The Standard Model of Paticle Phisics
We have cone to the poltr wher we ca cantrnd the Standard Model, which is an $S U(3)_{c} \times S U(2)_{2} \times U(1)_{y}$ gange theary describing eleotroveck and trang forces. It is langel, based an wiS has been alreedy discassed, with sore marfications. To begh, GIs simply add the quarhs to the Eledravede Madel f leptias, and cusiter the stroyg gluan physics afterwand.

Eledroweak Model f Quades \& Lentans
Recall thit the (mbrokn) $S U(2)_{L} \times U(4)_{y}$ thean f leतtas is

$$
\begin{aligned}
Z_{E \omega} & =-\frac{1}{4} \omega_{\mu \nu}^{a} \omega^{\mu \nu a}-\frac{1}{4} B_{\mu \nu} B^{\mu v} \\
& +\frac{1}{2} i \tau_{A} \nabla L_{A}+\frac{1}{2} i \bar{R}_{A} \nabla R_{A}+h, c \\
& +\left(D_{\mu} \phi\right)^{+}\left(D^{\mu} \phi\right)+\mu^{2} \phi^{+} \phi-\frac{\lambda}{3!}\left(\phi^{+} \phi\right)^{2} \\
& -G_{A}^{L}\left[\bar{R}_{A}\left(\phi^{+} L_{A}\right)+\left(L_{A} \phi\right) R_{A}\right]
\end{aligned}
$$

To add quarks, we mind seccify how they trasforn under $\operatorname{SUC}(2)_{L} \times(1)_{y}$.

$$
\begin{array}{cccccc}
\text { Field } & S U(2)_{L} U(1)_{Y} & T & T_{3} & Y & Q=T_{3}+\frac{1}{2} Y \\
\hline Q_{A}=\binom{u_{A}}{d_{A}}_{L} & \stackrel{2}{\sim} 1 / 2 & 1 / 2 & 1 / 2 & +1 / 3 & +2 / 3 \\
U_{A}=u_{A R} & \underset{\sim}{1} 4 / 3 & 0 & 0 & +4 / 3 & +2 / 3 \\
D_{A}=d_{A} & \underset{\sim}{2}-2 / 3 & 0 & 0 & -2 / 3 & -1 / 3
\end{array}
$$

The couarici cluivative is the same as before (bis nate Qunton numbers). We then add the fillowing extron terrs to $\mathcal{L}_{\text {EW }}$

$$
\begin{aligned}
& \mathcal{Z}_{E L \text { qualk }}=\frac{1}{2} i \bar{Q}_{A} \nabla Q_{A}+\frac{1}{2} i \bar{U}_{A} \nabla U_{A}+\frac{1}{2} i \bar{D}_{A} \nabla D_{A}+\text { h.c. } \\
& -G_{A}^{D}\left[\bar{D}_{A}\left(\phi^{+} Q_{A}\right)+\left(\bar{Q}_{A} \Psi\right) D_{A}\right] \\
& -G_{A}^{u}\left[\bar{U}_{A}\left(\underset{\sim}{\phi^{c+} Q_{A}}\right)+\left(\bar{Q}_{A} \phi_{\uparrow}^{c}\right) U_{A}\right] \\
& d=\binom{\Phi^{+}}{\Phi^{0}}, \Phi^{c}=\binom{\Phi^{\circ}}{\Phi^{-}}
\end{aligned}
$$

\longrightarrow appeanace araltans $\operatorname{sU}(2)_{L} \in \cup(1)_{Y}$

The torn show are mod general, up possible Yahown mixing (see soon). No mass tors for the quarks (t. preserve $\left.S U(2)_{1}\right)$ \& no cross Yuhawa intortions between leptons ad quarks.
C.g: $\bar{R}_{A}\left(\Phi^{+} Q_{A}\right)$ - NS possible under $\operatorname{SU}(2)_{L} \otimes U(1)_{Y}$! $Y:+2-1+\frac{1}{3} \neq 0$

We previous 7 had 7 parang Doss, $g, g^{\prime}, \mu, \lambda, G_{A}^{L}$, Now have added 6 mare: G_{A}^{U}, G_{A}^{D}.

