- Can the following hadrons, in principle, exist within QCD? (a) qq, (b) qqq̄, (c) qqq̄q̄, (d) gg, (f) qqg, (f) qqg, (f) qq̄g, (g) qqqqq̄. Hint: Consider SU(3)_c symmetry transformations of observable hadrons. Gluons transform under the adjoint representation of SU(3)_c.
- 2. Consider a non-abelian gauge field $A_{\mu} \equiv A^{j}_{\mu}T_{j}$, where $T_{j} \in \mathfrak{su}(N)$ are generators satisfying the Lie algebra $[T_{j}, T_{k}] = ic_{jkl}T_{l}$ with c_{jkl} being structure constants and $j, k, l = 1, 2, ..., N^{2} 1$. Under a local gauge transformation, $U = \exp(i\alpha^{j}(x)T_{j})$ where $\alpha_{j}(x) \in \mathbb{R}$ for every j, the gauge fields transform as

$$A_{\mu} \to U A_{\mu} U^{-1} + \frac{i}{g} \left(\partial_{\mu} U \right) \, U^{-1} \, . \label{eq:alpha}$$

Show that under infinitesimal transformations, $\alpha^a(x) \ll 1$, the gauge fields transform as

$$A^j_\mu \to A^j_\mu - \frac{1}{g} \partial_\mu \alpha^j(x) - c_{jkl} \, \alpha^k A^l_\mu + \mathcal{O}(\alpha^2) \, .$$

- 3. The $SU(3)_c$ Yang-Mills Lagrange density for interacting gluon fields is given by $\mathcal{L}_{YM} = -\frac{1}{2} \operatorname{tr} (G_{\mu\nu}G^{\mu\nu})$, where the field-strength tensor is defined as $G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig_s[A_{\mu}, A_{\nu}]$ with $A_{\mu} = A^a_{\mu}\lambda_a/2$ are the gluon gauge fields and λ_a are the Gell-Mann matrices. Write the Lagrange density as a free part $\mathcal{L}_{YM}^{(\text{free})}$ and an interacting part $\mathcal{L}_{YM}^{(\text{int})}$ which depends on the strong coupling g_s .
- 4. Consider a $q\bar{q}$ meson within an exact flavor SU(3) quark model, i.e., q = u, d, s. Assume the meson is flavor neutral. A generic wave function for this meson is given by

$$\begin{split} |n^{2S+1}L_J, m_J\rangle_{q\bar{q}} &= \sum_{m_L, m_S} \left\langle Lm_L; Sm_S | Jm_J \right\rangle \sum_{s,\bar{s}} \left\langle \frac{1}{2}s; \frac{1}{2}\bar{s} | Sm_S \right\rangle \\ &\times \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \,\varphi_{n,L}(p) \, Y_{Lm_L}(\hat{\mathbf{p}}) \, |q_s(\mathbf{p})\bar{q}_{\bar{s}}(-\mathbf{p}) \rangle \;, \end{split}$$

where n is the radial quantum number, S is the total intrinsic spin, L is the orbital angular momentum, J is the total angular momentum, m_J is the total angular momentum projection on some fixed z-axis, m_L is the orbital angular momentum projection, m_S is the total intrinsic spin projection, $\varphi_{n,L}$ is the momentum-space radial wave function, and Y_{Lm_L} are spherical harmonics. The quarks are spin-1/2 fermions with spin s and \bar{s} for the q and \bar{q} , respectively. The two-quark state is defined in the center-of-momentum frame as the usual direct product $|q_s(\mathbf{p})\bar{q}_{\bar{s}}(-\mathbf{p})\rangle \equiv |q_s(\mathbf{p})\rangle \otimes |\bar{q}_{\bar{s}}(-\mathbf{p})\rangle$.

- (a) Determine the allowed values of S.
- (b) Show that under parity \mathcal{P} , the $q\bar{q}$ meson has an eigenvalue

$$\mathcal{P} | n^{2S+1} L_J, m_J \rangle_{q\bar{q}} = (-1)^{L+1} | n^{2S+1} L_J, m_J \rangle_{q\bar{q}} \,.$$

Hint: Recall that $\mathcal{P} |q_s(\mathbf{p})\rangle = \eta_q |q_s(-\mathbf{p})\rangle$ and $\eta_{\bar{q}} \equiv -\eta_q$.

(c) Show that under charge conjugation $\mathcal{C},$ the $q\bar{q}$ meson has an eigenvalue

$$\mathcal{C} |n^{2S+1}L_J, m_J\rangle_{q\bar{q}} = (-1)^{L+S} |n^{2S+1}L_J, m_J\rangle_{q\bar{q}}$$

Hint: Recall that $C |q_s(\mathbf{p})\rangle = |\bar{q}_s(\mathbf{p})\rangle$, and under interchange $P_{12} |q_1q_2\rangle = -|q_2q_1\rangle$.

- (d) Determine all allowed J^{PC} quantum numbers for of the meson for $L \leq 3$. List all J^{PC} that are forbidden for $J \leq 3$ (observed mesons with these quantum numbers are called *exotic*, as they are not allowed in the quark model).
- (e) List one example (if one exist) of an observed unflavored meson for each J^{PC} supermultiplet by searching the Particle Data Group database (https://pdglive.lbl.gov) for light unflavored mesons. Are there any examples of observed mesons with exotic quantum numbers?