Symmetry

Symmetry is key to organizing many complicated phenomena. In the last ~100 years, notion at "symmetry " has been interproted mathematically.

Groups
A group G is a set
$$\{g_j\}$$
 with a operation
"group multiplication"
 $G \times G \rightarrow G$
such that $\forall g_j, g_k, g_k \in G$
(1) Closure: $g_j g_k \in G$
(2) Associativity: $g_j(g_k g_k) = (g_j g_k)g_k$
(3) Ideatity: $\exists g_0 \in G$ such that $g_0 g_j = g_j$
(4) Inverse: $\exists g_j^{-1} \in G$ such that $g_j^{-1} g_j = g_0$

Examples
(a)
$$G = E \pm 1, \pm i 3$$
 under ordinary multiplication
is a group. Let's check, make group
multiplication table

$$\frac{x + 1 - 1 + i - i}{+1 + 1 - 1 + i - i}$$

$$\frac{x + 1 - 1 + i - i}{+1 + 1 - 1 + i - i}$$

$$\frac{x + 1 + 1 - 1 + i - i}{+1 + 1 - i + i}$$

$$\frac{x + 1 - 1 + 1 - i}{+1 - i}$$

$$\frac{x + 1 - 1 + 1 - i}{+1 - i}$$

$$\frac{x + 1 - 1 + 1 - i}{+1 - i}$$

$$\frac{x + 1 - 1 + 1 - i}{+1 - i}$$

$$\frac{x + 1 - 1 + 1 - i}{+1 - i}$$

$$\frac{x + 1 - 1 + 1 - i}{+1 - i}$$

$$\frac{x + 1 - 1 + 1 - i}{+1 - i}$$

$$\frac{x + 1 - 1}{-1}$$

$$\frac{x + 1 - 1}{-i}$$

$$\frac{x + 1}{-i}$$

$$\frac{x + 1 - 1}{-i}$$

$$\frac{x + 1}{-i}$$

$$\frac{x +$$

Commutative (Abelian) Groups
If
$$g_j g_n = g_n g_j$$
, $\forall g_j, g_n \in G_n$,
then the group is called commutative or Abelian

Non-commutative groups me simply called <u>Non-Abelian</u> For example, rotations in 3 dimensions for a Non-Abelian group.

Continuous groups can also be défined as a Smooth manifolds. Such groups are called <u>Lie groups</u>

Lie groups = Continuous groups They have (1) infinite number of elements (2) the topological structure of manifold

Maifold = topological space that is locally Englidean at each point. Example The group G = { e ix | x e IR } is a Lie group. It has a infinite number of elements, lubelled by the parameter XER, and a topological strudie of a circle S¹

Some objects at fields, e.g., I dutegers, N natural numbers

A vetar space V is a set
$$EV_{j}$$
 of vetars
and Field F with extra operation
"vetar addition" $V \times V \rightarrow V$,
and "extended scalar multiplication" $F \times V \rightarrow V$
such that

(3) bilinewity :
$$f_j(v_u + v_e) = f_jv_u + f_jv_e$$

 $(f_j + f_u)v_e = f_jv_e + f_uv_e$
 e_{j}

V is "M dimensional" it it can be spanned by M linearly independent vectors. Any such set is called a "basis" For V Convertion: denote basis elements by EX; 3

An algebra A is a vector space V over a
Field F with extra operation
"vector multiplication"
$$A \times A \rightarrow A$$

such that
(1) closure
(2) "bilincerity" $\begin{cases} (N_j + N_L) N_L = N_j N_L + N_L N_L \\ N_j (N_L + N_L) = N_j N_L + N_j N_L \\ (+j N_L) (+j N_L) (+j N_L) = (+j + J_L) (N_L N_L) \end{cases}$

Other possible continuitions for special cases · commutative algebra : $v_j v_k = v_k v_j$ · associative algebra : $(v_j v_k) v_k = v_j (v_k v_k)$ · A with artisymmetry : $v_j v_k = -v_k v_j$ · A with artisymmetry : $v_j v_k = -v_k v_j$ · A with addity : $v_0 v_j = v_j = v_j v_0$ · "withal"

