1. Show that the Lie algebra structure constants $c_{j k l}$, defined by the Lie bracket $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, satisfy the relation $c_{j k m} c_{m l n}+c_{k l m} c_{m j n}+c_{l j m} c_{m k n}=0$.
2. Consider a general Lie algebra $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, where $c_{j k l}=-c_{k j l}$. From the structure constants, we may form matrices M^{j} with matrix elements $\left(M^{j}\right)_{l k}=c_{j k l}$. Note the order of the indices. Show that these matrices furnish a representation of the algebra, i.e., show that $\left[M^{j}, M^{k}\right]=c_{j k l} M^{l}$. This representation is called the adjoint representation. Hint: The Jacobi identity may be helpful.
3. Suppose X^{j} is a generator for the Lie algebra $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$. Show that $X^{2}=\sum_{j} X^{j} X^{j}$ commutes with the group generators, and therefore we may write $\left(X^{2}\right)_{a b}=C_{2}(r) \delta_{a b}$ where $C_{2}(r)$ is a constant called the quadratic Casimir of the representation r.
4. Let X^{j} be a generator for a generic $\mathfrak{s u}(N)$ Lie algebra, $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, and $U\left(\alpha^{j}\right)$ is an element of the corresponding Lie group $\operatorname{SU}(N)$, with $U\left(\alpha^{j}\right)=\exp \left(\alpha^{j} X_{j}\right)$ with $\alpha^{j} \in \mathbb{R}$. Show that X^{j} are traceless, antihermitian $N \times N$ matrices.
5. Consider the set of all complex 2×2 matrices M with $\operatorname{det}(M)=i$. Does this set form a group under the usual matrix multiplication? Explain your reasoning.
6. Consider $X_{j}=-\frac{1}{2} i \sigma_{j}$ as a bases element of the $\mathfrak{s u (2)}$ algebra, $\left[X_{j}, X_{k}\right]=\epsilon_{j k l} X_{l}$, where σ_{j} are the Pauli matrices,

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Verify the following:
(a) $\left[\sigma_{j}, \sigma_{k}\right] \equiv \sigma_{j} \sigma_{k}-\sigma_{k} \sigma_{j}=2 i \epsilon_{j k l} \sigma_{l}$.
(b) $\left\{\sigma_{j}, \sigma_{k}\right\} \equiv \sigma_{j} \sigma_{k}+\sigma_{k} \sigma_{j}=2 \delta_{j k} I_{2}$.
(c) $\sigma_{j} \sigma_{k}=\delta_{j k}+i \epsilon_{j k l} \sigma_{l}$.
(d) Show that a group element $U\left(\alpha^{j}\right) \in \mathrm{SU}(2)$ can be written as

$$
U\left(\alpha^{j}\right)=\exp \left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right)=I_{2} \cos \left(\frac{1}{2} \alpha\right)-i \frac{\alpha^{j} \sigma_{j}}{\alpha} \sin \left(\frac{1}{2} \alpha\right),
$$

where $\alpha^{2}=\sum_{j}\left(\alpha_{j}\right)^{2}$.
7. Consider $X_{j}=L_{j}$ as a bases element of the $\mathfrak{s o}(3)$ algebra, $\left[X_{j}, X_{k}\right]=\epsilon_{j k l} X_{l}$, where L_{j} are the matrices,

$$
L_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad L_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad L_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Verify the following:
(a) $\left[L_{j}, L_{k}\right]=\epsilon_{j k l} L_{l}$.
(b) $\left\{L_{j}, L_{k}\right\} \neq N \delta_{j k}$ for any j, k, and N.
(c) Show that a group element $O\left(\alpha^{j}\right) \in \mathrm{SO}(3)$ can be written as

$$
O\left(\alpha^{j}\right)=\exp \left(\alpha^{j} L_{j}\right)=I_{3}+\frac{\alpha^{j} L_{j}}{\alpha} \sin \alpha+\left(\frac{\alpha^{j} L_{j}}{\alpha}\right)^{2}(1-\cos \alpha)
$$

where $\alpha^{2}=\sum_{j}\left(\alpha_{j}\right)^{2}$.

