Symmetry
Symmetry is key to organizing many complicatal phenomena. In the last ~ 100 years, nation of "symmetry" has been siterprded mathenaically.

Symmetry I Invariance under a group of transformsions

There are two basic types,
Discrete - Physical quantities temstorm by finite amomits, e.S. C, P, \&T
\Rightarrow CoNinnous - Physical quantities teconsform by any amour, including infinitesimal.
N.TB. Continuous symmetries can be discussed in terms f infinitesimal transformations
\longrightarrow This is relation between
Lie groups \longleftrightarrow Lie Algebras

You are already familiar with a number of coninnous sym ${ }^{\text {sics, including }}$

- Rotations in 2 and 3 spatial dimensions
- Lore ft transform ions da 3+1 spacetime dimasions
- Global phase trmstormaion of Dire spinars

$$
\psi \rightarrow e^{i \theta} \psi
$$

Each of these classes of syanetry transformations share the mathenctical properties of a group

Groups
A group G is a set $\left\{g_{j}\right\}$ with an operation "group multiplication"

$$
G \times G \rightarrow G
$$

such that $\forall g_{j}, g_{k}, g_{l} \in G$
(1) Closure: $g_{j} g_{k} \in G$
(2) Associativity: $g_{j}\left(g_{n} g_{l}\right)=\left(g_{j} g_{k}\right) g_{l}$
(3) IdeNtity: $\exists g_{0} \in G$ such that $g_{0} g_{j}=g_{j}$
(4) Inverse: $\exists g_{j}^{-1} \in G$ such that $g_{j}^{-1} y_{j}=g_{0}$

Examples
(a) $G=\{ \pm 1, \pm i\}$ under ordinary multiplication is a group. Let's check, wake group multiplication table

x	+1	-1	$+i$	$-i$
+1	+1	-1	$+i$	$-i$
-1	-1	+1	$-i$	$+i$
$+i$	$+i$	$-i$	-1	+1
$-i$	$-i$	$+i$	+1	-1

ordinong multiplication \Rightarrow closure is associative, and the
inverse eleneNs are $(\pm 1)^{-1}= \pm 1,(\pm i)^{-1}=\mp i$, which are elcmeds of $G \Rightarrow G$ is a group!. N.B. Hos is an example fo Discrete group.
(b) $G=\left\{e^{i \alpha} \mid \alpha \in \mathbb{R}\right\}$ unde ardinary multinlicition is a group. LAे's check,
Let $\beta, \gamma \in \mathbb{R}$, then

- closure: $e^{i \alpha} e^{i \beta}=e^{i(\alpha+\beta)}=e^{i \gamma} \in G$
- Associaivity: $e^{i \alpha}\left(e^{i \beta} e^{i r}\right)=\left(e^{i \alpha} e^{i \mu}\right) e^{i r} \in G$
- Idefity : if $\alpha=0, e^{i 0}=1 \in G$
- Inverse: $e^{-i \alpha} \in G$, so $e^{-i \alpha} e^{i \alpha}=1 \in G$
$\Rightarrow\left\{e^{i \alpha}\right\}$ with $\alpha \in \mathbb{R}$ is a group!
N.B. this is an exarple of a continuous group.

Conmutative (Abelian) Grouns
If $g_{j} g_{n}=g_{u} g_{j} \quad \forall g_{j}, g_{n} \in G$,
then the group is called commet Sive ar Abelian
For example, $\left\{e^{i \alpha}\right\}$ with $\alpha \in \mathbb{R}$ under ardinat 7 multiplication is an Abelion group.

Non-conmutative groups are simply called Non-Abetion
For exanple, rotalions in 3 dincisions for a Nom-Abelia groyp.

Continuous groups can also be defined as a smooth manifolds. Such groups we called Lie groups

Lie groups \equiv Continuous groups
They have (1) afinite number of elements
(2) the topological stendtre of momifoll

Manifold $=$ topological space that is locally Endidean at each point.
Example
The group $G=\left\{e^{i \alpha} \mid \alpha \in \mathbb{R}\right\}$ is a Lie group. It has an onfinite number at elements, labelled by the parameter $\alpha \in \mathbb{R}$, and a topological stendwe of a circle S^{1}

There is a usefal result to note,

Every Lie group is isomorphic (1-1 correspandence) to a group of square matrices with group multiplication \equiv matrix multiplication.
N.B. Nof necessanily compad!

A field F is also a set $\{f ;\}$ of "scalars" with two operations: $\left\{\begin{array}{l}\text { "Scalo addition" } \\ \text { "Scclar multiplicain" }\end{array}\right.$
Such thJ
(1) F is Abdian group under addibion with odidity f.
(2) F obeys group postulates under mutiplication excent f_{0} has no invuse
(3) distriblive:

$$
\begin{aligned}
& f_{j}\left(f_{u}+f_{l}\right)=f_{j} f_{u}+f_{j} f_{l} \\
& \left(f_{j}+f_{u}\right) f_{l}=f_{j} f_{l}+f_{k} f_{l}
\end{aligned}
$$

e.g., $\mathbb{R}\left(f_{0} \equiv 0\right)$ reals numbes ude sormal t, x

- $\mathbb{C}(f, \equiv 0)$ cordex numbus ude sormal t, x
- $\mathbb{Q}\left(f_{0} \equiv 0\right)$ iSianal numbes wede noral t, x