But, may algebras don't have these properties

A Lie algebra A is a algebra such that
vector multiplication is attraction with the adopts
on identity "Jacobi Identy"
Convertion: vector multiplication is dented by E.J
$$A \times A \rightarrow A : V_j, V_h \longrightarrow [v_j, v_h]$$

=) Lie algebra satisfies
(1) $[v_j, v_h] = -[v_h, v_j]$
(2) Jacobi : $\sum_{j \in L} [[v_j, v_h], v_k] = 0$
 $\leq j \leq k$

Given a basis {x;3 for Lie algebra, con write $[X_{j}, X_{u}] = C_{ju} X_{u}$ struture constate The structure caretants day $\sum_{(j|l|l)}^{n} C_{jl}^{n} C_{nl}^{n} = 0$ Prot Recall the Jacobi identity, $\sum_{(j|k)} \left[\left[X_{j}, X_{k} \right], X_{k} \right] = 0$ from Lie brucket [x, x,] = Cin X, Find $\sum_{(j|L,k)} [[X_{i}, X_{k}], X_{k}] = \sum_{(j|L,k)} C_{jk} [X_{n}, X_{k}]$ $= \sum_{(j) \in A} C_{jk} C_{k} X_{k}$ = 0 This is true for my basid set {X;}, so $\sum_{ij}^{n} C_{ji}^{n} C_{ni}^{n} = 0$

If
$$C_{jk}^{\ell} = 0$$
, Lie algebra is called "Abelian"

Connection between Lie groups and Lie algebras
Consider Lie group element
$$g(\alpha i)$$
, relating it $\alpha^{i} = 0$
 Γ that is as matrix
Expend in Taylor series about $\alpha^{i} = 0$
 $g(\alpha^{i}) = g(\alpha) + \alpha^{i} X_{i} + O(\alpha^{2})$
Where $X_{i} = \frac{\partial g}{\partial \alpha_{i}} \Big|_{\alpha_{i} = 0}$
"Infinitesimal group guerator"

Invose has the form $(g(\alpha^i)^{-1}g(\alpha^i) = 1)$ $g(\alpha^i)^{-1} = g(\omega) - \alpha^i X_i + O(\alpha^2)$

Now, consider the group "commutate" of z elements

$$g(p^{i})g(r^{i})g(p^{i})g(r^{i}) = g(a^{i})$$

$$= g(a^{i})$$
No sum on j, helices for parendos
(g(o) - p^{j} X_{j})(g(o) - r^{*}X_{k})(g(o) + p^{*}X_{k})(g(o) + r^{*}X_{k}))
$$= g(o) + a^{d} X_{k}$$

keep O(d), O(p), and O(r) tors

$$S_{i}$$

$$(g_{(0)} - \beta^{j} X_{j})(g_{(i)} - \gamma^{u} X_{u})(g_{(0)} + \beta^{m} X_{u})(g_{(0)} + j^{n} X_{u})$$

$$= (g_{(0)} - \beta^{j} X_{j} - \gamma^{u} X_{u} + \beta^{j} \gamma^{u} X_{j} X_{u})$$

$$= g_{(0)} - \beta^{j} X_{j} - \gamma^{u} X_{u} + \beta^{j} \gamma^{u} X_{j} X_{u}$$

$$+ \beta^{m} X_{u} + \beta^{n} \gamma^{n} X_{m} X_{n}$$

$$+ (-\beta^{j} X_{j} - \gamma^{u} X_{u} + \beta^{j} \gamma^{u} X_{j} X_{u})$$

$$= (\beta^{(0)} + \beta^{j} \gamma^{u} X_{j} X_{u} + \beta^{n} \gamma^{n} X_{m} X_{n})$$

$$= g_{(0)} + \beta^{j} \gamma^{u} X_{j} X_{u} + \beta^{m} \gamma^{n} X_{m} X_{n}$$

$$- \beta^{j} \gamma^{m} X_{j} X_{u} - \beta^{m} \gamma^{u} X_{u} X_{m} + \mathcal{O}(\beta^{2} \gamma^{2}))$$

$$= g_{(0)} + \beta^{j} \gamma^{u} (X_{j} X_{u} - X_{u} X_{j}) + \mathcal{O}(\beta^{i} \gamma^{2})$$

$$= g_{(0)} + \beta^{j} \gamma^{u} [X_{j} , X_{u}] + \mathcal{O}(\beta^{i} \gamma^{2})$$

