Sportancous Symmetry Breaking
The procedure in condrading gange thewies has been successfal for both eletrongrgitic and steng farces. In attersting this condrugtion for the weck iltuadim, we arive ot a protlen in thet the surpeted gange bosos, the $W^{ \pm}$and Z°, are massive. we know from $O E D \& Q C D$ RS mas torns are not allowed as the biesk gange invarince,
c.s.,

$$
\begin{gathered}
m_{A}^{2} A_{\mu} A^{m} \underset{\cup(1)}{\rightarrow} m_{A}^{2}\left(A_{\mu}-\frac{1}{\varepsilon} \partial_{\mu} \alpha\right)\left(A^{n}-\frac{1}{\varepsilon} \partial^{n} \alpha\right) \\
\not \neq m_{A}^{2} A_{\mu} A^{n}
\end{gathered}
$$

There is a mechanism, howeer, to raduce ras turs as a consequace f otitudions. The undulyiy festre is the the vacum is nat duvaiat uder the syantr,

Simple example - Corpress a cylindrical stich

This is called "spontaneous synntry breaching" w "hidden symmetry". LI's stat with a simple field theory with disore symadry breaking.

Discrete S, ametry Breaking
Real classical scalar field

$$
\mathcal{Z}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi \mp \frac{1}{2} \mu^{2} \varphi^{2}-\frac{\lambda}{4!} \varphi^{4} \quad, \lambda>0
$$

then,
\longrightarrow two passible sis is

$$
\text { - upper sign } \Rightarrow \mu=\text { mass }
$$

- lower sign \Rightarrow uppanes usability

$$
H=\frac{1}{2}\left(\partial_{0} \varphi\right)^{2}-\frac{1}{2}(\vec{\nabla} \varphi)^{2}+U(\varphi)
$$ "taclymic" nears ir

with potatial $U(\varphi)= \pm \frac{1}{2} r^{2} \varphi^{2}+\frac{\lambda}{4!} \varphi^{4}$

$$
=\frac{\lambda}{4!}\left(\varphi^{2} \pm a^{2}\right)^{2}-\frac{\lambda}{4!} a^{4}
$$

This Thew 7 has a dixreीe symnert

$$
\varphi \rightarrow-\varphi
$$

Lovest enorgy dेte, "vacuun", has $\varphi=$ const. denated $\langle\varphi\rangle \equiv\langle 0| \varphi|0\rangle$
\longrightarrow vacuun expedtion value $\langle\varphi\rangle$ os determined by minimun $f v(\varphi)$.

- Fa upps sign, $U(\varphi)=\frac{\lambda}{4!}\left(\varphi^{2}+a^{2}\right)^{2}-\frac{1}{4!} a^{4}$

is min. of $U(\varphi)$ and $f($

In this case, symnety is evidet in ground state
\Rightarrow Quatization gives usual stto Elles. fid pañicle of mass μ.

- For lower sign, $U(\varphi)=\frac{\lambda}{4!}\left(\varphi^{2}-a^{2}\right)^{2}+$ const.

Now find 3 extrenc: $\langle\varphi\rangle=0, \pm a$
There an 2 minima. Due to symetry, choice f $\langle\varphi\rangle=+a$ w $\langle\varphi\rangle=-a$ is irrelevat.
B9, must pich one!
\Rightarrow Sportoneously break discrete syrnety

To have QFT, and petublion themy, rud cleose stadle ninimn. Pich $\langle\varphi\rangle=+a$

Then, can wnite $\varphi(x)=a+\rho(x)$

$$
\begin{aligned}
\Rightarrow U(\varphi) \rightarrow U(\rho)= & \frac{\lambda}{4!}\left(2 a \rho+\rho^{2}\right)^{2}+\text { cant } \\
= & \frac{\lambda_{a}^{2}}{\frac{\lambda}{G}} \rho^{2}+\frac{\lambda a}{6} \rho^{3}+\frac{\lambda}{4!} \rho^{4} \\
& =\mu^{2} \rho^{2}+\frac{\lambda a}{6} \rho^{3}+\frac{\lambda}{4!} \rho^{4}
\end{aligned}
$$

