Symmetries II - SU(3)
Recall: A Lie group is a coninnous group genosed
by Lie algelra with elemits $\left\{x_{j}\right\}$ sud thit

$$
\left[x_{j}, x_{h}\right]=C_{j h}^{l} x_{l}
$$

The group elemels we give by the expanatial map

$$
g\left(\alpha^{j}\right)=\exp \left(\alpha^{j} x_{j}\right), \quad \alpha^{i} \in \mathbb{R}
$$

For Quatur sytems, talk (convitianclly)
so the

$$
\left[T_{j}, T_{k}\right]=i C_{j u}{ }^{e} T_{l}
$$

\square
ad
strugtre cundos

$$
g\left(\alpha^{j}\right)=\exp \left(-i \alpha^{\prime} T_{\bar{v}}\right) .
$$

for SU(N), g is $N \times N$ cordex mitery morix with $d S=+1$

$$
\Rightarrow \text { Number fogurdas }=N^{2}-1
$$

Exanple su(2) degera

$$
\left.\left[J_{j}, J_{n}\right]=i \epsilon_{j} \text { ue }\right]_{l} ; j, 4, l=1,2,3
$$

fundamatal rep $\Rightarrow J_{j}=\frac{1}{2} \sigma_{j}>$ Panli morices
s,, $\quad g\left(\alpha^{j}\right)=\exp \left(-\frac{i}{2} \alpha^{i} \sigma_{j}\right)$
All ceps: \square

$$
\begin{array}{lll}
i & \square & \square \\
1 & 2 & 3
\end{array}
$$

We corinine discassing aspets f sU(W) groups ad su(N) algebres. focusing paiticaln) an SU(3)/su(3)
$S U(3)=$ group of 3×3 mitary natrices with $\operatorname{det}=+1$, $Э 8$ guratus.

In the fundancial rep: 3×3 nitrices ading an 3D column vetor $\Rightarrow 3$
group elemat is give b) $\quad U\left(\alpha^{a}\right)=\exp \left(-\frac{1}{2} i \alpha^{a} \lambda_{a}\right)$ with $\quad c=1, \ldots, 8$

The su(3) genoctors $\frac{1}{2} \lambda_{a}$ are $8,3 \times 3$ motrices called the "Gell-Mann" matrices.
B) cauvition, they are

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Note ther λ_{n} is hurrition, $\lambda_{c}^{+}=\lambda_{c}$ and sdisfies

$$
\begin{aligned}
& \operatorname{tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b} \\
& \lambda_{a} \lambda_{a}=\frac{16}{3} \mathbb{1}_{3} \\
& \longrightarrow 3 \times 3 \text { idatity }
\end{aligned}
$$

Corpare $11 \operatorname{su}(2) \operatorname{tr}\left(\sigma_{j} \sigma_{h}\right)=2 \delta_{j h}$ ad $\sigma_{j} \sigma_{j}=3 \mathbb{1}_{2}$

Nataion:

$$
\begin{array}{ll}
j, k=1,2,3 & \left(\lambda_{a}\right)_{j k} \\
a, b=1, \ldots, 8 & 8 f \text { them }
\end{array}
$$

Lie algebra su(3)

$$
\left[\frac{1}{2} \lambda_{a}, \frac{1}{2} \lambda_{b}\right]=i f_{a b c} \frac{1}{2} \lambda_{c}
$$

Compare to su(2): $\left[\frac{1}{2} \sigma_{j,} \frac{1}{2} \sigma_{l}\right]=i \epsilon_{j u l} \sigma_{l}$

Nonvarishing stenगture corgats (exercise)

$$
\begin{aligned}
& f_{123}=1 \\
& f_{147}=f_{165}=f_{246}=f_{257}=f_{345}=f_{376}=\frac{1}{2} \\
& f_{458}=f_{678}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

othos we zero unless obtained by ivechage.
fose are atisyr-Itic under Archange for two indices (exicise)

It is also terve the

$$
\left\{\lambda_{a} \lambda_{b}\right\}=\frac{4}{3} \delta_{a b} \mathbb{1}+2 d_{a b c} \lambda_{c}
$$

Whare dabcere syanctric under itrochnge f an two indices
Note: thas is for λ_{c}, NI $\frac{1}{2} \lambda$..

$$
\text { Corpee to su(z): }\left\{\sigma_{j}, \sigma_{n}\right\}=2 \delta_{j k}
$$

There exists another inequivaior 3×3 represidatian f su(3) denated $3^{*}($ ar $\overline{3})$
T. jGt it, take group elenet $U \in S U(3)$ for 3 and corplex conjugte it : U^{*}

- U^{*} Etill obeys $\left(U^{*}\right)^{+}\left(U^{*}\right)=\mathbb{1}$ and also $\operatorname{det} U^{*}=+1$

Issue: Is U^{*} diffencat from U ?

