
PHYS 772 - Standard Model Problem Set 2 Spring 2024

1. Consider a general binary reaction ab → cd, where the masses of the particles are mj and their four-
momenta are pj = (Ej ,pj) with E2

j = m2
j + p2

j for each j = {a, b, c, d}. Prove the following results.

(a) The Mandelstam invariants are defined as

s = (pa + pb)
2 , t = (pa − pc)

2 , u = (pa − pd)
2 .

Show that s+ t+ u = m2
a +m2

b +m2
c +m2

d. Hint: Consider conservation of four-momentum.

Solution: Taking the sum s+ t+ u, we find

s+ t+ u = (pa + pb)
2 + (pa − pc)

2 + (pa − pd)
2 ,

=
∑
j

p2j + 2p2a + 2pa · pb − 2pa · pc − 2pa · pd ,

=
∑
j

m2
j + 2pa · (pa + pb − pc − pd) ,

=
∑
j

m2
j ,

where in the third line we used conservation of four-momentum states pa + pb = pc + pd.

(b) Show in the center-of-momentum (CM) frame, the frame where pa + pb = 0, that

s = (Ea + Eb)
2 = (Ec + Ed)

2 .

Show that s ≥ max((ma +mb)
2, (mc +md)

2).

Solution: In the CM frame, pa + pb = 0. Therefore,

s = (pa + pb)
2 = (Ea + Eb)

2 − (pa + pb)
2 = (Ea + Eb)

2 . (1)

Since pa + pb = pc + pd by momentum conservation, in the CM frame we also have
pc + pd = 0. Therefore, we also find

s = (pc + pd)
2 = (Ec + Ed)

2 − (pc + pd)
2 = (Ec + Ed)

2 . (2)

Let p ≡ pa = −pb and p′ = pc = −pd. The energies of each particle are Ea =
√
m2

a + p2,

Eb =
√

m2
b + p2, Ec =

√
m2

c + p′2, and Ed =
√
m2

d + p′2. The minimum energy for each

particle is when p = p′ = 0. So, the minimum smin . is given by smin . = (ma + mb)
2 or

smin . = (mc+md)
2. Thus, the minimum s is given by max((ma+mb)

2, (mc+md)
2) since

the physical scattering occurs only when the total energy can produce the pair of particles.
Note since |p|, |p′| ∈ [0,∞), s has no maximum bound.

(c) Show in the CM frame that the energy of the particles are

Ea =
s+m2

a −m2
b

2
√
s

, Eb =
s−m2

a +m2
b

2
√
s

, Ec =
s+m2

c −m2
d

2
√
s

, Ed =
s−m2

c +m2
d

2
√
s

,

William & Mary Page 1 of 8 Department of Physics



PHYS 772 - Standard Model Problem Set 2 Spring 2024

and the momenta are

|pa| = |pb| =
1

2
√
s
λ1/2(s,m2

a,m
2
b) , |pc| = |pd| =

1

2
√
s
λ1/2(s,m2

c ,m
2
d) ,

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx) is the Källén triangle function.

Hint: The following equivalent forms of the Källén function may be useful

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx) ,

= x2 − 2(y + z)x+ (y − z)2 ,

= [x− (
√
y +

√
z)2][x− (

√
y −

√
z)2] ,

= (x− y − z)2 − 4yz .

Solution: In the CM frame,
√
s = Ea + Eb. Take the square of (

√
s− Ea)

2 = E2
b to find

E2
b = (

√
s− Ea)

2 ,

= s+ E2
a − 2

√
sEa .

Now, the on-shell condition gives E2
a = m2

a + p2
a and E2

b = m2
b + p2

b , with p2
a = p2

b in the
CM frame. So, solving for Ea,

Ea =
s+m2

a −m2
b

2
√
s

.

From
√
s = Ea + Eb, we then find

Eb =
√
s− Ea ,

=
√
s− s+m2

a −m2
b

2
√
s

,

=
s−m2

a +m2
b

2
√
s

.

Following similar arguments, we find Ec and Ed.

To find the momentum, use

|pa|2 = E2
a −m2

a ,

=

(
s+m2

a −m2
b

2
√
s

)2

−m2
a ,

=
1

4s

(
(s+m2

a −m2
b)

2 − 4sm2
a

)
,

=
1

4s

(
(m2

b − s−m2
a)

2 − 4sm2
a

)
.
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By the definition of the Källén function, we find

|pa|2 =
1

4s
λ(s,m2

a,m
2
b) (3)

which is holds since the λ function is symmetric in all arguments. In the CM frame,
|pa| = |pb|, therefore

|pa| = |pb| =
1

2
√
s
λ1/2(s,m2

a,m
2
b) .

We repeat the above arguments for both |pc| and |pd|, finding the desired results.

(d) Show in the CM frame that

t = t0 − 2|pa| |pc|(1− cos θ) ,

where t0 ≡ ∆2/4s−(|pa|−|pc|)2 is the maximum value t can take with ∆ = (m2
a−m2

b)−(m2
c−m2

d),
and θ is the scattering angle defined by

cos θ ≡ pa · pc

|pa||pc|
.