Some objeds ng filds, e. g. \mathbb{Z} ditegers, \mathbb{N} natual numbus

A vedas space V is a set $\{v ;\}$ of vectors and field F with extra operation "vedas addition" $\mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$, and "estuded scalar multiplication" $F \times V \rightarrow V$ such the
(1) V os Abclin group under vector sedition
(2) extended scales multiplication closes, associative, and has an celerity
(3) bilineaity: $f_{j}\left(v_{k}+v_{l}\right)=f_{j} v_{k}+f_{j} v_{l}$

$$
\left(f_{j}+f_{u}\right) v_{l}=f_{;} v_{l}+f_{u} v_{l}
$$

egg.,

- \mathbb{R}^{N} as a vector space
\mathbb{C}^{N} as a vector space
Set of $M \times N$ matrices (over F) under matrix addition
[The "vectors" her we the notices]
V is "M dinasional" if it com be spanned by M lineally indepuder veOors.
Any such set is called a basis" for V conviction: cluate basis elements by $\left\{x_{j}\right\}$

An algebra A is a vector space V over a Field F with exter opurion
"vedar multiplicition" $A \times A \rightarrow A$
such thig
(1) closure
(2) "bilincarity" $\left\{\begin{array}{l}\left(v_{j}+v_{n}\right) v_{l}=v_{j} v_{l}+v_{h} v_{l} \\ v_{j}\left(v_{n}+v_{l}\right)=v_{j} v_{n}+v_{j} v_{l} \\ \left(f_{j} v_{n}\right)\left(f_{l} v_{m}\right)=\left(f_{j} f_{l}\right)\left(v_{n} v_{m}\right)\end{array}\right.$

Other possible conbindions for special cases

- Commataive alyebea: $v_{j} v_{k}=v_{u} v_{j}$
- associotive algabra: $\left(v_{j} v_{n}\right) v_{l}=v_{j}\left(v_{k} v_{l}\right)$
- A with aitispanctry: $v_{j} v_{n}=-v_{n} v_{j}$
- A witt idedity : $v_{0} v_{j}=v_{j}=v_{j} v_{0}$ "mital"

But, may algesias don't have there proporties

Exarple
$N \times N$ morrices under usual sack multiplication]v matix addition motrix mutiplication
 The "vecturs" are the matrices It is N^{2} dimensional if $F=\mathbb{R}$

Exanple
\mathbb{C} is a 2D agesia ove \mathbb{R}
check: For $z \in \mathbb{C}$, con write $z=a+i b=(a, b)$
vegtor space:

$$
\begin{aligned}
& V \times V \rightarrow V:(a, b)+(c, d) \longmapsto(a+c, b+d) \\
& f \times V \rightarrow V: \quad r(a, b) \longmapsto(r a, r b), r \in \mathbb{R} \\
& A \times A \rightarrow A: \quad(a, b) \times(c, d) \longmapsto(a c-b d, a d+b c)
\end{aligned}
$$

Requirel proprities satisfied
Thus is a commetative, associalive, mital algebra

Example (exucise)
\mathbb{R}^{3} as vedor space with vedor miltiplication = cross prodad chech properties, find aticomrative Dgesia

A Lie algebira A is an algebra such thit veotor multinlication is aicommetative and abeys an ident, "Jacodi IeNost,"

Convention: veगar mutification is dented by $[$,

$$
A \times A \rightarrow A: v_{j}, v_{n} \longrightarrow\left[v_{j}, v_{n}\right]
$$

\Rightarrow Lie wagen satisfres
Lie Brachet
(1) $\left[v_{j}, v_{n}\right]=-\left[v_{n}, v_{j}\right]$
(2) Jacob: : $\sum_{(j n l)}\left[\left[v_{j}, v_{n}\right], v_{l}\right]=0$
cyclic sum
Uscful Result (Ado thearem)
Every Lie algebra is isomaphic to algedica af Square matrices with vejar miltipication I commatar of malcix matinlication

$$
\text { i.e., }\left[v_{j}, v_{h}\right] \underset{\text { isorapliser }}{ } v_{j} v_{h}-v_{h} v_{j}
$$

Given a basis $\left\{x_{j}\right\}$ for Lie algebra, com write

$$
\left[x_{j}, x_{k}\right]=C_{j h}^{l} x_{l}
$$

stenture constants
The structure casements dey

$$
\sum_{(j h l)} C_{j k}^{m} C_{m l}^{n}=0
$$

Prof
Recall the Jacobi idevi't,

$$
\sum_{(j(l)}\left[\left[x_{j}, x_{l}\right], x_{l}\right]=0
$$

from $L_{\text {ie }}$ bracket $\left[x_{j}, x_{h}\right]=c_{j h}^{l} x_{l}$,
fid

$$
\begin{aligned}
\sum_{(j L l)}\left[\left[x_{j}, x_{n}\right], x_{l}\right] & =\sum_{(j n l)} C_{j n}^{m}\left[x_{n}, x_{l}\right] \\
& =\sum_{(j l l)} C_{j h}^{n} C_{n l}^{n} x_{n} \\
& =0
\end{aligned}
$$

This is true for an basis set $\left\{x_{;}\right\}$, so

$$
\sum_{(j h l)} C_{j h}^{m} C_{m e}^{n}=0
$$

If $C_{j u}{ }^{l}=0$, Lie algebra is called "Abelim"
B7 a careful choice f canaical bases, Lie alyebin cm be classified ad partially enumeriad.

