Symmetrics II - SU(3)

Recall : A Lie group is a cardinal group group ded
by Lie algebra with elemins
$$\{x_i\}$$
 such that
 $[x_i, x_u] = C_{ju}^2 x_g$.
The group elemins are given by the
expondial map
 $g(\alpha^i) = exp(\alpha^i x_i), \quad \alpha^i \in \mathbb{R}$
For Quartum systems, take (convoltanelly) $x_j = -iT_i$,
so that
 $[T_i, T_u] = iC_{ju}^2 T_g$
 $for SU(N), g$ is NORN condex with $d = +1$
 $i = Marker degrades = N^2 - 1$
Excepte su(2) dystem
 $[T_i, T_u] = iC_{jue} J_g = j luber degrades = N^2 - 1$
 $for SU(N) = exp(-i a^i T_i)$.

We cutinue discussing uspects of SU(N) groups and su(N) algebras, focusing putricularly on SU(3) / su(3)

group element is given by
$$U(a^{*}) = e_{FP}(-\frac{1}{2}ia^{*}\lambda_{a})$$

with $a=1,...,8$

$$\begin{split} \lambda_{i} &= \begin{pmatrix} 0 & 1 & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{3} &= \begin{pmatrix} 1 & 0 & 6 \\ 0 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \lambda_{4} &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda_{5} &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_{6} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ \lambda_{7} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda_{8} &= \frac{1}{\sqrt{3'}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{split}$$

Note that
$$\lambda_a$$
 is hornitian, $\lambda_c^+ = \lambda_c$
and satisfies
 $tr(\lambda_a \lambda_b) = 2.8ab$
 $\lambda_a \lambda_a = \frac{16}{3} A_3$
 $\lambda_3 \times 3 identy$

Compare 1. su(2) $tr(\sigma_j \sigma_L) = 2s_{jk}$ and $\sigma_j \sigma_j = 31_2$

Note: j, k = 1, 2, 3 a, b = 1, ..., 8Lie algebra SU(3) $\left[\frac{1}{2}\lambda_{a}, \frac{1}{2}\lambda_{b}\right] = i f_{abc} \frac{1}{2}\lambda_{c}$ Compare to SU(2): $\left[\frac{1}{2}J_{j}, \frac{1}{2}\sigma_{k}\right] = i \epsilon_{jk} s \sigma_{k}$

Narvarishing Structure Carelatis (envoic)

$$f_{123} = 1$$

 $f_{147} = f_{165} = f_{246} = f_{257} = f_{345} = f_{376} = \frac{1}{2}$
 $f_{458} = f_{678} = \frac{53}{2}$

Othos are zero unless obtained by interchange. Sale are atisgrandric under studinge of my two indices (erraise)

The λ. matrices are the Z of SU(3)
It is also true that

$$[[x]_{a}, \lambda_{5}] = \frac{4}{3} s_{ab} 1 + 2 d_{abc} \lambda_{c}$$

Where chase are symmetric under inducting of
any two didices
Nate: there is for λ_{c} , and $[[x]_{\lambda_{c}}]$.
Compare to succe): $[[5]_{i}, 5u_{i}] = 2s_{i}u$

Thue exits another inequivaled 3×3 representation

$$f$$
 su(3) denoted 3^* (or $\overline{3}$)
7. yt it, take group element (JESU(3) for 3
and complex conjugte it: U*
 $- U^*$ still always $(U^*)^*(U^*) = 1$
and also det $U^* = +1$
Issue: Is U* different from U?