So, in Turrs f peतturbative field $p(x)$,
see have paitides with mass $\sqrt{2} \mu$

739, also have a cubic aferation
\Rightarrow Difficull to see discrcte symnetry!

$$
\begin{aligned}
\varphi \rightarrow-\varphi \Rightarrow a+\rho & \rightarrow-a-\rho \\
& \Rightarrow a \rightarrow-a, \rho \rightarrow-\rho
\end{aligned}
$$

The 2 forms f are equiuder, bS a sirple Field transforndion secus to be changing plysics!
Total plysics is the sare, 69 cand solve full themy. 15t fan of \mathcal{L}
\Rightarrow Nonconvigat petcubsion theary
\Rightarrow Canred pitcue of plysics
\Rightarrow slifted fidd cround true vacuno $|a\rangle$ gives peturlition theary.

Codinuous Symntry Breaking
Conside Complex scalar fied.

$$
\mathcal{L}=\partial_{\mu} \varphi^{*} \partial^{\mu} \varphi+\mu^{2} \varphi^{*} \varphi-\frac{\lambda}{3!}\left(\varphi^{*} \varphi\right)^{2}
$$

\uparrow Nare! wrang sign
Recall:

$$
\left.\begin{array}{l}
\varphi=\frac{1}{\sqrt{2}}\left(\varphi_{1}+i \varphi_{2}\right) \\
\varphi^{*}=\frac{1}{\sqrt{2}}\left(\varphi_{1}-i \varphi_{2}\right)
\end{array}\right\} \quad \varphi^{4} \varphi=\frac{1}{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)
$$

Sor

$$
\begin{aligned}
Z=\frac{1}{2} \partial_{r} \varphi_{1} \partial^{m} \varphi_{1} & +\frac{1}{2} \partial_{\mu} \varphi_{2} \partial^{m} \varphi_{2} \\
& +\frac{1}{2} \mu^{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)-\frac{\lambda}{4!}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
U\left(\varphi_{1}, \varphi_{2}\right)= & -\frac{1}{2} \mu^{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)+\frac{\lambda}{4!}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2} \\
= & \frac{\lambda}{4!}\left(\varphi_{1}^{2}+\varphi_{2}^{2}-a^{2}\right)^{2}+\frac{\lambda}{4!} a^{4} \\
& \square a^{2}=\frac{6 \mu^{2}}{\lambda}
\end{aligned}
$$

This theory has a global $U(1)$ invariance

$$
\varphi \rightarrow \varphi^{\prime}=e^{i \Lambda} \varphi \quad, \Lambda \in \mathbb{R} \text { canst. }
$$

or,

$$
\binom{\varphi_{1}}{\varphi_{2}} \rightarrow\binom{\varphi_{1}^{\prime}}{\varphi_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \Lambda & -\sin \Lambda \\
\sin \Lambda & \cos \Lambda
\end{array}\right)\binom{\varphi_{1}}{\varphi_{2}}
$$

The pôctial surface looks like

Any vertical section

As before, choice f vacuum is irrelevar to physics, bY must be made.

Ring f minima at $\varphi_{1}{ }^{2}+\varphi_{2}^{2}=a^{2}$
\Rightarrow choose $\left\langle\varphi_{1}\right\rangle=a,\left\langle\varphi_{2}\right\rangle=0$ for definiteness

Spontaneously broken U(1) symanty
Shift fields to minimum

$$
\begin{aligned}
\varphi_{1}(x) & =a+\rho_{1}(x) \\
\varphi_{2}(x) & =\rho_{2}(x) \\
\Rightarrow U\left(\rho_{1}, \rho_{2}\right) & =\frac{\lambda}{4}\left(2 a \rho_{1}+\rho_{1}^{2}+\rho_{2}^{2}\right)^{2} \\
& =\frac{\lambda a^{2}}{6} \rho_{1}^{2}+\frac{\lambda a}{6} \rho_{1}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)+\frac{\lambda}{4!}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)^{2}
\end{aligned}
$$

\rightarrow mass tom, $\sqrt{2} \mu$, for ρ_{1}

Naice how hidden symadey is in this case. Notice also 10 mass term for ρ_{2} !

