1. Given the generators X^{j} for a Lie algebra $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, normalized such that $\operatorname{tr}\left(X^{j} X^{k}\right)=\mu_{r} \delta_{j k}$, show that the structure constants can be computed with

$$
c_{j k l}=\frac{1}{\mu_{r}} \operatorname{tr}\left(\left[X^{j}, X^{k}\right] X^{l}\right) .
$$

Show that $c_{j k l}$ are antisymmetric under interchange of any two indices.
2. Compute the non-zero structure constants $f_{a b c}$ for the $\mathfrak{s u}(3)$ algebra $\left[\lambda_{a}, \lambda_{b}\right]=2 i f_{a b c} \lambda_{c}$, where λ_{a} are the Gell-Mann matrices. Hint: It is convenient to use a symbolic algebra software like Mathematica.
3. The Gell-Mann matrices also satisfy the relation

$$
\left\{\lambda_{a}, \lambda_{b}\right\}=\frac{4}{3} \delta_{a b} I_{3}+2 d_{a b c} \lambda_{c}
$$

where $d_{a b c}$ are symmetric under the interchange of any two indices. Compute the non-zero values of $d_{a b c}$. Hint: It is convenient to use a symbolic algebra software like Mathematica.
4. Show that the $\mathbf{3}^{*}$ of $\mathfrak{s u}(3)$ is inequivalent to the $\mathbf{3}$ of $\mathfrak{s u}(3)$. Hint: Show that $\left(-\lambda_{a}^{*}\right)$ cannot be transformed to λ_{a} by a unitary transformation for every $a=1,2, \ldots, 8$.
5. Perform the Clebsch-Gordan decomposition for the following $\mathfrak{s u}(3)$ products using Young Tableau, labeling the dimension of each representation: (a) $\mathbf{3} \times \mathbf{3} \times \mathbf{8}$, and (b) $\mathbf{3} \times \mathbf{3}^{*} \times \mathbf{8}$.
6. Using the current Review of Particle Physics particle listings or the summary tables (Particle Data Group, https://pdg.lbl.gov), complete Table 1 for some typical light and strange mesons. For hadrons without an explicit charge index, label all possible charges in the multiplet.
7. Using the current Review of Particle Physics particle listings or the summary tables (Particle Data Group, https://pdg.lbl.gov), complete Table 2 for some typical light and strange baryons. Note that for some listings, the decay width is reported as $\Gamma=-2 \operatorname{Im}$ (pole position). For hadrons without an explicit charge index, label all possible charges in the multiplet.
8. Classify the following observed reactions into strong, electromagnetic, and weak processes:
(a) $\pi^{-} \rightarrow \pi^{0}+e^{-}+\bar{\nu}_{e}$,
(b) $\gamma+p \rightarrow \pi^{+}+n$,
(c) $p+\bar{p} \rightarrow \pi^{+}+\pi^{-}+\pi^{0}$,
(d) $D^{-} \rightarrow K^{+}+2 \pi^{-}$,
(e) $\Lambda^{0}+p \rightarrow K^{-}+2 p$,
(f) $\pi^{-}+p \rightarrow n+e^{+}+e^{-}$.
9. Both the ρ^{0} meson and the ω meson are vector mesons, $J^{P C}=1^{--}$. However, the ρ^{0} is observed to strongly decay predominately into 2π, while the ω is observed to decay into 3π. Why this is so?
10. Consider πN scattering at the $\Delta(1232)$ resonance, i.e., at center-of-momentum energies $\sqrt{s} \sim 1232 \mathrm{MeV}$. For this reaction, $\pi N \rightarrow \Delta(1232) \rightarrow \pi N$, focus on the following three processes:
(a) $\pi^{+} p \rightarrow \pi^{+} p$ elastic scattering via the Δ^{++}resonance,
(b) $\pi^{-} p \rightarrow \pi^{-} p$ elastic scattering via the Δ^{0} resonance,
(c) $\pi^{-} p \rightarrow \pi^{0} n$ charge exchange via the Δ^{0} resonance.

Estimate the relative cross sections $\sigma_{a}: \sigma_{b}: \sigma_{c}$.
11. Given the plot of the πN total cross-sections shown in Fig. 1, identify potential resonances and estimate their mass and decay widths, as well as their charge, strange, and baryon quantum numbers. Further, identity their potential spin and isospin quantum numbers. Referring to the Review of Particle Physics, can you identify candidates for these unstable states?

Figure 1: Total πN cross-sections as a function of center-of-momentum frame energy \sqrt{s}. Data taken from the Review of Particle Physics by the Particle Data Group.