Show that t1 ≤ t ≤ t0 where t1 = t0 − 4|pa||pc| is the minimum value t can take.

Solution: From the definition, t = (pa − pc)
2, we find

t = (pa − pc)
2 ,

= (Ea − Ec)
2 − (pa − pc)

2 ,

= (Ea − Ec)
2 − p2

a − p2
c + 2|pa||pc| cos θ ,

= (Ea − Ec)
2 − p2

a − p2
c + (2|pa||pc| − 2|pa||pc|) + 2|pa||pc| cos θ ,

= (Ea − Ec)
2 − (|pa| − |pc|)2 − 2|pa||pc|(1− cos θ) .

The maximum value of t occurs when cos θ = 1, so we define

t0 ≡ t|cos θ=1 ,

= (Ea − Ec)
2 − (|pa| − |pc|)2 .

so that

t = t0 − 2|pa||pc|(1− cos θ) .
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Now, we can manipulate t0 using the expressions for energies,

Ea − Ec =
1

2
√
s
((m2

a −m2
b)− (m2

c −m2
d)) ,

≡ ∆

2
√
s
,

so t0 = ∆2/4s − (|pa| − |pc|)2. Note that when pa = pc = 0, then ∆2 ≥ 0. For non-zero
pa and pc, t0 can be either positive or negative depending on the scattering process (e.g.
if ma = mb = mc = md, then t0 ≤ 0.) The minimum value of t coincides with cos θ = −1,
or

t1 ≡ t|cos θ=−1 ,

= t0 − 4|pa||pc| .

So, t1 ≤ t ≤ t0.

(e) Show that in the high-energy limit |pj | ≈ Ej ≈
√
s/2 for every j = {a, b, c, d}.

Solution: Consider first particle a. It’s CM frame energy is

Ea =
s+m2

a −m2
b

2
√
s

,

=

√
s

2
+

m2
a −m2

b

2
√
s

,

=

√
s

2
+O(s−1/2) ,

and for the momentum, using the second form of the Källén function, we find

|pa| =
√
s

2

√
1−

2(m2
a +m2

b)

s
+

(m2
a −m2

b)
2

s2
,

=

√
s

2
− m2

a +m2
b

2
√
s

+O(s−3/2) ,

=

√
s

2
+O(s−1/2) ,

where in the second line we performed a series expansion about 1/s = 0. Therefore, both
|pa| and Ea scale as

Ea = |pa| =
√
s

2
+O(s−1/2) ,

as s → ∞. Repeating this analysis for particles b, c, and d, we find that at high-energy
|pj | ≈ Ej ≈

√
s/2 for each j = {a, b, c, d}.
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(f) For the case where all masses are equal, ma = mb = mc = md ≡ m, write expressions for
kinematic quantities in parts (a) through (d).

Solution: By direct substitution into the general formulae we derived,

E ≡ Ea = Eb = Ec = Ed =

√
s

2
,

and

|p| ≡ |pa| = |pb| = |pc| = |pd| =
1

2

√
s− 4m2 ,

with s = 4E2, and since E =
√
m2 + p2 ≥ m, so s ≥ 4m2. For t, t0 = 0, and

t = −2p2(1− cos θ) .

2. The two-body differential Lorentz invariant phase space for some initial total momentum P = (E,P)
is defined as

dΦ2(P → p1 + p2) =
1

S
d3p1

(2π)3 2E1

d3p2

(2π)3 2E2
(2π)4δ(4)(P − p1 − p2) ,

where S is a symmetry factor. Perform partial integrations to show that in the CM frame (P = 0) the
differential phase space is given by

dΦ2(P → p1 + p2) =
1

S
|p1|
4π

√
s

dΩ

4π
Θ(

√
s−m1 −m2) ,

where dΩ is the differential solid angle of p1, s = P 2 = E2, and Θ(x) is the Heaviside step function.

Assume we are integrating against a test function f(p1,p2). Since the phase space is Lorentz in-
variant, we can evaluate in any reference frame. We choose the CM frame. The four-dimensional
Dirac delta can be written as

δ(4)(P − p1 − p2) = δ(4)(E − E1 − E2) δ
(3)(p1 + p2) ,

where we used P = 0.
So, we can integrate over the measure d3p2, eliminating the spatial momentum Dirac delta
functions,

dΦ2(P → p1 + p2) =
1

(4π)2
1

S
d3p1

E1E2
δ(4)(E − E1 − E2) .