Terminology
A rapping of abstract lie odes- A into $\left\{\begin{array}{l}\text { definite math stewoure B "realization" of } A \\ N \times N \text { matrices B "N-dim represtation" of } A\end{array}\right.$

L Same terminology for group.
Warning
Dot confuse $\operatorname{dim}(A)$ with $\operatorname{dim}(r e p)$
Example: $\quad \int^{\operatorname{din} S}$ wages ia

$$
\begin{gathered}
\operatorname{dim}(\operatorname{sun}(2))=3 \quad \text { "e.gy } 3 \text { pantimatrices" } \\
\operatorname{dim}\left(\sigma_{j}\right)=2 \quad \text { " } 2 \times 2 \text { matrix }=2 \text {-din prop" } \\
\left(\operatorname{din}_{\text {f ep }}\right.
\end{gathered}
$$

Connection between Lie groups al Lie algebras
Consider Lie group element $g\left(\alpha^{j}\right)$, identity I $\alpha^{j}=0$
\uparrow thane f as rectrix
Expel on Taylor series about $\alpha^{j}=0$

$$
g\left(\alpha^{j}\right)=g(0)+\alpha^{i} x_{j}+O\left(\alpha^{2}\right)
$$

where $\quad X_{j}=\left.\frac{\partial y}{\partial \alpha_{j}}\right|_{\alpha_{j}=0} \quad$ "infinitesimal group guvator"
lavage la cs the form $\left(g\left(\alpha^{i}\right)^{-1} g\left(\alpha^{i}\right)=\mathbb{1}\right)$

$$
g\left(\alpha^{i}\right)^{-1}=g(0)-\alpha^{j} x_{j}+O\left(\alpha^{2}\right)
$$

Now, consider the group "commutate" of 2 elements

$$
g\left(\beta^{j}\right)^{-1} g\left(\gamma^{j}\right)^{-1} g\left(\beta^{j}\right) g\left(\gamma^{j}\right)=g\left(\alpha^{j}\right) \text { from group anions }
$$

Expand in Taylor spies
No sun on j, indices for parantors

$$
\begin{gathered}
\left(g(0)-\beta^{j} x_{j}\right)\left(g(0)-\gamma^{n} x_{n}\right)\left(g(0)+\beta^{m} x_{n}\right)\left(g(0)+\gamma^{n} x_{n}\right) \\
=g(0)+\alpha^{l} x_{l}
\end{gathered}
$$

Keep $O(\alpha), O(\beta)$, ad $\Theta(\gamma)$ tens

So,

$$
\begin{aligned}
&\left(g(0)-\beta^{j} x_{j}\right)\left(g(0)-\gamma^{n} x_{n}\right)\left(g(0)+\beta^{m} x_{m}\right)\left(g(0)+\gamma^{n} x_{n}\right) \\
&=\left(g(0)-\beta^{i} x_{j}-\gamma^{n} x_{n}+\beta^{j} \gamma^{n} x_{j} x_{n}\right) \\
& x\left(g(0)+\beta^{m} x_{n}+\gamma^{n} x_{n}+\beta^{n} \gamma^{n} x_{m} x_{n}\right) \\
&= g(0)-\beta^{j} x_{j}-\gamma^{n} x_{n}+\beta^{j} \gamma^{n} x_{j} x_{n} \\
&+\beta^{m} x_{n}+\gamma^{n} x_{n}+\beta^{n} \gamma^{n} x_{m} x_{n} \\
&+\left(-\beta^{j} x_{j}-\gamma^{n} x_{n}+\beta^{j} \gamma^{n} x_{j} x_{n}\right) \\
& x\left(\beta^{m} x_{n}+\gamma^{n} x_{n}+\beta^{n} \gamma^{n} x_{m} x_{n}\right) \\
&=g(0)+\beta^{j} \gamma^{n} x_{j} x_{n}+\beta^{m} \gamma^{n} x_{n} x_{n} \\
&-\beta^{j} \gamma^{n} x_{j} x_{n}-\beta^{m} \gamma^{n} x_{n} x_{m}+O\left(\beta^{2}, \gamma^{2}\right) \\
&=g(0)+\beta^{i} \gamma^{n}\left(x_{j} x_{n}-x_{n} x_{j}\right)+O\left(\beta^{2}, \gamma^{2}\right) \\
&=g(0)+\beta^{j} \gamma^{n}\left[x_{j}, x_{n}\right]+O\left(\beta^{2}, \gamma^{2}\right) \\
&= g(0)+\alpha^{l} x_{l}+O\left(\alpha^{2}\right)
\end{aligned}
$$

So, conclucle

$$
\left[x_{j}, x_{h}\right]=C_{j h}^{l} x_{l} \quad \text { where } \alpha^{l}=C_{j h}^{l} \beta^{j} \gamma^{n}
$$

connutator af matrix multiplication

Therefore,
$\left\{x_{j}\right\}$ is a basis for Lie algebra with stecture constants $C_{j u}{ }^{e}$.

Convation: write $g\left(\alpha^{j}\right)=E \times p\left(\alpha^{j} x_{j}\right)$
L gacalized expanetial ar erponsial map
Result: Far matrix represintians of x_{j}

$$
\begin{aligned}
E_{x p}\left(\alpha^{j} x_{j}\right) & =\exp \left(\alpha^{j} x_{j}\right) \\
& =\mathbb{1}+\alpha^{j} x_{j}+\frac{1}{2} \alpha^{j} \alpha^{h} x_{j} x_{h}+O\left(\alpha^{3}\right)
\end{aligned}
$$

Suggestive argument:

$$
g\left(\epsilon^{i}\right) \simeq g(0)+\epsilon^{j} x_{j}=g(0)+\frac{\alpha^{j}}{N} x_{j} \quad \text { for loge } N
$$

then,

$$
g\left(\alpha^{j}\right)=\left[\mathbb{1}+\frac{\alpha^{j}}{N} x_{j}\right]^{N} \longrightarrow \exp \left(\alpha^{j} x_{j}\right)
$$

car multiply like twas because it is a group

Example: 2D rep a $\mathrm{SO}(2)$

Consider $g(\alpha)=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right), \alpha \in \mathbb{R}$

These matrices form 2D rep of SO (2) group

This is an Abdian group. The associated algebra is called Bo (2).

