(v_{f}-a_{f} \gamma_{s}\right) v\left(\rho^{\prime} s^{\prime}\right) \bar{v}\left(\rho^{\prime} s^{\prime}\right) \gamma^{v}\left(v_{f}-a_{f} \gamma_{J}\right) u(p,) \\
\\
\times \epsilon_{\mu}(h, \lambda) \epsilon_{\nu}^{-4}(h, \lambda)
\end{gathered}
$$

using $\left.\sum_{s} u(p s) \bar{u}_{(f)}\right)=\rho^{2}+{r_{f}^{2}}^{2}$

$$
\begin{aligned}
& \sum_{s^{\prime}} v\left(\rho^{\prime} s^{\prime}\right) \bar{v}\left(\rho^{\prime}\left(s^{\prime}\right)=\rho^{\prime 2}-m_{p}^{2}\right. \\
& \sum_{\lambda} \epsilon_{\mu}(h, \lambda) \epsilon_{\nu}^{4}(h, \lambda)=-g_{\mu \nu}+\frac{h_{\mu} h_{v}}{r_{z}^{2}}
\end{aligned}
$$

we find

$$
\begin{aligned}
\sum_{s, s^{\prime} \lambda}|\mu|^{2}= & \frac{g^{2}}{\cos ^{2} \theta_{w}}\left(-g_{\mu \nu}+\frac{u_{\mu} u_{v}}{r_{z}}\right) \\
& \times t_{1}\left[\left(\beta+m_{f}\right) \gamma^{m}\left(v_{f}-a_{f} r_{s}\right)\left(p^{\prime}-r_{f}\right) \gamma^{v}\left(v_{f}-a_{f} r_{s}\right)\right]
\end{aligned}
$$

Lo use the $\frac{m_{f}=l, v \ll 1}{m_{z}}<1$

$$
\begin{aligned}
& \Rightarrow \sum_{s, s ; \lambda}|\mu|^{2} \simeq \frac{g^{2}}{\cos ^{2} \theta_{\omega}}\left(-g_{-\nu}+u_{\mu} \frac{h_{v}}{r_{z}}\right) t_{r}\left[p \gamma^{m}\left(v_{f}-a_{f} r_{r}\right) \rho^{\prime} \gamma^{v}\left(v_{f}-c_{p} r_{s}\right)\right] \\
& =\frac{y^{2}}{\cos ^{2} \theta_{\omega}} \cdot 8\left(a_{p}^{2}+v_{p}^{2}\right)\left(\frac{h \cdot p)\left(k_{\cdot} \cdot \rho^{\prime}\right)}{m_{z}^{2}}+\left(p \cdot \rho^{\prime}\right)-\frac{h^{2}\left(\rho \cdot \rho^{\prime}\right)}{2 m_{z}^{2}}\right) \\
& \left.=\frac{8 g^{2}\left(a_{f}^{2}+v_{f}^{2}\right)}{\cos ^{2} \theta_{w}}\left(\frac{(k \cdot p)\left(k \cdot p^{\prime}\right)}{m_{2}^{2}}+\frac{1}{2}\left(p \cdot p^{\prime}\right)\right)\right\rfloor_{k^{2}=m_{z}^{2}}
\end{aligned}
$$

In the regt fere f the z°-bosom, $k=\left(m_{z}, \overrightarrow{0}\right)$

$$
\begin{gathered}
\vec{p}=-\vec{p}^{\prime} \Rightarrow E^{\prime}=E=|\vec{p}|=\frac{m_{z}}{2} \\
\Rightarrow u_{\cdot} \cdot \rho=u^{\prime} p^{\prime}=m_{z} E=\frac{m_{z}^{2}}{2} \\
m_{z}^{2}=\left(\rho+\rho^{\prime}\right)^{2}=p^{2}+\rho^{\prime 2}+2 \rho^{\prime} \cdot p \Rightarrow \rho^{\prime} \cdot \rho=\frac{m_{z}^{2}}{2} \\
\Rightarrow \sum_{s^{\prime}, S, \lambda}|M|^{2}=4 g^{2} \frac{m_{z}^{2}}{\cos ^{2} \theta_{w}}\left(a e^{2}+v_{+}^{2}\right)
\end{gathered}
$$