So, conclude

$$[x_j, x_h] = C_{jh} x_{jh}$$
 where $\alpha^{A} = C_{jh} \beta^{j} \beta^{h}$
convertator at matrix multiplication

Convotion: write
$$g(x^{i}) = Exp(a^{j} X_{j})$$

L gavaited expandial
a expandial map
Result: For matrix representations of X_{j}
 $Exp(a^{j} X_{j}) = exp(a^{j} X_{j})$
 $= 1 + a^{j} X_{j} + \frac{1}{2} a^{j} a^{k} X_{j} X_{k} + O(a^{3})$

Suggestive argument:

$$g(c^{j}) \approx g(c^{j}) + e^{j} \chi_{j} = g(c^{j} + \frac{\alpha^{j}}{N} \chi_{j})$$
 for large N
then,
 $g(\alpha^{j}) = \left[1 + \frac{\alpha^{j}}{N} \chi_{j}\right]^{N} \longrightarrow \exp\left(\alpha^{j} \chi_{j}\right)$
 $1 - c_{n} = \operatorname{ruftiply}_{because it is - group}$

Example 2D rep 2 SO(2)

This is a Abdien group. The associated declaration is called 10(2).

$$g(\alpha) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \kappa \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \mathcal{O}(\alpha^{1})$$

$$g(0) \qquad powertv \qquad guv Dw$$

$$\frac{2}{\pi} = \exp\left[\kappa \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right]$$

$$exp\left[x\left(\begin{array}{c}0&-1\\1&0\end{array}\right)\right] = exp\left(-ix\sigma^{2}\right)$$
$$= \cos x - i\sigma^{2} \sin x$$
$$= \left(\begin{array}{c}\cos x & -\sin x\\\sin x & \cos x\end{array}\right)$$

Algebra is Abelian: [X, X] = 0Notice: There is one X and it is Z-Dimensional algebra dim= 1 rep. dim= 2

ey, for ratations in place

Example § Relizion § SO(2)
Suppose physical space is represented
by
$$f(r,\Theta)$$
. What is relization of SO(2)?
Consider function rolated by α
 $f(r,\Theta+\alpha) = f(r,\Theta) + \alpha \partial_{\Theta} f(r,\Theta) + (O(\alpha^{2}))$
 $= exp(\alpha \partial_{\Theta}) f(r,\Theta)$
 $= g(\alpha) f(r,\Theta)$
 $= g(\alpha) f(r,\Theta)$
 $= g(\alpha) f(r,\Theta)$
 $= \lambda constant for the temperature of temperature of the temperature of temperatu$

Example: 1D rep of U(1)
Suppose physical space is represented by
$$z = re^{i\vartheta} \in Q$$

To rotate, take $g(r) = e^{i\vartheta}$
Ly unitary \rightarrow U(1)
generator is now $X = i$ (or $X = 1$)
 $\Rightarrow [X, X] = 0$
So, U(1) \cong AO(2) \Rightarrow algebras are isomorphic

With Complex extrices
Has
$$2N^2$$
 real parameters,
generators are $2N^2$ metrices which are NAN
With 1 or 2 as one non-zoo extry.