Associated geivanar x as obtained by Taylor expanding

$$
\begin{aligned}
g(\alpha) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\alpha\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)+O\left(\alpha^{2}\right) \\
\hat{\uparrow} & \uparrow \quad \text { pararcto } \\
g(0) & \text { gursor } \\
& \stackrel{?}{=} \exp \left[\alpha\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\exp \left[\alpha\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right] & =\exp \left(-i \alpha \sigma^{2}\right) \\
& =\cos \alpha-i \sigma^{2} \sin \alpha \\
& =\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
\end{aligned}
$$

Algebra is Abelion: $[x, x]=0$
Notice: There is are x and it is 2-Dimusianal

$$
\text { algubin din }=1 \quad L_{\text {rep. }} \text { din }=2
$$

Evidently, sOC21 useful for situations involving rataicus. Gencully, physical use f symmetry involves both group and a space on which it acts.
egg. for rotations in plane

$$
g(\alpha)=\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \text { cIs as 2D vector }\binom{x}{y}
$$

This spue is called "Basis for represendian" ar "represwation"

Exarple f ralizsion f socz)

Suppose physical space is represcoed by $f(r, \theta)$. What is rectization f sol2)?

Cansider fundion ratated by α

$$
\begin{aligned}
f(r, \theta+\alpha) & =f(r, \theta)+\alpha \partial_{\theta} f(r, \theta)+\theta\left(\alpha^{2}\right) \\
& =\exp \left(\alpha \partial_{\theta}\right) f(r, \theta) \\
& =g(\alpha) f(r, \theta) \\
\Rightarrow g(\alpha)= & \exp \left(\alpha \partial_{\theta}\right) \rightarrow x=\partial_{\theta},[x, x]=0 \\
& \quad \text { realizatim fos sol }
\end{aligned}
$$

Example: 1D ren $f U(1)$
Suppose physical space is represuted by $z=r e^{i \theta} \in \mathbb{C}$
To rotate, take $g(\alpha)=e^{i \alpha}$
\rightarrow viltory $\rightarrow U(1)$ $\rightarrow 1 \times 1$
genowar is now $x=i$ (or $x=1$)

$$
\Rightarrow[x, x]=0
$$

So, $u(1) \cong$ so(2) \Rightarrow algebras are somaphic

Some Matrix gcoups

- Gereral linear groups
- $G L(N, \mathbb{C})=$ group of inuotible $N \times N$ materces with complex evries
Has $2 N^{2}$ real pwancters, guuctars are $2 N^{2}$ matices wlich ve $N \times N$ with 1 ar i as are non-zuo evry.
- $G L(N, \mathbb{R})=G L(N, \mathbb{C})$ restrided to $F=\mathbb{R}$ N^{2} paranctors, N^{2} gueraters NJice: $G L(N, \mathbb{C}) \supset G L(N, \mathbb{R})$
- Special Linear groups
$-S L(N, \mathbb{C})=G L(N, \mathbb{C})$ with $\operatorname{det}=+1$
$\Rightarrow 2\left(N^{2}-1\right)$ real paraneters, guratous (traceless)
- $\operatorname{SL}(N, \mathbb{R})=\operatorname{SL}(N, \mathbb{C})$ restroced to $F=\mathbb{R}$
e.g., $\operatorname{SL}(2, \mathbb{C})$ is group f quantin Lacentz tranformions
- Orthogonal groups
$-O(N, \mathbb{C})=$ group of $N_{x} N$ complex arthogme matrices
Notice: $\operatorname{det} O=\operatorname{det} O^{\top}$

$$
\Rightarrow(\operatorname{det} O)^{2}=1 \Rightarrow \operatorname{det} 0= \pm 1
$$

if $\operatorname{det} O=+1$
so, group us in (at least) two pieces.

$$
\Rightarrow S O(N, \mathbb{C})
$$

N(N-1) real purancters,
 entries we ± 1, w $\pm i$.
$-O(N, \mathbb{R})=O(N, \mathbb{C})$ restricted to $F=\mathbb{R}$ $\frac{1}{2} N(N-1)$ parameters, guarders.

Notice: if vector $x=\left(\begin{array}{c}x^{\prime} \\ \vdots \\ x^{N}\end{array}\right)$
then $O(N, \mathbb{R})$ leaves invariant the quadric form

$$
\begin{aligned}
& x^{\top} x=\sum_{\alpha}\left(x^{\alpha}\right)^{2} \\
x \rightarrow O x, & O \in O(N, \mathbb{R})
\end{aligned}
$$

then, $x^{\top} \rightarrow x^{\top} O^{\top}$
and so $x^{\top} x \rightarrow x^{\top} \underbrace{0^{\top} O}_{=\mathbb{I}} O=x^{\top} x$

- $O(N, M, \mathbb{R})=$ group f psendo corthoganal $(N+M) \times(N+M)$ real matrices

Satisty $O^{\top} \eta O=\eta$
with $\boldsymbol{\eta}=\left(\begin{array}{lll}+\cdots+M^{+} & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{array}\right)$
Leaves invarient

$$
\begin{gathered}
x^{\top} \eta x=\sum_{\alpha, \beta} x^{\alpha} \eta_{\alpha \beta} x^{\Lambda} \\
\frac{1}{2}(M+N) \times(M+N-1) \text { paranctes, gueviors }
\end{gathered}
$$

e.g. $S O(3,1)$ is group of classical Lurdtz tras.