Masses for equals cone from SSB, as before

$$
\begin{aligned}
& G^{D} \text { turn }: \mathcal{Z}_{\text {Yubave }^{D}}^{D}=-\frac{1}{\sqrt{2}} G_{A}^{D}\left[\bar{d}_{R_{A}}(0, r)\binom{u_{A_{l}}}{d_{A_{C}}}\right. \\
& \left.+\left(\bar{u}_{L_{A}}, \bar{d}_{L_{A}}\right)\binom{0}{r} d_{R_{A}}\right] \\
& =-\frac{1}{\sqrt{2}} G_{A}^{D} r \bar{d}_{A} d_{A} \\
& \Rightarrow m_{d_{1}}=\frac{1}{\sqrt{2}} G_{1}^{D} a
\end{aligned}
$$

Far G_{A}^{U}, nead ϕ^{c} in Uitory gaye

$$
\phi^{c}=\frac{1}{\sqrt{2}}\binom{r}{0}
$$

So,

$$
\begin{aligned}
\mathcal{L}_{4, L a \sim}^{u} & =-\frac{1}{\sqrt{2}} G_{A}^{u}\left[\bar{u}_{R_{A}}(r, 0)\binom{u_{L} A}{d_{L A}}+\text { L.c. }\right] \\
& =-\frac{1}{\sqrt{2}} G_{A}^{u} r \bar{u}_{A} u_{A} \\
\Rightarrow m_{v_{A}} & =\frac{1}{\sqrt{2}} G_{A}^{u} a
\end{aligned}
$$

For the quarks \& Letons, we chose nen-rixiy Yukank intondims. What of they are not diegand?
i.c.,

$$
\begin{aligned}
\mathcal{L}_{\text {yakar }} & =-G_{A B}^{L}\left[\bar{R}_{A}\left(\phi^{+} L_{B}\right)+\left(\bar{L}_{B} \phi\right) R_{A}\right] \\
& -G_{A B}^{U}\left[\bar{U}_{A}\left(\phi^{c} Q_{B}\right)+\left(\bar{Q}_{B} \phi^{c}\right) U_{A}\right] \\
& -G_{A B}^{D}\left[\bar{D}_{A}\left(\phi^{+} Q_{B}\right)+\left(\bar{Q}_{B} \phi\right) D_{A}\right]
\end{aligned}
$$

her, $A \neq B$ gives mixing.

After SSB, get noritrivid mass matrices

$$
\begin{aligned}
\mathcal{Z}_{\text {rars }} & =-\frac{1}{\sqrt{2}} G_{A B}^{L} a \bar{l}_{R_{A}} l_{L_{B}}+\text { h.c. } \\
& -\frac{1}{\sqrt{2}} G_{A B}^{U} a \bar{u}_{R_{A}} u_{L_{B}}+\text { h.c. } \\
& -\frac{1}{\sqrt{2}} G_{A B}^{D} a{\overline{l_{R_{A}}} d_{L_{B}}}^{0}+\text { h.c. }
\end{aligned}
$$

Physical mass opertors can be found by dingaralizing as uswal. Need 3×3 unitary motrix for each corpan f the field $\quad \longrightarrow 3$ genotions

Dune mass eguides w/ hot
Dive 73×3 matices to adieve thos,

$$
\begin{array}{ll}
l_{L_{A}}=\left(U_{L}^{l}\right)_{A B} \hat{l}_{L_{B}} & u_{L_{A}}=\left(U_{L}^{u}\right)_{A B} \hat{u}_{L B} \\
l_{R_{A}}=\left(U_{R}^{l}\right)_{A B} \hat{l}_{R_{B}} & u_{R_{A}}=\left(U_{R}^{n}\right)_{A B} \hat{u}_{R B} \\
V_{L_{A}}=\left(U_{L}^{v}\right)_{A B} \hat{L}_{L_{B}} & d_{L A}=\left(U_{L}^{d}\right)_{A B} \hat{l}_{L B} \\
& d_{R_{A}}=\left(U_{R}^{d}\right)_{A B} \hat{d}_{R_{B}}
\end{array}
$$

Naice thit there cre no possible mass tew for the neutrims in this theary. Tharfon, we can choose ary $\left(U_{L}{ }^{\nu}\right)_{A B}$.