-
$$GL(N, \mathbb{R}) = GL(N, \mathbb{C})$$
 restricted to $F = \mathbb{R}$
 N^2 powerstors, N^2 growthens
Notice: $GL(N, \mathbb{C}) \supset GL(N, \mathbb{R})$

• Orthogonal groups
-
$$O(N, C) = group of N \times N$$
 complexe orthogon) horizes
Notice: det $O = det O^T$
 $\Rightarrow (det O)^2 = 1 \Rightarrow det O = \pm 1$ if $det O = +1$
 $\Rightarrow So(N, C)$
 s_{2} group us in (at least) two pieces. "special"
 $N(N-1)$ real parameters,
guardines are ± 1 , $a \pm i$.
- $O(N, R) = O(N, C)$ restricted to $F = IR$
 $\pm N(N-1)$ parameters, guardins.
Notice: if weder $x = \begin{pmatrix} x' \\ xN \end{pmatrix}$
then $O(N, R)$ leaves invariant the quadritic form
 $x^Tx = \sum_{x}^{T} (x^x)^2$
 $x \to O \times$, $O \in O(N, R)$
then, $x^T \to x^T O^T$
and so $x^Tx \to x^T O^T O x = x^Tx$
 $= I$

- $O(N, M, R) = group of pseudo cathogonal (N+M) \times (N+M)$ real matrices satisfy OTMO = Mwith $M = \begin{pmatrix} + & + & M \\ + & + & - & - \\ & - & - & - & - \\ \end{pmatrix}$ Leaves invariant $xTM \times = \sum_{a',p} x^{a} M_{ap} \times^{n}$ $\frac{1}{2}(M+N) \times (M+N-1)$ parameters, guiveners e.g. SO(3,1) is group of classical large trans.

• Unitary groups
-
$$U(N) = \text{group of } N \times N \text{ complex initiary matrices}$$

 $U^{+} = (U^{T})^{+}$
Log $U^{+} = 1$

Leaves invariant quadratic form
$$z^T z = \sum_{n=1}^{\infty} \frac{2^n}{n} \frac{2^n}{2^n} \frac{$$

Nac

$$exp(\alpha X)$$
 vs. $exp(\alpha X)$
 $exp(\alpha X)$ buritian

Not: For SU(N) groups, der
$$U = 1$$

So,
 $U = exp(i \sigma^{3}Q_{j})$
his a contrast.
In general, der $(exp(A)) = exp(tr(A))$
for A a NXN notix.
So,
 $der U = det(exp(i \sigma^{3}Q_{j}))$
 $= exp(tr(i \sigma^{3}Q_{j}))$
 $= exp(i \sigma^{3} trQ_{j})$
 $\Rightarrow exp(i \sigma^{3} trQ_{j}) = 1$
or
 $trQ_{j} = 0$ for $Q_{j} \in AU(N)$

Proof that
$$X_{j}$$
 we differentian for $U(N)$ groups.
if $g(w^{j}) = 1 + \alpha^{j} X_{j}$, $g^{+}(u^{j}) = 1 + \alpha^{j} X_{j}^{+}$
and $g \in U(N)$, then $g^{+}g = 1$
 $\Rightarrow (1 + \alpha^{j} X_{j}^{+})(1 + \alpha^{j} X_{j})$
 $= 1 + \alpha^{j}(X_{j}^{+} + X_{j}^{-}) + O(\alpha^{2}) = 1$
So, $\exists O(v)$, we have
 $X_{j}^{+} + X_{j}^{-} = 0$
 $\alpha = X_{j}^{+} = -X_{j}^{-}$
So, X_{j} is althoritin

U(1), SU(3) and SU(2)

•
$$U(1) = 1 \times 1$$
 unitary redrix (complex number)
so, $U(1) = e^{i \cdot \alpha}$, $\alpha \in \mathbb{R}$

This is a simple phase ration.

•
$$SO(3) = 3\times 3$$
 red notices deply $O^{T}O = 1$, $de^{2}O = +1$
Generators are antisympetitic metrices L_1, L_2, L_3
 $N_{Guesters} = \frac{1}{2} 3(3-1) = 3$

Comprise

$$L_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & +1 & 0 \end{pmatrix}, L_{2} = \begin{pmatrix} 0 & 0 & +1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, L_{3} = \begin{pmatrix} 0 & -1 & 0 \\ +1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Find Lie algebra SO(3) is $\begin{bmatrix} L_j, L_h \end{bmatrix} = E_{jhl} L_l , E_{123} = +1 , j \mu, l \in \{1, 2, 3\}$