Intuitively: "flat" direction in potential
\Rightarrow zero mass mode

mass

mass ir
mass 0

The appearance f a massless mode is a charaloriftic of broken covinuous symmetry. To see in a different way, define

$$
\varphi(x)=\frac{1}{\sqrt{2}} r(x) e^{i \theta(x)}
$$

w, $\varphi_{1}(x)=\sigma(x) \cos \theta(x)$

$$
\varphi_{2}(x)=r(x) \sin \theta(x)
$$

in terms $f 2$ other real fields $r(x), \theta(x)$

$$
\Rightarrow \quad \mathcal{Z}=\frac{1}{2} \partial_{\mu} r \partial^{\mu} r+\frac{1}{2} r^{2} \partial_{\mu} \theta \partial^{\mu} \theta-U(r)
$$

$U(1)$ chvariance $\Leftrightarrow U(r, \theta)=U(r)$ orly with $U(r)=\frac{1}{4!}\left(r^{2}-a^{2}\right)^{2}+\cos 9$.

Take vacuum it $\langle r\rangle=a,\langle\theta\rangle=0$
Dive shifted fields

$$
\begin{gathered}
r=a+\rho \\
\theta=\theta \\
\Rightarrow \mathcal{Z}=\frac{1}{2} \partial_{\mu} \rho \partial^{\mu} \rho+\frac{1}{2}(a+\rho)^{2} \partial_{\mu} \theta \partial^{\mu} \theta-U(a+\rho)
\end{gathered}
$$

Can see that $\theta(x)$ panicles are massless because $U(a+\rho)$ incleperde θ f θ.
These massless modes are called "Goldstone buscens" ar "Nambu-Goldstare bosons".

Consider another example with mare then ane NG bosun. N real scalar fields $\varphi_{j}(x), j=1, \ldots, N$

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi_{j} \partial^{m} \varphi_{j}+\frac{1}{2} \mu^{2} \varphi_{j} \varphi_{j}-\frac{\lambda}{4!}\left(\varphi_{j} \varphi_{j}\right)^{2}
$$

\longrightarrow Nate!

$$
\begin{aligned}
& \Rightarrow U\left(\varphi_{j}\right)=-\frac{1}{2} \mu^{2} \varphi_{j} \varphi_{j}+\frac{\lambda}{4!}\left(\varphi_{j} \varphi_{j}\right)^{2} \\
&=\frac{\lambda}{4!}\left(\varphi_{j} \varphi_{j}-a^{2}\right)^{2}+\text { irrelevant cons. } \\
& \longmapsto a=\sqrt{\frac{6 \mu^{2}}{\lambda}}
\end{aligned}
$$

This Theory is union under global $O(N)$ rotations

$$
\begin{aligned}
\varphi_{j} \rightarrow \varphi_{j}^{\prime}= & U_{j k} \varphi_{k} \\
& \cup_{j k} \in O(N), U U^{\top}=1
\end{aligned}
$$

$O(N)$ has $\frac{1}{2} N(N-1)$ gueatars
\Rightarrow Corresponding α^{a} real cont. parameters
Minima $f \quad U\left(\varphi_{j}\right)$ lie an surface $\varphi_{j} \varphi_{j}=a^{2}$.
The is a genadizdion f ring f minima in $U(4)$ example where $N=2$ \& minima formed S^{1}.
Here, have $O(N)$ and minima form S^{N-1}

Pick a vacuum: $\left\langle\varphi_{N}\right\rangle=a$

$$
\left\langle\varphi_{j}\right\rangle=0 \quad f_{o} \quad j=1, \ldots, N-1
$$

New feature on this example, vacuum is invaion under a nontrivial catinuous symmetry group $O(N-1)$

Shift as before

$$
\begin{aligned}
& \varphi_{N}=a+\rho_{N}(x) \\
& \varphi_{j}=\rho_{j}(x) \quad f_{N} j=1, \ldots, N-1
\end{aligned}
$$