W'S choose $\left(U_{L}^{l}\right)_{A B}=\left(U_{L}^{l}\right)_{A B}$,
So the $L_{A}=\binom{v_{2 A}}{l_{L A}}=\left(\cup_{L}^{l}\right)_{A B}\binom{\hat{v}_{L B}}{\hat{l}_{2 B}}$

$$
=\left(U_{L}^{\ell}\right)_{A B} \hat{L}_{B}
$$

Howeur, far the quark dosis Q, we hove

$$
\begin{aligned}
Q_{L A}=\binom{u_{L A}}{d_{L A}} & =\binom{\left(U_{L}^{u}\right)_{A B} \hat{u}_{L D}}{\left(U_{L}\right)_{A B}} \\
& =\left(U_{L}^{u}\right)_{A B}\binom{\hat{u}_{L B}}{\hat{d}_{L B}}
\end{aligned}
$$

whor,

$$
\begin{aligned}
\hat{d}_{L A}^{\prime} & =\left[\left(U_{L}^{u}\right)^{\dagger}\left(U_{L}^{d}\right)\right]_{A B} \hat{d}_{L B} \\
& \equiv V_{A B} \hat{d}_{A B}
\end{aligned}
$$

\longrightarrow Casibbo-Kobyyarhi-Mashowa (CKM) ndix

The CKM motrix is a 3×3 mitrix

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

Suppresily A, B gavetion ardices, we have

$$
\begin{array}{ll}
L=U_{L}^{l} \hat{L} & R=U_{R}^{l} \hat{R} \\
Q=U_{L}^{u} \hat{Q}^{\prime} & U=U_{R}^{u} \hat{U} \\
& D=U_{R}^{l} \hat{D}
\end{array}
$$

Substitute thos i9o $Z_{\text {Ew }}$ to express it in Tuans f mass eigngनेics,

$$
\begin{aligned}
& L_{E \omega}=-\frac{1}{4} B_{\mu \nu} B^{n \nu}-\frac{1}{4} \omega_{\omega \nu}^{a} W^{a v a} \\
& +\left(D_{\mu} \phi\right)^{+}\left(D^{\mu} \phi\right)+\mu^{2} \phi^{+} \phi-\frac{\lambda}{3!}\left(\phi^{+} \phi\right)^{2} \\
& +\frac{i}{2} \bar{\imath} D \hat{\imath}+\frac{i}{2} \overline{\hat{R}} D \hat{R}+h \cdot c \\
& +\frac{i}{2} \overline{\hat{Q}}^{\prime} D \hat{Q}^{\prime}+\frac{i}{2} \overline{\hat{O}} \nabla \hat{O}+\frac{i}{2} \hat{D} D \hat{D}+\text { h.c. } \\
& -\left[\overline{\hat{R}}\left(U_{R}^{l+} G^{2} U_{\imath}^{l}\right) \phi^{+} \hat{\imath}+h . c\right. \\
& +\overline{\hat{U}}\left(U_{R}^{n+} G^{u} U_{L^{n}}{ }^{n}\right) \phi^{c+} \hat{Q}^{\prime}+\text { h.c. } \\
& \left.+\overline{\hat{D}}\left(U_{\beta}^{\Delta+} G^{D} U_{L}^{d}\right) \phi^{+} \hat{Q}^{+}+\text {h.c. }\right]
\end{aligned}
$$

In the mass basis, see that proposing states we \hat{Q}^{r}, no \hat{G}. LD's see why this does.