The group has 3 paramèters
$$\alpha^{i}$$

 \Rightarrow 3D rep of group is
 $O(\alpha^{i}) = \exp(\alpha^{i}L_{i})$ (Pret 4)
 $= 1_{3} + \frac{\alpha^{i}}{\alpha}L_{i}$ sind $+ (\frac{\alpha^{i}}{\alpha}L_{i})^{2}(1 - \cos \alpha)$
with $\alpha = |\vec{\alpha}|$
SU(2) = group of 2×2 complex indirices obeying

$$U(v^{i}) = c_{xp} (v^{i} X_{j}) \qquad (P_{i} + y)$$

$$= 1_{2} c_{i} \frac{1}{2} e^{-i} \frac{1}{e^{i}} \sigma_{j} s_{k} \frac{1}{2} e^{-i} \frac{1}{e^{i}} \sigma_{j} s_{k} \frac{1}{2} e^{-i} \frac{1}{e^{i}} \sigma_{j} s_{k} \frac{1}{2} e^{-i} \frac{1}{e^{i}} \frac{1}{e^{i}} e^{-i} \frac{1}{e^{i}} \frac{1}{e^{i}} e^{-i} \frac{1}{e^{i}} \frac{1}{e^{i}} e^{-i} \frac{1}{e^{i$$

- Although sum = sold as debras, the groups SU(2) and SO(3) are different. In fait, SU(2) -> SO(3) is 2-21 map (double courd)

To see this, start I identity
$$\alpha^3 = 0$$
, pick a
direction $\widehat{\alpha} = \frac{\alpha}{2}$ is group space, more away, and
see what happens

Ful:

$$O(x) = + O(x + 2\pi) = + O(x + 4\pi)$$

 $O(x) = - O(x + 2\pi) = + O(x + 4\pi)$

So(3):
$$1 \rightarrow 1 \rightarrow 1$$

SU(2): $1 \rightarrow -1 \rightarrow 1$
These groups are different!

For low dimensionalities, different groups my have
some algebra,
$$SO(3) \cong SU(2) = SO(3) \equiv SU(2) / \mathbb{Z}_2$$

 $SO(4) \cong SU(2) \times SU(2) = (SU(3) \times SU(2)) / \mathbb{Z}_2$

Representations In the previous examples, we found a 2D and 3D representation (rep.) for <u>algebra</u> succenso(3) succenso(3)

$-\frac{1}{2}20j$	Lj
L	

Call these 2 3

Here, \mathcal{M} denotes the rep. If the dyelfic. What sout other dimensions? Obviously $\chi_{j} = 0$ (1) stictizes the algodiene (trivial rep). Can show I reps. for this dyelfice at every $\mathcal{M} = \frac{1}{2}, \frac{2}{2}, \frac{3}{4}, \dots$ Can dso refer to group rep this way, and to <u>heris</u> for rep.

Z is clear celled the "spiller rep. & SO(3)", the point here that

cp. J SO(3) are 1, 3, 5, 2, ... cp. J SU(2) are 1, 2, 3, 4, ...

Thusis for Z is a Z-vedar $\binom{k}{2} = SU(2)$ vedar = SO(3) spinar = SO(3) vedar = $Sp_{1}(3)$ vedar The basis $\binom{1}{2}$ $\binom{0}{2}$ is used for spin up, down.

Algebra
$$so(3) \sim su(2)$$
 is finiter from QM,
 $\frac{1}{2}\sigma_{j}$ growther $\Rightarrow [\frac{1}{2}\sigma_{j}, \frac{1}{2}\sigma_{L}] = i \epsilon_{jkl} (\frac{1}{2}\sigma_{l})$
or, more growths,
 $[\exists_{j}, \exists_{k}] = i \epsilon_{jkl} \exists_{l}$
 $[httoduce notion for "Cosinir operator" for clydra
 $\equiv nonlinear findice f generators that
complete with all generators
 e_{jj} , $su(21) : \exists^{2} \equiv \exists_{l}^{2} + \exists_{2}^{2} + \exists_{3}^{2}$
 e_{jj} , $su(21) : \exists^{2} \equiv \exists_{l}^{2} + \exists_{2}^{2} + \exists_{3}^{2}$
 e_{jj} , $su(21) : \exists^{2} \equiv \exists_{l}^{2} + \exists_{2}^{2} + \exists_{3}^{2}$
 e_{jj} , $su(21) : \exists^{2} \equiv \exists_{l}^{2} + \exists_{2}^{2} + \exists_{3}^{2}$
 e_{jj} , $su(21) : \exists^{2} \equiv \exists_{l}^{2} + \exists_{2}^{2} + \exists_{3}^{2}$
 e_{jj} , $su(21) : \exists^{2} \equiv \exists_{l}^{2} + d_{2}^{2} + d_{3}^{2}$$$