So we find

$$
\begin{aligned}
U\left(\rho_{j}\right) & =\frac{\lambda}{4!}\left(2 a \rho_{N}+\rho_{j} \rho_{j}\right)^{2} \\
& =\underbrace{\frac{\lambda a^{2}}{6}}_{\mu^{2}} \rho_{N}^{2}+\frac{\lambda a}{6} \rho_{N}\left(\rho_{j} \rho_{j}\right)+\frac{\lambda}{4!}\left(\rho_{j} \rho_{i}\right)^{2}
\end{aligned}
$$

We see this ρ_{N} has acquired mass $\sqrt{2} \mu$, bit the other $N-1$ particles are NG modes.

Notice th 9
Nuncle f gueatars $f O(N)=\frac{1}{2} N(N-1)$
Nundor f guvnors $f^{\prime} O(N-1)=\frac{1}{2}(N-1)(N-2)$

$$
\begin{aligned}
& \Rightarrow \text { Diffence }=N-1 \leftrightarrow \text { Not a coincidence } \\
& \text { s } N G \text { bosons }=N-1 \leftarrow
\end{aligned}
$$

Can understand this as follows:
7. Have theory with petal O numina under some continuous group G with N generous
2. Vacuun solfition is invaiont under HCG with M genertions.
$\Rightarrow N-M$ genegors trmeforn the vacuun naitrivially
3. Passing through $\langle\varphi\rangle$ is an $(N-M)$-dimensional surtace of contac \cup.
4. \Rightarrow must be $N-M$ marsless modes $=N G$ males, are for each dinersion.

The gural result is called Goldstares thenem
Goldstanc's Thecren
Given a local, pasitive defmite, \& Lorentz inuanian field theary with a local canserved curred ∇^{μ} witt an ussociated charge Q Not annihilaing the vacunm, then the theng contains masstess modes (NG)

This noivet, looks uscless as there are no massleas bosous obscried on natwe. Bit, ther cre two itreting cases not couverel by usual axions.

- Chiral sy-ntry f OCD is spentareondy brolen,

$$
\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \rightarrow \mathrm{SU}(3)_{V}
$$

So, exped $3^{2}-1=8$ Goldstwes Losens. Bit, this spmatr is uppeocintle, so expicit brealing gives masses to the NG rodes. Tese hadions, the pscudoscalw oेct, we unstuall? ligit corpored with other haderes \Rightarrow The) $p l a y$ a specied role de chival syanntry breakiog.

- Gange theares are accètale fiedd thenies thit diot obey usual uxions \rightarrow Cannt malee gagge choice with both positive definiteness \& Lavaz invarance. Also, thearen says Nify of dserubility f the NG modes.

Highs Mechanism

Next we consider SSB f a local synndry.
Consider Scalar Eledrodynanics with "wrong sign" mass term, which is Known as the Abelian Hings Model.

$$
\mathcal{Z}=\left(D_{\mu} \varphi\right)^{*}\left(D^{\wedge} \varphi\right)+\mu^{2} \varphi^{*} \varphi-\frac{\lambda}{3!}\left(\varphi^{*} \varphi\right)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

where $D_{\mu} \varphi=\partial_{\mu} \varphi+i q A_{\mu} \varphi$

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

This theory is locally hurasiont under $U(1)$ gauge trensforngions

$$
\begin{aligned}
\varphi & \rightarrow e^{i \alpha(x)} \varphi \\
D_{\mu} \varphi & \rightarrow e^{i \alpha(\alpha)} \varphi \\
A_{\mu} & \rightarrow A_{\mu}-\frac{1}{\varepsilon} \partial_{\mu} \alpha
\end{aligned}
$$

Repeat envier discussion an "polar" fields

$$
\begin{aligned}
\varphi(x) & =\frac{1}{\sqrt{2}} r(x) e^{i \theta(x)} \\
\Rightarrow D_{\mu} \varphi & =\frac{1}{\sqrt{2}}\left(\partial_{\mu} r+i r \partial_{\mu} \theta+i q r A_{\mu}\right) e^{i \theta}
\end{aligned}
$$