- Unitory groups
$-U(N)=$ group of $N \times N$ complex mition mirices

$$
U^{+}=\left(U^{T}\right)^{*}
$$

$$
\rightarrow U^{+} U=1
$$

Leaves dovarim quaditic form $z^{+} z=\sum_{\alpha} z_{\alpha}^{*} z_{\alpha}$ N^{2} Ceal parameters, gavectars gaualus we $N \times N$ abilurnition

$$
z=\left(\begin{array}{l}
z^{\prime} \\
\vdots \\
z^{N}
\end{array}\right)
$$ matrices

- $U(N, M)=U$ obezing $U^{+} \eta U=\eta$

Leaves invariant $z^{+} \eta z$

- $S U(N, M)=U(N, M)$ restritad to $\operatorname{det}=+1$

In paricular, $\operatorname{SU}(N, 0) \equiv \operatorname{SU}(N)$
has $N^{2}-1$ real paranters

Nare

$$
\exp (\alpha x) \quad \text { if real } \quad \text { vs. } \quad \exp \left(\begin{array}{l}
\vec{x}
\end{array}\right) \text { if conplex }(\alpha \rightarrow i \alpha)
$$

\longrightarrow atilhurition $\quad \longrightarrow$ hernition
choice botren the two!

In Quatam theor7, cansuved quatity leads to symretty. Guvators are absuvesles associtited with guatity,
\Rightarrow Obroucles must be Hernition
So, for real pascreter α^{j}

$$
\Rightarrow \quad x_{j}=i Q_{j}
$$

\rightarrow Hermitim

$$
\Rightarrow U=\exp \left(i \alpha^{i} Q_{j}\right)
$$

Nat: Far $S U(N)$ gromps, dot $U=1$
Sor

$$
U=\exp \left(i \alpha^{j} Q_{j}\right)
$$

has a canctat.
In guural, $\quad \operatorname{det}(\exp (A))=\exp (\operatorname{tr}(A))$
for $A=N \times N$ morix.
s.,

$$
\begin{aligned}
\operatorname{dct} U & =\operatorname{det}\left(\exp \left(i \alpha^{j} Q_{j}\right)\right) \\
& =\exp \left(\operatorname{tr}\left(i \alpha^{j} Q_{j}\right)\right) \\
& =\exp \left(i \alpha^{j} \operatorname{tr} Q_{j}\right)
\end{aligned}
$$

bu, do $U=1$

$$
\Rightarrow \quad \exp \left(i \alpha^{3} \operatorname{tr} Q_{j}\right)=1
$$

ar

$$
\operatorname{tc} Q_{j}=0 \quad \text { for } Q_{j} \in \operatorname{su(v)}
$$

Peat that x, are aitturitio for $U(N)$ grope.
if $\quad g\left(\alpha^{j}\right)=\mathbb{P}+\alpha^{j} x_{j}, g^{+}\left(\alpha^{j}\right)=\mathbb{I}+\alpha^{j} x_{j}^{+}$ and $g \in U(N)$, then $g^{+} g=\mathbb{1}$

$$
\begin{aligned}
& \Rightarrow\left(\mathbb{1}+\alpha^{j} x_{j}+\right)\left(\mathbb{1}+\alpha^{j} x_{j}\right) \\
& \quad=1+\alpha^{j}\left(x_{j}^{+}+x_{j}\right)+O\left(\alpha^{2}\right)=1
\end{aligned}
$$

so, a $O(\alpha)$, we han

$$
x_{j}^{+}+x_{j}=0
$$

ar $\quad x_{j}^{+}=-x_{j}$
So, x; is atihuritim
$U(1), S O(3)$ and $S U(2)$

Let us censicler some specific groups impart for the SM. The simplest is U(1)

- $U(1)=1 \times 1$ unto matrix (complex numb)

So, $U(1)=e^{i \alpha}, \alpha \in \mathbb{R}$

This is a single phase किजtion.

- $S O(3)=3 \times 3$ red notices dosing $O^{\top} O=11$ get $O=+1$

Geioñas are âtisgnetric notices L_{1}, L_{2}, L_{3}

$$
N_{\text {Guars }}=\frac{1}{2} 3(3-1)=3
$$

Can pickle

$$
L_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & +1 & 0
\end{array}\right), L_{2}=\left(\begin{array}{ccc}
0 & 0 & +1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), L_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
+1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Find Lie algebra so (3) is

$$
\left[L_{j}, L_{n}\right]=\epsilon_{j n l} L_{l}, \epsilon_{123}=+1, j u, l \in\{1,2,3\}
$$

The group has 3 paramtes α^{j}
$\Rightarrow 3 D$ rep af gronp is

$$
\begin{aligned}
O\left(\alpha^{j}\right) & =\exp \left(\alpha^{j} L_{j}\right) \quad(\text { Pset } 4) \\
& =\mathbb{1}_{3}+\frac{\alpha^{j}}{\alpha} L_{j} \sin \alpha+\left(\frac{\alpha^{j}}{\alpha} L_{j}\right)^{2}(1-\cos \alpha)
\end{aligned}
$$

with $\alpha=|\vec{\alpha}|$

- $S U(2)=\operatorname{group}$ of 2×2 complex natrices obeying

$$
\begin{aligned}
U^{+} U & =\mathbb{1}, \operatorname{det} U=+1 \\
N_{\text {guadis }} & =N^{2}-1=2^{2}-1=3 \text { guetas }
\end{aligned}
$$

mud be traceless, Hunition materces X_{j}

Recall: Panlingrizes

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are Hurition
So, take $X_{j}=-\frac{1}{2} i \sigma_{j}$ to ge anicherition
\mapsto cunmint, normdizes elyebra

$$
\Rightarrow \text { algescc su(2) } \cong s o(3) \quad\left[x_{j}, x_{h}\right]=\epsilon_{j L e} x_{l}
$$

