1. Consider a general binary reaction $a b \rightarrow c d$, where the masses of the particles are m_{j} and their fourmomenta are $p_{j}=\left(E_{j}, \mathbf{p}_{j}\right)$ with $E_{j}^{2}=m_{j}^{2}+\mathbf{p}_{j}^{2}$ for each $j=\{a, b, c, d\}$. Prove the following results.
(a) The Mandelstam invariants are defined as

$$
s=\left(p_{a}+p_{b}\right)^{2}, \quad t=\left(p_{a}-p_{c}\right)^{2}, \quad u=\left(p_{a}-p_{d}\right)^{2}
$$

Show that $s+t+u=m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}$.
Hint: Consider conservation of four-momentum.
(b) Show in the center-of-momentum (CM) frame, the frame where $\mathbf{p}_{a}+\mathbf{p}_{b}=\mathbf{0}$, that

$$
s=\left(E_{a}+E_{b}\right)^{2}=\left(E_{c}+E_{d}\right)^{2}
$$

Show that $s \geq \max \left(\left(m_{a}+m_{b}\right)^{2},\left(m_{c}+m_{d}\right)^{2}\right)$.
(c) Show in the CM frame that the energy of the particles are

$$
E_{a}=\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}}, \quad E_{b}=\frac{s-m_{a}^{2}+m_{b}^{2}}{2 \sqrt{s}}, \quad E_{c}=\frac{s+m_{c}^{2}-m_{d}^{2}}{2 \sqrt{s}}, \quad E_{d}=\frac{s-m_{c}^{2}+m_{d}^{2}}{2 \sqrt{s}}
$$

and the momenta are

$$
\left|\mathbf{p}_{a}\right|=\left|\mathbf{p}_{b}\right|=\frac{1}{2 \sqrt{s}} \lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right), \quad\left|\mathbf{p}_{c}\right|=\left|\mathbf{p}_{d}\right|=\frac{1}{2 \sqrt{s}} \lambda^{1 / 2}\left(s, m_{c}^{2}, m_{d}^{2}\right)
$$

where $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2(x y+y z+z x)$ is the Källén triangle function.
Hint: The following equivalent forms of the Källén function may be useful

$$
\begin{aligned}
\lambda(x, y, z) & =x^{2}+y^{2}+z^{2}-2(x y+y z+z x) \\
& =x^{2}-2(y+z) x+(y-z)^{2} \\
& =\left[x-(\sqrt{y}+\sqrt{z})^{2}\right]\left[x-(\sqrt{y}-\sqrt{z})^{2}\right] \\
& =(x-y-z)^{2}-4 y z
\end{aligned}
$$

(d) Show in the CM frame that

$$
t=t_{0}-2\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{c}\right|(1-\cos \theta)
$$

where $t_{0} \equiv \Delta^{2} / 4 s-\left(\left|\mathbf{p}_{a}\right|-\left|\mathbf{p}_{c}\right|\right)^{2}$ is the maximum value t can take with $\Delta=\left(m_{a}^{2}-m_{b}^{2}\right)-\left(m_{c}^{2}-m_{d}^{2}\right)$, and θ is the scattering angle defined by

$$
\cos \theta \equiv \frac{\mathbf{p}_{a} \cdot \mathbf{p}_{c}}{\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{c}\right|}
$$

Show that $t_{1} \leq t \leq t_{0}$ where $t_{1}=t_{0}-4\left|\mathbf{p}_{a} \| \mathbf{p}_{c}\right|$ is the minimum value t can take.
(e) Show that in the high-energy limit $\left|\mathbf{p}_{j}\right| \approx E_{j} \approx \sqrt{s} / 2$ for every $j=\{a, b, c, d\}$.
(f) For the case where all masses are equal, $m_{a}=m_{b}=m_{c}=m_{d} \equiv m$, write expressions for kinematic quantities in parts (a) through (d).
2. The two-body differential Lorentz invariant phase space for some initial total momentum $P=(E, \mathbf{P})$ is defined as

$$
\mathrm{d} \Phi_{2}\left(P \rightarrow p_{1}+p_{2}\right)=\frac{1}{\mathcal{S}} \frac{\mathrm{~d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{(4)}\left(P-p_{1}-p_{2}\right)
$$

where \mathcal{S} is a symmetry factor. Perform partial integrations to show that in the CM frame $(\mathbf{P}=\mathbf{0})$ the differential phase space is given by

$$
\mathrm{d} \Phi_{2}\left(P \rightarrow p_{1}+p_{2}\right)=\frac{1}{\mathcal{S}} \frac{\left|\mathbf{p}_{1}\right|}{4 \pi \sqrt{s}} \frac{\mathrm{~d} \Omega}{4 \pi} \Theta\left(\sqrt{s}-m_{1}-m_{2}\right)
$$

where $\mathrm{d} \Omega$ is the differential solid angle of $\mathbf{p}_{1}, s=P^{2}=E^{2}$, and $\Theta(x)$ is the Heaviside step function.
3. Consider the binary reaction $a b \rightarrow c d$ where each particle is a scalar boson. The differential crosssection is defined as

$$
\mathrm{d} \sigma=\frac{1}{\mathcal{F}}|\mathcal{M}|^{2} \mathrm{~d} \Phi_{2}\left(p_{a}+p_{b} \rightarrow p_{c}+p_{d}\right)
$$

where $\mathcal{F}=4 \sqrt{\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}}$ is the flux factor. Show that the differential cross-section can be written as

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2} s} \frac{\left|\mathbf{p}_{c}\right|}{\left|\mathbf{p}_{a}\right|} \frac{1}{\mathcal{S}}|\mathcal{M}|^{2}
$$

where the solid angle is defined in the CM frame.
4. Consider the elastic scattering of two scalar particles $(\varphi \varphi \rightarrow \varphi \varphi)$ of mass m described $\lambda \varphi^{4}$ theory.
(a) At leading order in the coupling λ, the scattering amplitude is given by

$$
i \mathcal{M}=-i \lambda+\mathcal{O}\left(\lambda^{2}\right)
$$

Compute the total cross-section σ as a function of s.
(b) As the energy approaches threshold, $s \rightarrow 4 m^{2}$, the total cross-section can be written in terms of the scattering length $a_{0}, \sigma \rightarrow 4 \pi a_{0}^{2} / \mathcal{S}$. Determine a_{0} in terms of the coupling λ.
(c) The partial wave expansion is defined as

$$
\mathcal{M}(s, \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) \mathcal{M}_{\ell}(s) P_{\ell}(\cos \theta)
$$

where ℓ is the angular momentum, θ is the scattering angle defined in the CM frame, and $P_{\ell}(z)$ are the Legendre polynomials. Given the scattering amplitude at leading order in λ, calculate the partial wave amplitudes \mathcal{M}_{ℓ} for every ℓ.
Hint: The following properties of the Legendre polynomials may be useful. Given the first two polynomials, $P_{0}(z)=1$ and $P_{1}(z)=z$, all remaining P_{ℓ} can be generated through the Bonnet recursion relation for $\ell>1$,

$$
\ell P_{\ell}(z)=z(2 \ell-1) P_{\ell-1}(z)-(\ell-1) P_{\ell-2}(z)
$$

The polynomial are orthogonal over $-1 \leq z \leq+1$,

$$
\int_{-1}^{+1} \mathrm{~d} z P_{\ell^{\prime}}(z) P_{\ell}(z)=\frac{2}{2 \ell+1} \delta_{\ell^{\prime} \ell} .
$$

