Problems 1 and 2 are optional, as they should be familiar from QFT I. However, if you are not comfortable with manipulating Gamma matrices, I encourage you to complete them. Completing them will result in bonus points.

1. The Dirac matrices $\gamma^{\mu}=\left(\gamma^{0}, \gamma^{j}\right)$ in the chiral (Weyl) representation are defined as

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right), \quad \gamma^{j}=\left(\begin{array}{cc}
0 & \sigma^{j} \\
-\sigma^{j} & 0
\end{array}\right),
$$

where I is the 2×2 identity matrix and σ^{j} are the Pauli matrices.
(a) With this representation, confirm that $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$.
(b) Using the result in (a), show that $\gamma_{\mu} \gamma^{\mu}=4$.
(c) Prove that $\gamma_{\mu} \gamma^{\nu} \gamma^{\mu}=-2 \gamma^{\nu}$ without using an explicit matrix representation.
(d) Similarly, prove that $\gamma_{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\mu}=4 g^{\nu \rho}$.
2. Given $\gamma^{5}=\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, prove the following trace identities:
(a) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$,
(b) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)$,
(c) The trace of any odd number of gamma matrices is zero.
(d) $\operatorname{tr}\left(\gamma^{5}\right)=\operatorname{tr}\left(\gamma^{5} \gamma^{\mu}\right)=\operatorname{tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right)=\operatorname{tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)=0$,
(e) $\operatorname{tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 i \epsilon^{\mu \nu \rho \sigma}$.
3. The chiral projectors are defined as

$$
P_{R}=\frac{1}{2}\left(I+\gamma^{5}\right), \quad P_{L}=\frac{1}{2}\left(I-\gamma^{5}\right)
$$

where I is the 4×4 identity matrix. Prove the following properties:
(a) $\gamma^{5} P_{L}=-P_{L}$, and $\gamma^{5} P_{R}=P_{R}$,
(b) $\left(P_{L / R}\right)^{2}=P_{L / R}$,
(c) $P_{L} P_{R}=P_{R} P_{L}=0$,
(d) $P_{L}+P_{R}=I$.
4. Suppose the charge conjugation operator is defined as $C=i \gamma^{2} \gamma^{0}$. Confirm that in the Weyl representation,
(a) $C \gamma^{\mu} C^{-1}=-\left(\gamma^{\mu}\right)^{\top}$,
(b) $C \gamma^{5} C^{-1}=\left(\gamma^{5}\right)^{\top}$,
(c) $C^{-1}=C^{\top}=C^{\dagger}=-C$.
5. A Dirac spinor ψ is called a Majorana spinor if it satisfies the condition $\psi=C \bar{\psi}^{\top}$, and is called a Weyl spinor if it satisfies either $\psi=P_{R} \psi$ or $\psi=P_{L} \psi$. Determine whether or not a spinor can be both Majorana and Weyl.
6. Consider a generic $2 \rightarrow n$ reaction $a b \rightarrow c_{1} c_{2} \ldots c_{n}$ in the lab frame or fixed-target frame, that is the frame where particle b is at rest and a is the incident beam. Assume $\max \left(m_{a}, m_{b}\right)<\min \left(c_{1}, c_{2}, \ldots, c_{n}\right)$.
(a) Show that $s=m_{a}^{2}+m_{b}^{2}+2 m_{b} \sqrt{m_{a}^{2}+P_{\text {lab. }}^{2}}$ where $P_{\text {lab. }}$. is the beam momentum.
(b) Express the beam kinetic energy, $T_{a} \equiv E_{a}-m_{a}$, in terms of s.
(c) What is the minimum kinetic energy of the beam with which the reaction can occur?
7. Consider the following Yukawa theory as a simplified model of an interacting proton p, neutron n, and neutral pion π^{0}. We assume that the proton and neutron are distinguishable, but mass degenerate. The Lagrange density is given by

$$
\mathcal{L}=\sum_{f} \frac{i}{2} \bar{\psi}_{f} \not \partial \psi_{f}+\text { h.c. }-\sum_{f} M \bar{\psi}_{f} \psi_{f}+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}-\sum_{f} g \varphi \bar{\psi}_{f} \gamma^{5} \psi_{f},
$$

where f is fermion index $f=\{n, p\}, M$ is the proton and neutron mass, m is the pion mass, and g is the coupling between proton and pion, as well as the neutron and pion.
(a) Consider the elastic reaction

$$
n(p, s)+p(k, r) \rightarrow n\left(p^{\prime}, s^{\prime}\right)+p\left(k^{\prime}, r^{\prime}\right)
$$

where the arguments are the momenta and the subscripts are the spin-state. Write down the $n p \rightarrow n p$ scattering amplitude to leading order in the coupling g. Hint: Only one diagram contributes at $\mathcal{O}\left(g^{2}\right)$. Refer to the summary notes on Feynman rules - Yukawa Theory.
(b) The spin-averaged squared amplitude is defined as

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle \equiv \frac{1}{2} \sum_{s} \frac{1}{2} \sum_{r} \sum_{s^{\prime}} \sum_{r^{\prime}}\left|\mathcal{M}\left(n_{s} p_{r} \rightarrow n_{s^{\prime}} p_{r^{\prime}}\right)\right|^{2}
$$

Show that at leading order

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g^{4} \frac{t^{2}}{\left(t-m^{2}\right)^{2}}+\mathcal{O}\left(g^{6}\right)
$$

where s, t, and u are the Mandelstam invariants. Note: You are encouraged to use a computer algebra software such as FeynCalc (https://feyncalc.github.io), which is a Mathematica package for symbolic evaluation of Feynman diagrams and algebraic calculations in quantum field theory and elementary particle physics. A useful tutorial can be found here. Mathematica is free to all students at William \& Mary (see https://software.wm.edu).
(c) Compute the unpolarized differential cross-section $\mathrm{d} \sigma / \mathrm{d} t$ in terms of the Mandelstam invariants.
(d) Express $\mathrm{d} \sigma / \mathrm{d} \Omega$ in terms of s and the center-of-momentum frame scattering angle θ.
(e) Compute the total cross-section as a function of s.
(f) Estimate the magnitude of the pion-nucleon coupling g, as well as the quantity $g^{2} / 4 \pi$, from the experimentally observed $n p$ total cross-section. Note: You do not need to fit the data, however feel free to do so. The Review of Particle Physics contains experimental cross-sections for select processes. See the course webpage for the data file.