For the Yahata terr), chose $U_{L / R}^{e}, U_{L / R}^{u}, U_{L / R}^{d}$ t. diagodize the Yukawa conpligs!

$$
\begin{aligned}
\Rightarrow\left(U_{R}^{l+} G^{l} U_{L}^{l}\right)_{A B} & \equiv \delta_{A B} \tilde{G}_{A}^{l} \\
\left(U_{R}^{n+} G^{U} U_{L}^{n}\right)_{A B} & \equiv \delta_{A B} \tilde{G}_{A}^{U} \\
\left(U_{R}^{d+} G^{D} U_{L}^{d}\right)_{A B} & \equiv \delta_{A B} \tilde{G}_{A}^{D}
\end{aligned}
$$

Still have oily 9 Yuhawa purantors.
Noise thai' the mass tors are the sure as before,
CiS;

$$
\begin{aligned}
\mathcal{L}_{\text {mass }} \supset & -\frac{1}{\sqrt{2}} \tilde{G}_{A}^{D}\left[\hat{\bar{d}}_{R_{A}}(0, r)\binom{\hat{u}_{A L}}{\hat{d}_{A C}^{\prime}}\right. \\
& \left.+\left(\hat{\bar{u}}_{L_{A}}, \hat{\bar{d}}_{L_{A}^{\prime}}^{\prime}\right)\binom{0}{r} \hat{d}_{R_{A}}\right] \\
= & -\frac{1}{\sqrt{2}} \tilde{G}_{A}^{D} r\left(\hat{\bar{d}}_{R_{A}} \hat{d}_{L_{A}}+\hat{\bar{d}}_{L_{A}}^{\prime} \hat{d}_{R_{A}}\right) \\
= & -\frac{1}{\sqrt{2}} \tilde{G}_{A} r \hat{\bar{d}}_{A} \hat{\bar{d}}_{A} \\
\Rightarrow m_{A}= & \frac{1}{\sqrt{2}} \hat{G}_{A} a, \text { as blur. }
\end{aligned}
$$

The hinetic terns are

$$
\frac{i}{2} \overline{\hat{Q}}_{L}^{\prime} D \hat{Q}_{L}^{\prime}=\frac{i}{2}\left(\overline{\hat{u}}_{L}, \overline{\hat{d}}_{L} V^{+}\right) D\binom{\hat{u}_{L}}{v \hat{d}_{L}}
$$

with,

$$
D_{\mu}=\left(\begin{array}{c|c}
\partial_{\mu}+\frac{1}{2} i g \omega_{\mu}^{3}+\frac{1}{6} i g^{\prime} \beta_{\mu} & +\frac{1}{2} i g \sqrt{2} \omega_{\mu}^{+} \\
\hline+\frac{1}{2} i g \sqrt{2} \omega_{\mu}^{-} & \partial_{\mu}-\frac{1}{2} i g \omega_{\rho}^{3}+\frac{1}{6} i g^{\prime} B_{\mu}
\end{array}\right)
$$

For $\overline{\hat{u}} \hat{u} \& \overline{\hat{d}} \hat{d}$ turs, no effet is $V^{+} V=\mathbb{1}$.
Thoefare, there is no flavor changiy neatral corens (FCNC) sy wurdin w/ Z°-boson is as bfare,

$$
\mathcal{L}_{n c}=-i c J_{c n}^{m} A_{\sim}-\frac{i g}{\cos \theta_{\omega}} J_{z}^{m} z_{n}
$$

with $J_{c_{n}}^{m}=\sum_{f} Q_{f} \bar{f} \gamma^{n} f$

$$
コ_{z}^{\mu}=\sum_{f} \bar{f} \gamma^{\mu}\left(v_{f}-a_{f} \gamma_{s}\right) f
$$

	Q_{f}	v_{f}	a_{f}
v	0	$1 / 4$	$1 / 4$
l	-1	$-\frac{1}{4}+\sin ^{2} \theta_{\omega}$	$-1 / 4$
u	$+2 / 3$	$\frac{1}{4}-\frac{2}{3} \sin ^{2} \theta_{\omega}$	$1 / 4$
d	$-1 / 3$	$-1 / 4+\frac{1}{3} \sin ^{2} \theta_{\omega}$	$-1 / 4$

off-diggenal terms, howeme, change flavar vin $\omega_{p} \pm$ excluge.

$$
\begin{aligned}
\mathcal{L}_{c c} & =\bar{u}_{A_{L}} \gamma^{r} \frac{1}{\sqrt{2}} i g \omega_{r}^{+} V_{A B} d_{B_{L}}+\text { h.c. } \\
& =i g{ }_{\sqrt{2}}^{\sqrt{2}} \bar{u}_{A} \gamma^{\mu} P_{L} V_{A B} d_{B_{L}}+h \cdot c .
\end{aligned}
$$

\longrightarrow flavar clangy!
sor rass eigutates $=$ propagting otzes we ant the flaver eignitcs. The CkM norix coldus rave paranotes (alusibed fron the genad Yahave nStrices). Ha mon tare indepeedos paranetos are there?