Suppose
$$V \rightarrow V' = UV$$
 2
then, $V'' \rightarrow V'' = U^{\dagger}V^{\dagger}$ 3th
If $\exists S \ni SU^{\dagger}S^{-1} = U^{-c}Sinilarity transformation''
then.
 $(SV^{+'}) = (SU^{\dagger}S^{-1})(SV^{\dagger})$
 $= U(SV^{\dagger})$
 $= U(SV^{\dagger})$
 $\exists V^{\dagger}$ transforms like V
Tout SV^{\dagger} is just linear combo of
comparents $\exists V^{\dagger}$
 \Rightarrow linear combo S Vth behaves like V
 \Rightarrow Linear from U if can that S$

such 12 $SU^*S^{-1} = U$

Claim:
$$U^*$$
 is inequivalent to U
Chech: $U = \exp(-\frac{1}{2}i\alpha^*\lambda_a)$
 $\Rightarrow \qquad U^* = \exp(+\frac{1}{2}i\alpha^*\lambda_a^*)$

Sufficient to show
$$(-\lambda_{a}^{*})$$
 cannot be transformed
to λ_{a} by a mitary transformation. (exoresce)
In general, the N representation of SU(N)
is inequivalent to the N* for all NZ3.
TSD, for N=2, the Z* is equivalent to Z.
Proof

$$f_{w} SO(2), \quad \bigcup = e_{xp} \left(-\frac{1}{2} i \alpha^{j} \sigma_{j} \right)$$

$$\Rightarrow \qquad \bigcup^{*} = e_{xp} \left(\frac{1}{2} i \alpha^{j} \sigma_{j}^{*} \right)$$
So, we seek $S \Rightarrow S(-\sigma_{j}^{*}) S^{-1} = \sigma_{j}$

$$Clain: S = \frac{1}{2} i \sigma_{2} \quad w = hs, \quad S^{-1} = \mp i \sigma_{2}$$

$$Clain: f_{w} \sigma_{1}, \quad f_{w} d \quad (\pm i \sigma_{2}) (-\sigma_{i}^{*}) (\mp i \sigma_{2})$$

$$= \sigma_{2} (-\sigma_{1}) \sigma_{2}$$

$$= -\sigma_{2} \sigma_{1} \sigma_{2}$$

$$= -\sigma_{2} (i \sigma_{3})$$

$$= +\sigma_{1} \checkmark$$

Exorise to check 52,52.

Vory Tableaux

Let's 1.04 2 3×3 For A, we have 3 Young diagrams $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{3}$ So, this is another 3-din rep, it is the 3th The symmetric constration I is the 6 chech: 33 13 $\begin{array}{c} \square \times \square &= \\ 3 & 3 \\ \hline & & & \\ 7 & \hline & & & \\ 7 & &$ where $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ Car look I further reps,

Explicit forms I some AUD Reps
We have
$$2 \iff \frac{1}{2}(\lambda_{c})_{jk} \iff \square$$

 3^{*}
 $2^{*} \iff -\frac{1}{2}(\lambda_{c})_{jk} \iff \square$
 3^{*}
For the N²-1 of su(N) [for su(3), $g = \square$]
there is a brich. This is the adjoind rep of su(N)
dende it by $(T_{c})_{bc}$
 $g \mapsto T_{code} \qquad g \times g$
Claim: $(T_{a})_{bc} = -C_{abc}$, $w \equiv X_{a}, X_{b}] = C_{abc} \times c$
where $\sum_{(a,b,d)}^{7} C_{abc} \subset C_{cd} + = 0$
(Junki)

$$\left(\begin{bmatrix} T_a, T_b \end{bmatrix} \right)_{d+} = \left(T_a \right)_{de} \left(T_a \right)_{de} \left(T_a \right)_{e+} - \left(T_b \right)_{de} \left(T_a \right)_{e+} \right)$$

$$= + C_{ade} C_{bd} - C_{bde} C_{ae} + C_{bde} C_{ae} + C_{bde} C_{ae} + C_{bde} C_{ae} + C_{bde} C_{d} + C_{bd} + C_{bde} C_{d} + C_{bd} +$$

For
$$\mathfrak{su}(\mathfrak{I})$$
, stradin constands are ifase
 $\Rightarrow (T_a)_{bc} = -if_{abc}$ for & \mathfrak{F} su(3)
Compare to $\mathfrak{su}(\mathfrak{I})$: Aradiae constands are $i\mathcal{E}_{\mathcal{I}\mathcal{L}\mathcal{L}}$
 $\Rightarrow (T_{\mathcal{I}})_{bl} = -i\mathcal{E}_{\mathcal{I}\mathcal{L}\mathcal{L}}$