So $\left(D_{\mu} \varphi\right)^{r}\left(D^{\mu} \varphi\right)=\frac{1}{2} \partial_{\mu} r \partial^{\mu} r+\frac{1}{2} r^{2}\left(\partial_{\mu} \theta+\varepsilon A_{r}\right)^{2}$

So,

$$
\mathcal{Z}=\frac{1}{2} \partial_{\mu} r \partial r r+\frac{1}{2} r^{2}\left(\partial \mu+\varepsilon A_{\mu}\right)^{2}-\frac{\lambda}{4!}\left(r^{2}-a^{2}\right)^{2}-\frac{1}{4} F_{\mu u} F^{\sim v}
$$

with $a=\sqrt{\frac{6 \mu^{2}}{\lambda}}$

The minimum f partial give vacuum at

$$
\left\langle A_{\mu}\right\rangle=0,\langle\theta\rangle=0,\langle r\rangle=a
$$

Define shifted fields

$$
\begin{aligned}
& A_{\mu}(x)=A_{\mu}(x) \\
& \theta(x)=\theta(x) \\
& r(x)=a+\rho(x) \\
& \Rightarrow Z=\frac{1}{2} \partial_{\mu} \rho^{\mu} \rho-\frac{1}{2}(a+\rho)^{2}\left(\partial_{\mu} \theta+q A_{\mu}\right)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu v} \\
&-\frac{\lambda a^{2}}{6} \rho^{2}-\frac{\lambda a}{6} \rho^{3}-\frac{\lambda}{4!} \rho^{4}+\text { con } \partial
\end{aligned}
$$

mass ter!
Nice the $\frac{1}{2}(a+\rho)^{2}\left(\partial_{\mu} \theta+\varepsilon A_{\mu}\right)^{2} \supset \frac{1}{2} a^{2} \varepsilon^{2} A, A^{\mu}$

$$
+a q \partial_{r} \theta A^{m}
$$

So r appanit mass terms are as follows

$$
m_{p}=\sqrt{2} \mu, m_{A}=a q, m_{\theta}=0
$$

But, there is a hand-to-ituprot mixing term

$$
a^{2} q \partial_{\mu} \theta A^{m} ? ? ?
$$

To gain ignition about this tern, take advantage af frecelom to make gauge transformations.
Recall the' gauge transformations doit change physics!
So,

$$
\begin{aligned}
& \mathcal{L} \supset\left(\partial_{\mu} \theta+q A_{\mu}\right)^{2}-\frac{1}{4} F_{\mu v} F^{\sim \nu} \\
& \longrightarrow \operatorname{suj}^{u}{ }^{\sim} \\
& \left(\partial_{\mu} \theta^{u}+\varepsilon A_{\mu}^{u}\right)^{2}-\frac{1}{4} F_{\sim v}^{u} F^{u \mu v}
\end{aligned}
$$

Shim

$$
\text { b) } 0
$$

where expibly, $A_{\mu} \rightarrow A_{\mu}^{U}=A_{\mu}-\frac{1}{\varepsilon} \partial_{\mu} \alpha$

$$
\begin{aligned}
& \rho \rightarrow \rho \\
& \theta \rightarrow \theta^{v}=\theta+\alpha
\end{aligned}
$$

Now, can pitch an $\alpha(x)$. (Is pich $\alpha(x)=\theta(x)$ So, $\theta^{0}=0$

$$
q A_{r}^{U}=q A_{\mu}-\partial_{r} \theta
$$

Therefore,

$$
\begin{aligned}
& \mathcal{L}^{u} \partial\left(q A_{\mu}^{u}\right)^{2}-\frac{1}{4} F_{\mu v}^{u} F^{u \mu v} \\
& \Rightarrow \mathcal{L}= \frac{1}{2} \partial_{\mu} \rho_{\mu}^{\mu}+ \\
&-\frac{1}{2}(a+p)^{2} q^{2} A_{\mu}^{u} A^{u \mu} F^{u \mu v}-U(a+p)
\end{aligned}
$$