A 3×3 mitang ndix has 9 recl paramotors If the ovtries are not cordex \Rightarrow mustur \rightarrow artogend. BN, 3×3 wthogan moliees have 3 real parmitus. \Rightarrow exped 6 phases for CkM.
Hourme, pot all phases are dsouctle. Each quack fiedd con absaib a phase (6), bit there remalks an overall globel phase.
\Rightarrow CleM has 4 red paramtes (3 ragitude, 1 phase)

This plase can be slown to be $C P$ violaing.
It is uxeful to parantorize the ChM using the 3 mognitudes \& 1 phase ciDed f a corpants of $\left.V_{A B}, A=u, c, t, B=d, s, b\right)$.

The stachard PuanduizJin: $\theta_{12}, \theta_{13}, \theta_{23}, \delta$

$$
V_{c u r}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Whive $c_{j n}=\cos \theta_{j n}, s_{j h}=\sin \theta_{j h}$.

$$
\begin{aligned}
& \theta_{12} \simeq 13.04^{\circ}\left(5^{\circ}\right) \\
& \theta_{13}=0.201^{\circ}\left(11^{\circ}\right) \quad \delta=68.8^{\circ}\left(4.5^{\circ}\right) \\
& \theta_{23}=2.38^{\circ}\left(6^{\circ}\right)
\end{aligned}
$$

thos sives $\left|V_{\text {cum }}\right| \sim\left(\begin{array}{ccc}0.97 & 0.22 & 0.004 \\ 0.22 & 0.98 & 0.04 \\ 0.009 & 0.04 & 1\end{array}\right)$

$$
\sim\left(\begin{array}{ccc}
1 & \lambda & \lambda^{3} \\
\lambda & 1 & \lambda^{2} \\
\lambda^{3} & \lambda^{2} & 1
\end{array}\right) \quad \lambda \sim 0.2
$$

The mitarity f the Clem affers ituoctivy insig (H) equak plogsics.

$$
V^{+} V=1 \Rightarrow\left(V^{+}\right)_{\ell n}(V)_{u_{j}}=\delta_{\ell j}
$$

as, $\quad V_{k l}^{*} V_{h j}=\delta_{j l} \quad 9$ candibius!
Each case $j \neq l$ is an equation w/ 3 cordex number adding t. zero. Com thus represet as a triangle is cordex plue.

Pich $j=d, l=b, k=u, c, t$

$$
\begin{gathered}
\Rightarrow V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
\mapsto \text { corptex numbus } \\
\Rightarrow \text { VeJon } \mathbb{C}-\rho_{\text {lace }}
\end{gathered}
$$

To get convint neird.zDu, divicle bs $V_{c d} V_{a b}^{+}$

$$
\Rightarrow 1+\frac{V_{t d} V_{t L}^{*}}{V_{c d} V_{c b}^{*}}=-\frac{V_{c d} V_{a b}^{*}}{V_{c d} V_{c t}^{*}}=\bar{\rho}+i \bar{\eta}
$$

(wolfustici parmorios)

With 3 gurotus f qualk, $3 \times 3 V$ is mitor.
Hf there are 4 (as ravel ganctias, then 3×3 nos mity,
\Rightarrow Cheding clasie δ triangle is a chach on the 6 quak nael 8 th $5 T$.