SU(2) has 3 pararctors, α
$\Rightarrow 2 D$ rep. is

$$
\begin{aligned}
U\left(\alpha^{j}\right) & =\exp \left(\alpha^{j} x_{j}\right) \quad\left(P_{j} \theta-\psi\right) \\
& =\mathbb{1}_{2} \cos \frac{1}{2} \alpha-\frac{i}{\alpha^{j}} \sigma_{j} \sin \frac{1}{2} \alpha \\
& \text { with } \alpha=|\vec{\alpha}|
\end{aligned}
$$

- Although su(2) \cong so(3) as algebras, the groups SU(2) and SO(3) are differs. In fad, $S U(2) \rightarrow$ SO(3) is $2 \rightarrow 1$ map (double cover)

To see this, stan I idenit, $\alpha^{j}=0$, pick a direction $\hat{\alpha}=\frac{\vec{\alpha}}{\alpha}$ in group space, move away, and see whit happens

Find:

$$
\begin{aligned}
& O(\alpha)=+O(\alpha+2 \pi)=+O(\alpha+4 \pi) \\
& U(\alpha)=-U(\alpha+2 \pi)=+U(\alpha+4 \pi)
\end{aligned}
$$

so, $\quad S O(3): \mathbb{1} \rightarrow \mathbb{1} \rightarrow \mathbb{1}$

$$
S \cup(2): \mathbb{1} \rightarrow-\mathbb{1} \rightarrow \mathbb{1}
$$

These groups we differed?

Far low dimasiaditizs, differing groups may have same algebra.

$$
\begin{aligned}
& S O\left(31 \cong \operatorname{su}(2) \quad-S O(3) \cong S U(2) / \mathbb{Z}_{2}\right. \\
& \operatorname{sO}(4) \cong \operatorname{su}(2) \times \operatorname{su}(2)-S O(4) \cong(S U(2) \times S U(2)) / \mathbb{Z}_{2}
\end{aligned}
$$

Representations
In the previous examples, we found a 2D and 3D represention (rep.) for algetic su(2)~ so (3)

$s u(2)$	$s o(3)$
$-\frac{1}{2} i \sigma_{j}$	L_{j}

Call these \approx
Here, $\underset{\sim}{ }$ denotes the rep f the algebra. What soot other dimensions? Oviondy $x_{j}=0 \quad(\underset{\sim}{1})$ sTifies the algebra (trivial cup).
Can show \exists reps. for Dis algetic at evan $\underset{\sim}{n}=\underset{\sim}{1}, \underline{2}, \underline{3}, \underline{4}, \ldots$ Can do refer to group rep this way, ad to basis for rep.

3 veda rep af So (3)
$\underset{\sim}{2}$ is clos. called the "spine rep. f So (3)", the point being the
rep. f So (3) are $1, \underset{\sim}{3}, \underset{\sim}{5}, \underset{\sim}{2}, \ldots$
rep. f sO (2) we $\underset{\sim}{1}, 2,3, \underset{\sim}{4}, \ldots$
Far SO(N) groups, Standard procedure the purity filling of" the "missing" reps.
$\Rightarrow \exists$ moths tope f grope $S_{\text {pin }}(N)$ ad
it happus the $S U(2) \sim$ Spin (3)
Phasis $f_{v} \underset{\sim}{2}$ is a 2 -vendor $\binom{x}{y}=$ Su(2) vo for

$$
\begin{aligned}
& =S O(3) \text { spinal } \\
& =\text { spin (3) veda }
\end{aligned}
$$

The basis $\binom{1}{0},\binom{0}{1}$ is used for spit up, down.

Algelen so(3)~su(2) is fariles from $O M$,

$$
\frac{1}{2} \sigma_{j} \text { gartrs } \Rightarrow\left[\frac{1}{2} \sigma_{j}, \frac{1}{2} \sigma_{h}\right]=i \epsilon_{j k l}\left(\frac{1}{2} \sigma_{l}\right)
$$

as, mar gavalls,

$$
\left.\left[J_{j}, J_{n}\right]=i \epsilon_{j u e}\right]_{l}
$$

Introduce nation f "Casimis operdo" for clyetra三norlinear findice f genowars the commes with all gencaats
e.g., su(z): $]^{2} \equiv J_{1}^{2}+J_{2}^{2}+J_{3}^{2}$
satisties $\left[3^{2}, J_{j}\right]=0$
Casiniss are inpaito becunse they on be used to label reps.
e.j., Ju(2) cm be labeled by eigentotes (= basis forep) using J^{2}, J_{3} eiguvalus $f|j, m\rangle$.

$$
\begin{aligned}
& J^{2}|j, m\rangle=j(j+1)|j, n\rangle \\
& J د|j, m\rangle=m|j, n\rangle
\end{aligned}
$$

with $m \in\{-j, \ldots,+j\}, 2 j+1$ values.

maltiness: $(2 j+1)$	$\underset{\sim}{\sim}$	$\underset{\sim}{2}$	$\underset{\sim}{\sim}$	\sim	\sim
"Sp.n"	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
Cusinir" $j(j+1)$	0	$\frac{3}{4}$	2	$\frac{15}{4}$	6

In yuord, egnubhes f Casimes fix represolina, cigunalues f other opertors span the space withen the rep.

Mare than aee Casinir is typical

$$
\begin{aligned}
& \operatorname{su}(N) \quad N-1 \text { Casinirs } \\
& \operatorname{soc} 2 N) \text {, } \operatorname{so}(2 N+1) \quad N \text { Cosinirs }
\end{aligned}
$$

Ther is aluays a quadrsic Casines, bo sthes $h a y$ differ. e.g., su(3) has quadritic and cubic.