In this gage, whir is physically the same as others, we see the
(1) θ has "disappeared" \Rightarrow No $N G$ boson!
(2) gauge field is massive!

$$
m_{1}=q a
$$

The gauge trmsfarnotion has removed confusing mixing terns. Sonctimes people say "massless veter has eaten the NG boson, thereby gaits mass:" Really we pichal "crapper" coordinates, and true physics is in "yod" coardingtas.
"Before" 2 scalar $r, \theta \Rightarrow$ "After" 1 scalar ρ
2 panizalicas $f A_{\mu}$ 3 polanztions of A, 4 def \Rightarrow 4 dat

This special choice of gage is called mitary gauge. The mechousm is called the Hiss Mechanism.

$$
\begin{aligned}
& \text { Nobel '13 } \begin{array}{r}
\text { Envlert } \\
\text { Figs }
\end{array}, \text { Brow }^{+} \\
& \text {Gwalnick', Huge, Kibble }^{+}
\end{aligned}
$$

of course, firs formulded by Anderson in 1962.
The Leftover boson ρ (massive) is called Hings Boson Soretires, all bosons involved, $(p, \theta)=\varphi$ are called thess bosons.

The sure mechanism works in Nondbelion case

$$
\begin{aligned}
& \mathcal{L} \supset\left(D_{\mu} \varphi\right)^{*}\left(D^{\mu} \varphi\right) \\
& \left(D_{\mu} \varphi\right)_{j}=\partial_{\mu} \varphi_{j}+i g A_{\mu}^{a}\left(T_{a}\right)_{j k} \varphi_{k}
\end{aligned}
$$

So,

$$
\mathcal{L} \supset\left(-i g A_{\mu}^{a}\left(T_{c}\right)_{j h} \varphi_{k}^{*}\right)\left(i g A^{\mu a}\left(T_{a}\right)_{j l} \varphi_{l}\right)
$$

if $\varphi \rightarrow\langle\varphi\rangle$
This becomes $\mathcal{Z} \gtrsim\langle\varphi\rangle^{\wedge}\langle\varphi\rangle A_{\mu} A^{n}$

Con pich the mitory gaye t. kill mixing terns. Note the remaining ubbroken guengors (if ang) can have a unbioluen gange group with correspading majsless gange fields.

The quatization f the Aldim Hisss model follows as Levere, excin we need to defie the quatiztion with respegt to the true vacumon, attor $S S B$. The gayge-fied picce is

$$
\begin{aligned}
i S & \supset i \int \partial^{r} \times \frac{1}{2} A_{\mu}\left[\left(\partial^{2}+m_{1}^{2}\right) g^{\mu \nu}+\partial^{\mu} \partial^{v}\right] A_{v} \\
& \equiv i \int d^{\mu} \times\left(-\frac{1}{2} A_{\mu}\left(D^{-1}\right)^{\mu v} A_{\nu}\right)
\end{aligned}
$$

There are no inuusion proslems as for masless vedor bosas,
So,

$$
D_{\mu \nu}=-\frac{i}{\varepsilon^{2}-m_{A}^{2}}\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{m_{A}^{2}}\right)
$$

with $m_{A}=q a$
propagtar in mitory gange

The unitory ginge is comuint far tree caed calcultias. For loap caredias, the $q^{n} q^{u}$ tern corpictes thays (OU belavion). The care iden was to renove the mixily tor $\partial, \theta A^{\text {m }}$ by f ixing the gaige such the the fiald θ is part f the gange tronstornation.

$$
\varphi=\frac{1}{\sqrt{2}} r e^{i \theta} \underset{\sin }{\rightarrow} \frac{1}{\sqrt{2}}(a+r) e^{i \theta}
$$

mitupg-ye $\Rightarrow \varphi \rightarrow e^{i \alpha} \varphi$, where $\alpha=-\theta$
Can also chooce t. $f \times$ gange by using R_{ε} procedure. Recall this after SSB

$$
\begin{gathered}
Z=\frac{1}{2} \partial_{\mu} \rho \partial^{\mu} \rho-\frac{1}{2}(a+\rho)^{2}\left(\partial_{\mu} \theta+q A_{\mu}\right)^{2}-\frac{1}{4} F_{\mu \nu} F^{\sim \nu} \\
-\frac{\lambda a^{2} \rho^{2}-\frac{\lambda a}{6} \rho^{3}-\frac{\lambda}{4!} \rho^{4}+c_{0 N}}{}
\end{gathered}
$$

