- 1. Show that the Lie algebra structure constants c_{jkl} , defined by the Lie bracket $[X^j, X^k] = c_{jkl}X^l$, satisfy the relation $c_{jkm}c_{mln} + c_{klm}c_{mjn} + c_{ljm}c_{mkn} = 0$.
- 2. Consider a general Lie algebra $[X^j, X^k] = c_{jkl}X^l$, where $c_{jkl} = -c_{kjl}$. From the structure constants, we may form matrices M^j with matrix elements $(M^j)_{lk} = c_{jkl}$. Note the order of the indices. Show that these matrices furnish a representation of the algebra, i.e., show that $[M^j, M^k] = c_{jkl}M^l$. This representation is called the *adjoint representation*. **Hint:** The Jacobi identity may be helpful.
- 3. Suppose X^j is a generator for the Lie algebra $[X^j, X^k] = c_{jkl}X^l$. Show that $X^2 = \sum_j X^j X^j$ commutes with the group generators, and therefore we may write $(X^2)_{ab} = C_2(r) \delta_{ab}$ where $C_2(r)$ is a constant called the *quadratic Casimir* of the representation r.
- 4. Let X^j be a generator for a generic $\mathfrak{su}(N)$ Lie algebra, $[X^j, X^k] = c_{jkl}X^l$, and $U(\alpha^j)$ is an element of the corresponding Lie group SU(N), with $U(\alpha^j) = \exp(\alpha^j X_j)$ with $\alpha^j \in \mathbb{R}$. Show that X^j are traceless, antihermitian $N \times N$ matrices.
- 5. Consider the set of all complex 2×2 matrices M with det(M) = i. Does this set form a group under the usual matrix multiplication? Explain your reasoning.
- 6. Consider $X_j = -\frac{1}{2}i\sigma_j$ as a bases element of the $\mathfrak{su}(2)$ algebra, $[X_j, X_k] = \epsilon_{jkl}X_l$, where σ_j are the Pauli matrices,

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Verify the following:

- (a) $[\sigma_j, \sigma_k] \equiv \sigma_j \sigma_k \sigma_k \sigma_j = 2i\epsilon_{jkl}\sigma_l$.
- (b) $\{\sigma_j, \sigma_k\} \equiv \sigma_j \sigma_k + \sigma_k \sigma_j = 2\delta_{jk} I_2.$
- (c) $\sigma_j \sigma_k = \delta_{jk} + i \epsilon_{jkl} \sigma_l$.
- (d) Show that a group element $U(\alpha^j) \in SU(2)$ can be written as

$$U(\alpha^{j}) = \exp\left(-\frac{1}{2}i\alpha^{j}\sigma_{j}\right) = I_{2}\cos\left(\frac{1}{2}\alpha\right) - i\frac{\alpha^{j}\sigma_{j}}{\alpha}\sin\left(\frac{1}{2}\alpha\right),$$

where $\alpha^2 = \sum_j (\alpha_j)^2$.

7. Consider $X_j = L_j$ as a bases element of the $\mathfrak{so}(3)$ algebra, $[X_j, X_k] = \epsilon_{jkl} X_l$, where L_j are the matrices,

$$L_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad L_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \qquad L_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Verify the following:

- (a) $[L_j, L_k] = \epsilon_{jkl} L_l$.
- (b) $\{L_j, L_k\} \neq N\delta_{jk}$ for any j, k, and N.
- (c) Show that a group element $O(\alpha^j) \in SO(3)$ can be written as

$$O(\alpha^{j}) = \exp\left(\alpha^{j}L_{j}\right) = I_{3} + \frac{\alpha^{j}L_{j}}{\alpha}\sin\alpha + \left(\frac{\alpha^{j}L_{j}}{\alpha}\right)^{2}\left(1 - \cos\alpha\right),$$

where $\alpha^2 = \sum_j (\alpha_j)^2$.