Tentative Outline

Here is a tentative outline of some subjects that may be covered throughout the course. The course consists of three primary topics: **Symmetry**, **Gauge Theory**, and **Phenomenology** of the Standard Model.

- Introduction Description of the course structure and goals, workload, and related information.
- **Overview of the Standard Model -** Summary of the Standard Model Electromagnetic, Weak, and Strong interactions. Basic properties of the fundamental particles Leptons, Quarks, and Hadrons.
- Aspects of QFT Review of scalar and spinor fields and their quantization. Cross sections and decay rates, the LSZ theorem and the S matrix. Perturbation theory and Feynman rules.
- **Symmetry I** Introduction to symmetries. Continuous symmetries, Lie groups, and Lie algebras. Basic properties of U(1) and SU(2). Discrete symmetries and interactions – C, P, and T.
- **Gauge Theory I** Gauge invariance and electromagnetic fields. Quantization of Abelian gauge theory. Quantum Electrodynamics.
- **Phenomenology I** Elementary processes in QED Pair production in electron-positron annihilation. Precision tests of QED – The anomalous magnetic moment of leptons.
- **Symmetry II** Basic properties of SU(3). Representations of SU(3). Flavor SU(3) and the quark model of hadrons The color hypothesis.
- **Gauge Theory II -** Non-Abelian gauge theories and their quantization. Quantum Chromodynamics. Chiral symmetry breaking, asymptotic freedom, and confinement.
- **Phenomenology II -** Deep inelastic scattering and the structure of the proton The Parton model. Effective theory of low-energy strong interactions. Electron-positron annihilation and the R ratio.
- **Symmetry III -** Spontaneous symmetry breaking and Goldstone's theorem. Symmetry breaking in gauge theories and the Higgs mechanism.
- **Gauge Theory III -** Electroweak model of leptons. Low-energy effective theory The four-Fermi interaction. Quarks and the minimal Standard Model. Quark mixing and the CKM matrix.
- **Phenomenology III -** Leptonic and semi-leptonic decays. Neutral meson oscillations and CP violation. Asymmetry observables and Higgs production.
- **Symmetry IV** Anomalous global symmetries. The U(1) axial anomaly. Anomaly cancellation in the Standard Model. Neutral pion decay. The theta term in QCD.
- **Beyond the Standard Model -** Neutrino masses and oscillations. Dirac and Majorana mass terms for neutrinos. Lepton mixing and the PMNS matrix. Attempts at grand unification.

Tentative Schedule

Week	Date	Торіс
1	01/24	Introduction, Overview of the Standard Model
2	01/29, 01/31	Aspects of QFT
3	02/05, 02/07	Symmetry I
4	02/12, 02/14	Gauge Theory I
5	02/19, 02/21	Phenomenology I
6	02/26, 02/28	Symmetry II
7	03/04,03/06	Gauge Theory II
8	03/11,03/13	Spring Break (no class)
9	03/18,03/20	Phenomenology II
10	03/25, 03/27	Symmetry III
11	04/01, 04/03	Gauge Theory III, APS April meeting (no class)
12	04/08,04/10	Gauge Theory III
13	04/15, 04/17	Phenomenology III
14	04/22, 04/24	Symmetry IV
15	04/29,05/01	Beyond the Standard Model
16	05/09	Final Exam due at 12:00pm