Minimal Standard Model
To get minimal SM, mad ald QCD.
\Rightarrow Make each quank a friplet under su(3)c, \& cald $\mathrm{SO}_{\mathrm{L}}(3)_{c}$ gluars $G_{j}^{a}, a=1, \ldots, 8$ via covarion derivtimes \& hintic tern.

$$
\begin{aligned}
& G_{\mu v}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}-g_{s} f^{a b c} G_{\mu}^{b} G_{\nu}^{c} \\
& L_{N c \omega} \text { coupling } \\
& \Rightarrow D_{\mu} \rightarrow D_{\mu}^{(E \omega)}+i g_{s} G_{\mu}^{a}\left(T_{a}\right)_{j h} \\
& L_{\text {su(J) }}
\end{aligned}
$$

The Corntic MSM, befere SSB, in flaver busis, is

$$
\begin{aligned}
\mathcal{L}_{\text {MSM }}= & -\frac{1}{4} B_{\sim V} B^{\sim v}-\frac{1}{4} W_{\sim v}^{a} W^{\sim v}-\frac{1}{4} G_{\mu \nu}^{a} G^{\sim a} \\
& +\frac{1}{2} i \bar{L}_{A} D L_{A}+\frac{1}{2} i \bar{R}_{A} \nabla R_{A}+h \cdot c . \\
& +\frac{1}{2} i \bar{Q}_{A} \nabla Q_{A}+\frac{1}{2} i \bar{U}_{A} \nabla U_{A}+\frac{1}{2} i \bar{D}_{A} \nabla D_{A}+h \cdot c . \\
& +\left(D_{\mu} \phi\right)^{+}\left(D^{\sim} \phi\right)+\mu^{2} \phi^{+} \phi-\frac{\lambda}{J!}\left(\phi^{+} \phi\right)^{2} \\
& -G_{A B}^{L}\left[\bar{R}_{A}\left(\phi^{+} L_{A}\right)+\left(\bar{L}_{A} \phi\right) R_{A}\right] \\
& -G_{A B}^{U}\left[\bar{U}_{A}\left(\phi^{c+} Q_{B}\right)+\left(\bar{Q}_{B} \phi^{c}\right) U_{A}\right] \\
& -G_{A B}^{D}\left[\bar{D}_{A}\left(\Phi^{+} Q_{B}\right)+\left(\bar{Q}_{B} \phi\right) D_{A}\right]
\end{aligned}
$$

Represwation coフ̃? : $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)^{y}$

$$
\begin{gathered}
\prod^{s \cup(3)} c \\
(\underset{\sim}{\sim} \sim)_{y}
\end{gathered}
$$

$S U(2)_{\llcorner } \& \rightarrow$ weak hypudage
veters

$$
\begin{array}{ccc}
(\underline{8}, 1)_{0} & (\underline{1}, \underline{3})_{0} & (1,-1)_{0} \\
G_{\mu}^{a} & \omega_{\mu}^{a} & B_{\mu}
\end{array}
$$

Ferrions
$\begin{array}{ccc}(\underline{3}, \underline{2})_{\frac{1}{2}} & (3, \underline{1})_{4 / 3} & (3,1)-2 / 3 \\ Q_{L} & Q_{R} & D_{R}\end{array}$
Leptins $\begin{array}{cc}\left(\frac{1}{\sim}, 2\right)_{-1} \\ L & (1,1)_{2} \\ R\end{array}$

Scalos

$$
\begin{gathered}
(1,2)_{1} \\
\phi
\end{gathered}
$$

There are 18 parangtus at the Mism which rist be cuntruined from expuinen.

3 gange coupluys 9,9 ', 9s
9 masses - Lertuss me,m,me

$$
\text { - quals mu, md, ms, me, } m_{b}, m_{t}
$$

4 CKM parmatus - 3 aghs $\theta_{12}, \theta_{13}, \theta_{23}$

- 1 phase δ

2 Higss paraños - mass muo

- selfconfing λ

There is a additions puonsir, θ_{c}, wise cones fron as additiond torn in the lagrage density wad Cm wrolde $C P$ is stroy iterations.

$$
\mathcal{L}_{\text {sirj } c \rho}=\theta_{c \rho} \frac{\delta_{s}^{2}}{32 \pi^{2}} G_{i, 0}^{c} \tilde{G}_{\mu} \tilde{\sigma}_{\mu \nu}
$$

Thus is a topolgica) (raspitarbtive) effat, if has no cotristims to petanstion Thanz. Howenn, all curat expeind rescts give $\theta_{6}=0$ (stray © ρ Problen)