Suppose $V \rightarrow V^{\prime}=U V \quad 3$
then，$V^{*} \rightarrow V^{\prime *}=U^{*} V^{*} \quad{\underset{\sim}{3}}^{*}$
If $\exists S \ni S U^{*} S^{-1}=U$＂Similarity trmiforration＂
then，

$$
\begin{aligned}
\left(s v^{*}\right) & =\left(s U^{*} s^{-1}\right)\left(s v^{*}\right) \\
& =U\left(s v^{*}\right)
\end{aligned}
$$

$\Rightarrow S V^{*}$ transforms like V
But $S v^{*}$ is jus）linear combo f
compass $f V^{*}$
\Rightarrow Linear combo $f V^{*}$ behaves like V

$$
\Rightarrow \text { 人O⿹勹巳} \text { differs }
$$

So，U^{*} is differed from U if comet find S such the $S U^{*} S^{-1}=U$
cos，
U^{*} is＂equivalar＂to U if $S U^{*} S^{-1}=U$ for some S

Clain: U^{*} is inequivacot to U
Chach: $\quad U=\exp \left(-\frac{1}{2} i \alpha^{a} \lambda_{a}\right)$

$$
\Rightarrow U^{*}=\exp \left(+\frac{1}{2} i \alpha^{a} \lambda_{a}^{*}\right)
$$

Sufficiet to show $\left(-\lambda_{a}^{*}\right)$ comnot be trastarrad t. λ_{a} by a mitary trmsforngion. (exucise)

In general, the \mathbb{N} represwation of $S U(v)$ is inequivalet to the ${\underset{\sim}{*}}^{*}$ for all $N \geq 3$. B9, for $N=2$, the ${\underset{\sim}{2}}^{*}$ is equival to $\underset{\sim}{2}$. Prouf
f~ $S U(2), U=\exp \left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right)$

$$
\Rightarrow \quad U^{*}=\exp \left(\frac{1}{2} i \alpha^{j} \sigma_{\dot{*}}^{*}\right)
$$

So, we seek $S \geqslant S\left(-\sigma_{j}^{*}\right) S^{-1}=\sigma_{j}$
Clain: $S= \pm i \sigma_{2}$ works, $S^{-1}=\mp i \sigma_{2}$
chech: fr σ_{1}, find $\left(\pm i \sigma_{2}\right)\left(-\sigma_{1}^{*}\right)\left(\mp i \sigma_{2}\right)$

$$
\begin{aligned}
& =\sigma_{2}\left(-\sigma_{1}\right) \sigma_{2} \\
& =-\sigma_{2} \sigma_{1} \sigma_{2} \\
& =-\sigma_{2}\left(i \sigma_{3}\right) \\
& =+\sigma_{1}
\end{aligned}
$$

Exvase to chach σ_{2}, σ_{3}.

So，

$$
\underline{2}=\binom{u}{d} \rightarrow U\binom{u}{d}
$$

tremsfores the save vay as ${\underset{2}{2}}^{+}$

$$
\begin{aligned}
&{\underset{\sim}{2}}^{*}= \pm i v_{2}\binom{u^{*}}{d^{*}}= \pm\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{u^{*}}{d^{*}} \\
&= \pm\binom{ d^{*}}{-u^{*}} \rightarrow \pm\binom{ d^{*}}{u^{*}} \\
& \longrightarrow \text { Nפ } U^{*}!
\end{aligned}
$$

Represwlitions f su（3）
So for，sec su（3）has exps $\underset{\sim}{1}, \underset{\sim}{3}, 3^{*}$ Wh＇t abog other ceps？

D＇⿹勹龴 h have＂simple＂dinensions like su（2）$(\underline{\sim}, \underline{2}, \underset{\sim}{\boldsymbol{3}}, \underline{\sim}, \ldots)$ Let us use Young tablemx to find them
\square
Youg Tslemx

1123

Let's look 9 3 3

$$
\square \times \frac{3}{3}=\square+\square
$$

For B, we have 3 Yong ding(ar)

$$
\frac{1}{2}, ~ \frac{1}{3}, ~ \frac{2}{3}
$$

So, this is cather 3-dim rep, it is the 3^{*}
The symmetric combination $\square \square$ is the $\frac{6}{}$ $\left.\begin{array}{cc}1 / 1 & 2 / 2 \\ 1 / 2 & 2 / 3 \\ 1 / 3 & \boxed{3} 3\end{array}\right\} \begin{gathered}\square \\ 6\end{gathered}$

$$
\begin{aligned}
& \Rightarrow \quad \underset{\sim}{3} \times \underset{3}{\square}=\underset{3^{*}}{\square}+\square \\
& \text { What bout } \\
& \square
\end{aligned}
$$

Com look I further reps,

- $3 \times 3^{*}=\underset{\sim}{1}+\underset{\sim}{8}$

- $3 \times \underline{6}=\underset{\sim}{8}+10$

$$
\begin{aligned}
& \underline{3} \times \underline{3} \times \underline{3}=\underset{\sim}{1}+\underset{8}{8}+\underset{\sim}{10} \\
& \square \times \square \times \square=(\square \times \square) \times \square \\
& \underline{3} \underset{\sim}{3}=(\square+\square) \times \square \\
&=(\underset{\sim}{\square}+\underset{\sim}{\square})+\left(\underset{\sim}{\square}+\underset{\sim}{\square}+\frac{\square}{\sim}\right)
\end{aligned}
$$