So,

$$
\longrightarrow|\vec{p}|=\frac{m z}{2}
$$

$$
\begin{aligned}
\Gamma_{z} & =\frac{|\vec{p}|}{32 \pi^{2} m_{z}^{2}} \int d \Omega \frac{1}{3} \sum_{s^{\prime} s, \lambda}|\mu|^{2} \\
& =\frac{1}{64 \pi^{2} m_{z}} \cdot \frac{4 \pi}{3} \cdot 4 g^{2} m_{z}^{2}\left(a_{f}^{2}+v_{f}^{2}\right) \\
& =\frac{g^{2} m_{z}}{12 \pi \cos ^{2} \theta_{\omega}}\left(a_{p}^{2}+v_{e}^{2}\right)
\end{aligned}
$$

In terns f the fermi castor $G_{F}, g^{2}=\frac{8 G_{f} m \omega^{2}}{\sqrt{2}}$

$$
\Gamma_{z}=\frac{2}{3 \sqrt{2} \pi} \frac{G_{f} m_{\omega}^{2} m_{z}}{\cos ^{2} \theta \omega}\left(a_{f}^{2}+v_{f}^{2}\right)
$$

Also $m_{\omega}=m_{z} \cos \theta_{\omega} \Rightarrow m_{\omega}^{2}=m_{z}^{2} \cos ^{2} \theta_{\omega}$

$$
\Rightarrow \Gamma_{2}=\frac{2}{3 \sqrt{2} \pi} G f m_{z}^{3}\left(a_{f}^{2}+v_{f}^{2}\right)
$$

- Far neutrinos, $a_{f}^{2}=v_{f}^{2}=\frac{1}{16}$

$$
\begin{aligned}
\Rightarrow \Gamma(z \rightarrow v \bar{v}) & =\frac{1}{12 \sqrt{2} \pi} G_{f} m_{z}^{3} \\
& =167 \mathrm{Mcv}
\end{aligned}
$$

- Far charged leptons, $a_{f}^{2}=\frac{1}{16}, v_{f}=\left(-\frac{1}{4}+\sin ^{2} \theta_{\omega}\right)^{2}$

$$
=\frac{1}{16}\left(1-4 \sin \theta_{\omega}\right)^{2}=\frac{g_{v}^{2}}{16}
$$

Σ.

$$
\begin{aligned}
\Gamma\left(z^{\cdot} \rightarrow \ell \bar{l}\right) & =\frac{1}{24 \sqrt{2} \pi} G_{F}\left(1+g_{v}^{2}\right) m_{z}^{3} \\
& =28 M_{2} V
\end{aligned}
$$

Therefore, we find for 3 gervains f lealens, $l=e, m, T$, the

$$
\Gamma\left(z^{\circ} \rightarrow \text { leptas }\right)=501 \mathrm{MeV}
$$

The fat tha the newtrinos give idelial candotion x the decay width rales it a useful measure to dibinke the nunbe f "nasless" newtinas. Precision measurents sive

$$
\begin{aligned}
& \Gamma^{\text {(ere) }}\left(z^{0} \rightarrow \text { hadrms }\right)=1748 \pm 35 \mathrm{miv} \\
& \Gamma^{(2 \pi x)}\left(z^{\circ} \rightarrow \ell \bar{l}\right)=83 \pm 2 \mathrm{McV} .
\end{aligned}
$$

Therfore, measwing $\Gamma_{z}^{(\text {ere })}$, we con deduce the cati:(x) 100 forn nentrinus (whoch are difficult to detev)

$$
\begin{aligned}
& \Gamma^{\text {(ere) }}\left(z^{\circ} \rightarrow \nu \bar{v}\right)=\Gamma_{z}^{\text {(crep) }}-\Gamma^{\text {(cre) }}\left(z^{\circ} \rightarrow \text { hadar }\right)-\Gamma^{\text {(erf) })}\left(z^{\prime} \rightarrow \ell \bar{\imath}\right) \\
& =494 \pm 32 \text { Miv. }
\end{aligned}
$$