$\sqrt{\text { Need }}$ to rave rixily
Mixing tom $\mathcal{L} \partial-q a^{2} A_{\mu}\left(\partial_{\mu} \theta+\varepsilon A_{\mu}\right)$

A snitdle gaye choice $\Rightarrow G\left(A_{\mu}\right)=\gamma_{\mu} A_{\mu}+q u \xi \theta=0$

Implead with gäge－fixing tun

$$
\begin{gathered}
\mathcal{L}_{\text {gif. }}=-\frac{1}{2 \xi}\left(\partial^{m} A_{\mu}+\xi q a \theta\right)^{2} \quad-\frac{1}{2} \xi(q a)^{2} \theta^{2} \\
\longrightarrow \text { mixhy tor }
\end{gathered}
$$

\longrightarrow mixing torn

$$
\begin{aligned}
& =-q a\left(\partial_{\mu} A^{\sim}\right) \theta \\
& =+q a A r \partial_{\mu} \theta
\end{aligned}
$$

ser adding this t ，Lagrange density
removes mixing tern．N⿰亻⿱丶⿻工二灬力灬 from Faldeer－Popiv need to add ghod tum ter．Si，so Hisss bose ρ with sure mass $\sqrt{2} \mu$ ，and θ ， The would－be NG rale，now has a gange－depended mass，$m_{\theta}{ }^{2}=2(q a)^{2}$ ．The gauge propagiv is now

$$
\begin{array}{r}
D_{\mu \nu}=\frac{-i}{\varepsilon^{2}-m_{A}^{2}}\left(y_{\mu v}-(1-z) \frac{q_{\mu} q_{u}}{\varepsilon^{2}-2 m_{A}^{2}}\right) \\
\mapsto R_{\xi-g_{n} n g e \text { propagJor }}
\end{array}
$$

The miter gauge is recovered an $Z \rightarrow \infty$ ．

1Turetingly, the ghor fiedds do not couple to A_{μ} fied dorect?, sT to p-field.

Inlued, $G\left(A_{\mu}\right)=\partial^{\mu} A_{\mu}+q a \xi \theta=0$
\& ualu infintesinal gaye tronforstim

$$
\begin{aligned}
& \varphi \rightarrow(1+i \alpha) \varphi \\
\Rightarrow \quad & \delta A_{\mu}=-\frac{1}{q} \partial_{\mu} \alpha
\end{aligned}
$$

bT also, since $\varphi=\frac{1}{\sqrt{2}}(a+\rho) e^{i \theta} \simeq \frac{1}{\sqrt{2}}(a+\rho+i a \theta)$

$$
\begin{aligned}
\Rightarrow \delta \rho & =-a \alpha \theta \\
\text { ad } \delta \theta & =(a+\rho) \alpha
\end{aligned}
$$

So,

$$
\frac{\delta G}{\delta \alpha} \sim-\partial^{2}-\xi m_{A}^{2}(1+p / a)
$$

si, gloIt tom

$$
\operatorname{de}\left(\varepsilon \frac{\delta G}{\delta \alpha}\right)=\int D c D \bar{c} e^{i \int d^{4} x \bar{c}\left[-\partial^{2}-2 m_{A}^{2}-z \varepsilon^{2} a \rho\right] c}
$$

so, Feparm Rules are

$$
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots h_{k}^{h^{2}-3 m_{A}^{2}}
$$

$$
\|_{c}^{\rho} \sim-i 3 \varepsilon^{2} a
$$

See that good has gange-depuder pass, and situation with Hiss. In mitaity gauge, $\xi \rightarrow \infty$, then the ghost is ∞-heavy, and decouples form theory. Likewise, the NG boson decouples, leaving what we have before.