to lated reps.

C.J. Ju(2)			-		(= L esi	s for rep)	
using	J ² , J,	ergenude	به ع ار	in>.			
$J^{2}_{1,n} = j(j+1)_{j,n}$							
Jolj,~> = ~lj,~>							
with $m \in \{-j,, +j \}$, $2j + 1$ values.							
multides: (2;+1)	1	2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3~	4 ~	ہ ۲		
''sp.~ ''	0	112	1	<u>]</u> 2	2		
" Casinir" j (j+1)	υ	34	2	15	6	.,,,	

More than are Casimir is typical Su(N) N-1 Casimirs SO(2N), SO(2N+1) N Casimirs There is always a quadritic Casimir, but others may differ. eg., su(3) has quadritic and cubic. Computer Representations is succes

Consider 2 systems with spins j., j2. One basis is the tensor product basis li, m, 7 @ lj2 m27 = 1 m, m27

Another possible leasts uses
$$\vec{J} = \vec{J}_i + \vec{J}_z$$
, which
 $\vec{S} = \vec{J}_i + \vec{J}_z$, $\vec{S} = \vec{J}_i + \vec{J}_z$, $\vec{S} = \vec{J}_i + \vec{J}_i$, $\vec{J} = \vec{J}_i + \vec{J}_i$,
 $\vec{D} = \vec{J} = \vec{J}_i$, $\vec{J} = \vec{J} = \vec{J}_i$, $\vec{J} = \vec{J} = \vec{J}_i$,

$$\frac{2}{3} \frac{1}{2} = \frac{1}{2}$$

$$J = 0, M = 0$$

$$J = 0, M = 0$$

$$J = 1, M = \begin{cases} +1 & |1| = |\frac{1}{2}, \frac{1}{2} - \frac{1}{2}| = -\frac{1}{2}, \frac{1}{2} - \frac{1}{2}, \frac{$$

From the SU(2) grap, fild

$$\frac{1}{2} \times \frac{1}{2} = 0 + 1$$

$$T \quad T \quad T \quad T$$

$$sp = -\frac{1}{2} \quad sp = -0 \quad sp = -1$$

In group rep. Language: $2 \times 2 = 1 + 3$

Other examples

$$Sph_{1}: 1 = 1 = 0 + 1 + 2$$

$$r(p: \frac{1}{2} \times \frac{3}{2} = \frac{1}{2} + \frac{3}{2} + \frac{5}{2}$$

$$Sph_{1}: \frac{1}{2} \times 1 = \frac{1}{2} + \frac{3}{2}$$

$$r(ps: \frac{1}{2} \times \frac{3}{2} \times \frac{1}{2} = (\frac{1}{2} \times \frac{1}{2}) \times \frac{1}{2}$$

$$= (0 + 1) \times \frac{1}{2}$$

$$= \frac{1}{2} + (\frac{1}{2} + \frac{3}{2})$$

$$= \frac{1}{2} + (\frac{1}{2} + \frac{3}{2})$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{3}{2}$$

$$r(ps: \frac{1}{2} \times \frac{1}{2} \times \frac{7}{2} = (\frac{1}{2} \times \frac{2}{2}) \times \frac{7}{2}$$

$$= (\frac{1}{2} + \frac{3}{2}) \times \frac{7}{2}$$

$$= 2 + (\frac{1}{2} + \frac{4}{2})$$

$$= 2 + \frac{7}{2} + \frac{4}{2}$$

Introduction to Young Tableaux for SU(2)
Basis for 2 2 su(2)

$$u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\Rightarrow \quad |\frac{1}{2}, \frac{1}{2}, 7, |\frac{1}{2}, -\frac{1}{2}\rangle$$

$$\frac{1}{2} \int_{\overline{2}}^{1} (ud - du) \int_{\overline{2}}^{1} Sirg(u) \rightarrow \boxed{2} = 0$$

$$\frac{1}{2}$$

So now,

Whit won 3-particle Oftes?

ez, III, P, K cat atisgraduze thee theys h 2 ways.