Combluing Represenatias is su(z)
Consider 2 systens with spins j_{1}, j_{2}.
One basis is the tenson prodint basis

$$
\left|v_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle \equiv\left|m_{1} m_{2}\right\rangle
$$

Another possible basis uses $\vec{j}=\vec{j}_{1}+\vec{j}_{2}$, which STities su(2) algebia as well. Eigenualus we $J(J+1)$, label egengles with $M, 2 J+1$ values. Denote this stare b) $\left.\left.\right|_{j 1 j_{2}} J M\right\rangle \equiv|J M\rangle$

Relat:onship

$$
\begin{aligned}
& |\exists m\rangle=\sum_{m_{1} m_{2}} C\left(m_{1} m_{2}, J m\right)\left|m_{1} m_{2}\right\rangle \\
& \text { Clebsch-Gadem Cofficiots }
\end{aligned}
$$

e.g.

$$
\begin{aligned}
& j_{1}=j_{2}=\frac{1}{2} \\
& J=0, M=0l M\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|-\frac{1}{2}, \frac{1}{2}\right\rangle \\
& J=1, M=\left\{\begin{aligned}
+1 & |11\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
0 & |10\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|-\frac{1}{2}, \frac{1}{2}\right\rangle \\
-1 & |1-1\rangle=\left|-\frac{1}{2},-\frac{1}{2}\right\rangle \\
& \text { Criple, symotic stacs }
\end{aligned}\right.
\end{aligned}
$$

From the SU(2) group, find

$$
\begin{gathered}
\frac{1}{2} \times \frac{1}{2}=0+1 \\
\uparrow \lambda \lambda \quad \uparrow \quad \uparrow \\
\operatorname{spin}-\frac{1}{2} \quad \operatorname{spin} 0 \quad \operatorname{spi} \pi-1
\end{gathered}
$$

In group rep. language: $\underset{\sim}{2} \times \underset{\sim}{2}=\underset{\sim}{1}+3$

Other examples

$$
\begin{aligned}
& \text { spin: } 1 \times 1=0+1+2 \\
& \text { rep: } 3 \times 3=1+3+\underset{\sim}{3}
\end{aligned}
$$

Spin: $\frac{1}{2} \times 1=\frac{1}{2}+\frac{3}{2}$
reps: $\underset{\sim}{2} \times \underline{3}=\underline{2}+\underset{\sim}{4}$
SpilL: $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\left(\frac{1}{2} \times \frac{1}{2}\right) \times \frac{1}{2}$

$$
\begin{aligned}
& =(0+1) \times \frac{1}{2} \\
& =\frac{1}{2}+\left(\frac{1}{2}+\frac{3}{2}\right) \\
& =\frac{1}{2}+\frac{1}{2}+\frac{3}{2}
\end{aligned}
$$

(ب) : $\underset{\sim}{2} \underline{\underline{2}} \times \mathbf{2}=(\underline{2} \times \underset{2}{2}) \times \underset{\sim}{2}$

$$
\begin{aligned}
& =(\underset{\sim}{2}+\underline{3}) \times \underline{2} \\
& =\underline{2}+(\underline{2}+\underline{4}) \\
& =2+2+\underline{4}
\end{aligned}
$$

This idea gurdizes to other groups. There are nuresous mettids to de thase calcultions. The theee corran cues: "Canton ngtix", "Dpalin digenas" an "Yong Tableanx"
latrodudian to Yong Talleanx for SUCz)
Busis for 2 of suc2)

$$
\begin{aligned}
& u=\binom{1}{0}, \quad d=\binom{0}{1} \\
& \Rightarrow \quad\left|\frac{1}{2},+\frac{1}{2}\right\rangle, \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

Nation:

Two pantide states

$$
\text { - canvition - boxes }\left\{\begin{aligned}
\text { howizatally } & \text { sige-s,-side } \\
& =\text { symitiz conso } \\
\text { virically } & \text { top } 4 \text { bottom } \\
& =\text { asisprotir corbo }
\end{aligned}\right.
$$

$\left.\begin{array}{ll}111 & u n \\ 1 / 2 & \frac{1}{\sqrt{2}}(u d+d u) \\ 2 / 2 & d d\end{array}\right\}$ tridet synndice \Rightarrow
$\frac{1}{1}=\frac{2}{2} \equiv 0 \Rightarrow$ ciot atisymrtize sume objeg
目 $\left.\frac{1}{\sqrt{2}}(u d-d u)\right\} \operatorname{sing} \theta \Rightarrow \begin{aligned} & \square \\ & \\ & \\ & \\ & 1\end{aligned} ~$
So now,

$$
\begin{aligned}
\underset{\sim}{2} \times \underset{\sim}{2} & =\frac{1}{2}+\frac{3}{\square} \\
\square \quad \square & =\square+\square \\
& =\cdot+\square
\end{aligned}
$$

whe abow 3-pantude Eltes?
eg, $\square \square, \square, \square$ cat antsymolize thece thuys in 2 ways.

Matiplicities?

So, $\square \square \square=$

$$
\stackrel{3}{\sim} \quad \underset{\sim}{2}
$$

11
thenetare, 3 poltcles are 2

$$
\begin{aligned}
\square \times \square \times \square & =(\square+\square) \times \square \\
& =\square \square+\square+\square \\
& =\square \square+\square+\square \\
& =4+2+2
\end{aligned}
$$

For su(2), ge sinde dinension forrule

$$
\underbrace{\square \perp \cdots}_{n \text { boxes }}=n+1
$$

Connents aso phopical inpictions f spantr,
Gaual result: symifty \rightarrow Consurvion Law Voy usfal in patiole physics, becuase have many enpirical conservition laws
$Q, L_{e}, L_{r}, L_{\tau}, B, S, \ldots$

$$
E, \vec{P}, \vec{J}, \ldots
$$

\Rightarrow Can hope to understand sore aspegs of corplexity in the St as cansequices f spmentios of iAUGIions. For a catinuous symate, resitt is "Noethes Thewen"