Hou do we corpile rare corplicted reps?
e.g., $\stackrel{3}{3}^{*} \times \underset{\sim}{6}=\square \times \square$
could have $\square \square, ~ \#, ~$, \square, \square aso

$$
\stackrel{15}{\sim} \quad \square_{3} \quad \theta 日 ? ~ \square \square ?
$$

Rules for shope f Yany Tableanx for su(3)
(1) No row con be shater than a lowe row
(2) No column can be shontu than a colurn to its right
(3) No column can have rave than 3 boxes (su(3))

Gevide to mutipling two tablenx

(B)

Take Tableax A ad cald boxes are-by-ane from Tablenx B, heeping carret shape ad deying 3 langugge cules
(1) From Left to Rij 4 , indices mudt not dicrease
(2) Fron top to botton, dwices mug durease
(3) Fron Riglo to Left do colinnous path,

$$
\# 1 s \geq \# 2 s \geq \# 3 s \geq \cdots
$$

at ead poitt in path

Exarale

$$
\begin{aligned}
& {\underset{3}{3}}^{*} \times \underset{\sim}{6}=\square \times \square 1 \\
& =\left(\begin{array}{l}
\square \\
\square
\end{array}+\square\right) \times \square \\
& =\frac{\square}{\square}+\frac{1}{1}+\frac{1}{1}+\frac{\square}{1}
\end{aligned}
$$

$$
=\underset{\sim}{\square}+\underset{\sim}{\square} \underset{\sim}{15} \leftarrow \text { Mas be } \underset{\sim}{15} \text { sice } 3 \times 6=18
$$

Is there any easy uy to got dimusion? Ycs! Sec latr

Example

$$
\begin{array}{r}
8 \times 8=\square \times \begin{array}{|l|}
\hline 1 \\
\hline 2 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Its look IO onions

-

So,

su(3) Dimensionality Formula
To find the dinasion f on su(3) Tableaux, ω $a_{1}=\# f$ boxes 1 st row exceeds 2 nd $a_{2}=\# f$ boxes in 2 nd row

Then,

$$
N\left(a_{1}, a_{2}\right)=\frac{1}{2}\left(a_{1}+1\right)\left(a_{2}+1\right)\left(a_{1}+a_{2}+2\right)
$$

Example su(3) and...

$$
\begin{aligned}
a_{1}=2, a_{2} & =1 \\
\Rightarrow N(2,1) & =\frac{1}{2}(3)(2)(5) \\
& =15
\end{aligned}
$$

Example
$\square \square$

$$
\begin{aligned}
a_{1}=1, a_{2} & =2 \\
\Rightarrow N(1,2) & =\frac{1}{2}(2)(3)(5) \\
& =15
\end{aligned}
$$

How do we has?

Image gives cojogie rep - Make condele box 3 tall

Explicit foums of some su(3) Reps
We hove $3 \longleftrightarrow \frac{1}{2}\left(\lambda_{2}\right)_{\text {jh }}$

$$
3 \times 3
$$

For the $N^{2}-1$ of $\operatorname{su}(N)\left[f_{e} \operatorname{su}(3), \underset{\sim}{8}=\square\right]$
there is a trich. This is the adjoint rep $f \operatorname{su}(N)$
dente it b^{b} ($\left.T_{a}\right)_{b c}$
8 racies ${ }_{8 \times 8}$
Clain: $\left(T_{a}\right)_{b c}=-c_{a b c}$, w $\left[X_{a}, X_{b}\right]=c_{a b c} X_{c}$ Where $\sum_{(a, b, d)} C_{\text {abe }} C_{\text {cdf }}=0$
Chech:

$$
\begin{aligned}
\left(\left[T_{a}, T_{b}\right]\right)_{d f} & =\left(T_{a}\right)_{d e}\left(T_{b}\right)_{e f}-\left(T_{b}\right)_{d e}\left(T_{a}\right)_{e f} \\
& =+C_{a d e} C_{b c f}-C_{b d e} C_{a e f} \\
& =-C_{d a e} C_{b f}-C_{b d e} C_{a e f} \\
& =+C_{a b c} C_{d f} \\
& =-C_{a b c} C_{e d f} \\
& =+C_{a b c}\left(T_{c}\right) \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { ntices } \\
& \begin{array}{c}
8 \text { nseices } \\
\vdots \\
3^{-} \rightarrow \\
\\
\\
-\frac{1}{2}\left(\lambda_{a}\right)_{j h}
\end{array} \\
& \begin{array}{c}
8 \text { nstices } \\
3^{-} \longrightarrow \\
\hline
\end{array}
\end{aligned}
$$

For su(3), strition castats are if abc

$$
\Rightarrow\left(T_{a}\right)_{b c}=-i f_{a b c} \quad \text { for } \underset{\sim}{8} f \operatorname{su}(7)
$$

compare to su(2) : Arugure congons are $i \epsilon_{j u}$.

$$
\Rightarrow\left(T_{j}\right)_{u l}=-i \epsilon_{j u l} \quad 3 \quad " L_{j}
$$

Constnuting an absitrang rep is non-triuns, bo there are reth.ds for doing so.