Connerts about physical Indicitions & Symmetry

- Gover Result: Symmetry -> Consurdie Lew
 - Voy useful in particle physics, because have many empirical conserved ion laws
 - Q, Le, L, L, B, S, ... E, P, J, ...

In the SM, need question regime. Suppose a state 124> & some QM system transforms under ation & Lie group GI as

 \Rightarrow $<41 \rightarrow <41 = <41 \cup (g)^{\dagger}$

Piscole Symptotes
In addition to cartinuous symptoms, those are
a few drode symptotics for imported for
industriality SH physics. These are C.P.T.
Operational Dotwitters
Charge conjugation C : particles and particles
(3 mondar, spin indusped)

$$C(X(\vec{p}, s)) \rightarrow \overline{X}(\vec{p}, s)$$

Parity Inversion P: Spatial drovesion = micror reflection
+ 180° station about axis 1
to the micror.

Time reversal T: change sign of time coundinde (revusies sign of monitor and spin) $T(X(\vec{p},s)) \rightarrow X(-\vec{p},-s)$

Various proofs: Bell, Pauli, Linders

Let
$$|X\rangle$$
 be some puticle stile, $|\overline{X}\rangle$ the
adjourdide stile, and $|A'\rangle$ stile with spiles
flipped and momentum inclunged, such the
 $\langle Y|X\rangle \xrightarrow{CPT} \langle \overline{X}'|\overline{Y}'\rangle$

So,
$$m_{\chi} = \langle \chi | H | \chi \rangle$$

if $H \xrightarrow{cot} H_{cpt} = H$ (cpt there)
then, $m_{\chi} = \langle \chi | H | \chi \rangle \xrightarrow{crt} \langle \overline{\chi'} | H_{cpt} | \overline{\chi'} \rangle$
 $= \langle \overline{\chi'} | H | \overline{\chi'} \rangle$
 $= \langle \overline{\chi} | H | \overline{\chi'} \rangle$
 $= \langle \overline{\chi} | H | \overline{\chi} \rangle$

 $\Rightarrow m_X = m_{\overline{X}}$

C, P, T proporties & fundamental Advantions

_	Strang	EM	Wech	
C	\checkmark	\int	×	
\mathcal{P}	\checkmark	\checkmark	X	
Т	\checkmark	\checkmark	~ (close)	
CP	\checkmark	\checkmark	~ (close)	
CPT	\checkmark	\checkmark	\checkmark	

At this level, CRP und Dion, SD CP oling... If CPT is a symmetry, then CP=T diversance => Enorgh to discuss C,P. Dy because T properties follow.

Both C and P are symmetries that involve one f
the simplest finite (discrete) groups.
Group f order 2 (2 cleneds), e.s.,

$$Eg, e3 \ni \int ee = e$$
 idedity
 $ge = eg = g$
 $gg = e$

e.g., red numbers under multiplication: e=+1, g=-1.

unitary:
$$U^{+}=U^{-1}$$

group closure: $U^{2}=1$
 $=> U$ as Hernitian

U observable with cansured eigenvalues, For eigenstate (24) \Rightarrow U(g)(24) = 2124) then, U²(24) = 22²(24) LJ U²(24) = 124) \Rightarrow $u^{2} = 1 \Rightarrow u = \pm 1$

Individual particles have itrinsic parity
and attrise C-parity (If charge neutral).
$$P(x(p=5,s) > = M_p(x(p=5,s)))$$

 $C(x^{\circ} > = M_c(x^{\circ}))$