In the SM, neal quatur roine.
Suppose a state $|\psi\rangle \delta$ sore $Q M$ spsten trusforrs under adion f Lie group G as

$$
\begin{aligned}
& |\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle= \\
& U^{U}(g)|\psi\rangle \\
\Rightarrow & \langle\psi| \rightarrow \\
& \rightarrow\left\langle\psi^{\prime}\right|=\langle\psi| \cup(g)^{+}
\end{aligned}
$$

If $H \rightarrow H^{\prime}=H$ symn It $_{7}$, the physics is duvariat of (1) prosasilities are unclanged,
(2) Hmitminen rotrix elenats an presurad.
$\Rightarrow U(g)$ is a mitorp (avatuity) rep f G Wign os theorem

Discrite Symnteres
In uddition to coninnous symasters, there are a few discole symndries for impoñat for undertanding SM physics. These cre C,P,T.

Operchian Definitiors
Chage coijugtion C: panick, \longleftrightarrow contion paniclas appling C.
(3 monetan, spin unchanged)

$$
C(X(\stackrel{\rightharpoonup}{\rho}, s)) \rightarrow \bar{X}(\stackrel{\rightharpoonup}{p}, s)
$$

Panity inursion P : Spatial inuassion E mieror refledion $+180^{\circ}$ अिtion abo axis 1 to the mirrar.
(3 mometa chage, spin undegred)

$$
P(X(\vec{p}, s)) \rightarrow X(-\vec{p}, s)
$$

Time revosal T: chage sign f tire courdinde (reveses sgn f monote and spin)

$$
T(X(\vec{p}, s)) \rightarrow X(-\vec{p},-s)
$$

Fur a broad class of thewies, C,P,T are NoT incleperder.

CPT thearen
under mild canditions (locdity, fiat spacetire. Vacuum exists, finite din rees.), any QFT inuariant under Lerenz transform9ious is also anvaias undes CPT.

Uavious proofs: Bell, Panli, Lieders
CPT syandicy \Rightarrow paticles and citiparischs have sare mass, lifetines,...

Let $|x\rangle$ be sore paticle sitle, $|\bar{x}\rangle$ the aitpanide stde, and $\left|A^{\prime}\right\rangle$ stte with spins fipped and rorenun unchunged, such 19

$$
\langle Y \mid X\rangle \stackrel{C P T}{\longrightarrow}\left\langle\bar{X}^{\prime} \mid \bar{Y}^{\prime}\right\rangle
$$

so,

$$
m_{x}=\langle x| H|x\rangle
$$

if $H \xrightarrow{\text { COT }} H_{\varphi T}=H \quad$ (CPT Theoven)
then,

$$
\begin{aligned}
m_{x}= & \langle x| H|x\rangle \stackrel{C P T}{\longrightarrow}\left\langle\bar{x}^{\prime}\right| H_{C P T}\left|\bar{x}^{\prime}\right\rangle \\
& =\left\langle\bar{x}^{\prime}\right| H\left|\bar{x}^{\prime}\right\rangle \\
& =\langle\bar{x}| H|\bar{x}\rangle \\
& =r_{\bar{x}}
\end{aligned}
$$

$$
\Rightarrow m_{x}=m_{\bar{x}}
$$

C. P, T propeties f fundurnat iNurdions

	Strang	$E M$	Weak
	V	V	X
P	V	V	X
$C P$	V	V	\simeq
$C P T$	V		\simeq
C close $)$			
C	V		

C, P videtians in Weak iteradians
Consider massless rewtinos (hue, aly weck ins.)
Expuinnally, you cm cheek the hoicity of $v \& \bar{v}$
Seen

तot obsurued
At the s level, $C \& P$ vidtion, so $C P$ oncy...
If $C P T$ is a symerty, then $C P=T$ duviace
\Rightarrow Enorgh t. discurs $C, P \cdot D_{y}$ because T procetios follow.

Both C ad P are synnetries the involve are f the simperst Arite (discre) groups.
Group f arder 2 (2 clenuts), e.s.,

$$
\{g, e\} \geqslant\left\{\begin{array}{l}
e e=e \\
g e=e g=y \\
g y=e
\end{array}\right.
$$

e.y., real nurbers under madijpiction: $e=+7, y=-1$.

Invariance of physics under adion $f y$
$\Rightarrow g$ represcoted by unitwy operator $U(g)$ such thit $[H, \cup(g)]=0$
$\left.\begin{array}{l}\text { mitioy: } U^{+}=U^{-1} \\ \text { grap closive : } U^{2}=\mathbb{1}\end{array}\right\} \quad U^{+}=U^{-1}=U$
$\Rightarrow U$ is Hernition
U absuodle with candured cignudmes, For eigngेटe $|\psi\rangle \Rightarrow U(\mathrm{~g}||\psi\rangle=u| \psi\rangle$ then, $U^{2}|\psi\rangle=u^{2}|\psi\rangle$ bS $\left.U^{2}|\psi\rangle=1 \psi\right\rangle$

$$
\Rightarrow u^{2}=1 \Rightarrow u= \pm 1
$$

Individual porichs have itrinsic parity and ibriasic C-parit, (If chage neatenl).

$$
\begin{aligned}
& P|x(\vec{p}=\overrightarrow{0}, s)\rangle=\eta_{p}|X(\vec{p}=\overrightarrow{0}, s)\rangle \\
& C\left|x^{0}\right\rangle=\eta_{c}\left|x^{\cdot}\right\rangle
\end{aligned}
$$

NSt: $\left\{\begin{array}{l}\text { asibosoms hove sume panity as bosous } \\ \text { atifuriums hue ipposite puity as formons }\end{array}\right.$