Note that since p1 = −p2, E1 =
√
m2

1 + p2
1 and E2 =

√
m2

2 + p2
1. The remaining delta function

can be evaluated by a change of variables to |p1|,

δ(E − E1 − E2) =

∣∣∣∣∂(E − E1 − E2)

∂|p1|

∣∣∣∣−1

δ(|p1| − |p⋆
1|) ,

=
E1E2

|p1|
√
s
δ(|p1| − |p⋆

1|)
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where |p⋆
1| is the solution to E−E1−E2 = 0. So, converting the measure to spherical coordinates,

we find

dΦ2(P → p1 + p2) =
1

(4π)2
1

S
d3p1

E1E2

E1E2

|p1|
√
s
δ(|p1| − |p⋆

1|) ,

=
1

(4π)2
1

S
dΩd|p1| |p1|2

E1E2

E1E2

|p1|
√
s
δ(|p1| − |p⋆

1|) ,

=
1

S
|p⋆

1|
4π

√
s

dΩ

4π
Θ(

√
s−m1 −m2) ,

where the integral over the delta function yields the Heaviside function, enforcing the total
energy to be greater than the threshold. Since the ⋆ is a label, we arrive at the desired result.

3. Consider the binary reaction ab → cd where each particle is a scalar boson. The differential cross-
section is defined as

dσ =
1

F
|M|2 dΦ2(pa + pb → pc + pd) ,

where F = 4
√
(pa · pb)2 −m2

am
2
b is the flux factor. Show that the differential cross-section can be

written as

dσ

dΩ
=

1

64π2s

|pc|
|pa|

1

S
|M|2 ,

where the solid angle is defined in the CM frame.

Solution: From Problem 2, we have an expression for the phase space in the CM frame,

dΦ2(P → p1 + p2) =
1

S
|pc|

16π2
√
s
dΩ ,

where we leave the Heaviside function implicit. Therefore, we only need to express the flux factor
in the CM frame. Note that s = (pa+pb)

2 = m2
a+m2

b+2pa ·pb. So, (pa ·pb)2 = (s−m2
a−m2

b)
2/4,

therefore

F = 4
√
(pa · pb)2 −m2

am
2
b ,

= 4

√
(s−m2

a −m2
b)

2

4
−m2

am
2
b ,

= 2λ1/2(s,m2
a,m

2
b) .

Since 2
√
s|pa| = λ1/2(s,m2

a,m
2
b), we find F = 4

√
s|pa|. Combining the pieces, we find the

desired result

dσ =
1

4
√
s|pa|

|M|2 1

S
|pc|

16π2
√
s
dΩ ,

=
1

64π2s

|pc|
|pa|

1

S
|M|2 dΩ .
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4. Consider the elastic scattering of two scalar particles (φφ → φφ) of mass m described λφ4 theory.

(a) At leading order in the coupling λ, the scattering amplitude is given by

iM = −iλ+O(λ2) .

Compute the total cross-section σ as a function of s.

Solution: For equal mass scattering, |pa| = |pc|. So, the differential cross section is

dσ

dΩ
=

1

64π2s

1

2
|M|2 ,

=
λ2

128π2s
+O(λ3) .

Integrating, we have

σ =

∫
dΩ

dσ

dΩ
,

=
λ2

32πs
+O(λ3) .

(b) As the energy approaches threshold, s → 4m2, the total cross-section can be written in terms of
the scattering length a, σ → 4πa20/S. Determine a0 in terms of the coupling λ.

Solution: As s → m2, then

σ → 1

S
λ2

16π(4m2)
+O(λ3) =

4πa20
S

.

So, we find

a0 =
λ

16πm
+O(λ3) .

(c) The partial wave expansion is defined as

M(s, θ) =

∞∑
ℓ=0

(2ℓ+ 1)Mℓ(s)Pℓ(cos θ) ,

where ℓ is the angular momentum, θ is the scattering angle defined in the CM frame, and Pℓ(z)
are the Legendre polynomials. Given the scattering amplitude at leading order in λ, calculate the
partial wave amplitudes Mℓ for every ℓ.

Hint: The following properties of the Legendre polynomials may be useful. Given the first two
polynomials, P0(z) = 1 and P1(z) = z, all remaining Pℓ can be generated through the Bonnet
recursion relation for ℓ > 1,

ℓPℓ(z) = z(2ℓ− 1)Pℓ−1(z)− (ℓ− 1)Pℓ−2(z) .
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The polynomial are orthogonal over −1 ≤ z ≤ +1,∫ +1

−1

dz Pℓ′(z)Pℓ(z) =
2

2ℓ+ 1
δℓ′ℓ .

Solution: From the orthogonality of Pℓ, we find

Mℓ(s) =
1

2

∫ +1

−1

d cos θ Pℓ(cos θ)M(s, θ) .

Now, M = −λ + O(λ2), which is a constant at leading order. Recognizing that 1 =
P0(cos θ), we find

Mℓ(s) = −λ

2

∫ +1

−1

d cos θ Pℓ(cos θ) +O(λ2) ,

= −λ

2

∫ +1

−1

d cos θ Pℓ(cos θ)P0(cos θ) +O(λ2) ,

= −λ

2

2

2ℓ+ 1
δℓ0 +O(λ2) ,

= −λ δℓ0 +O(λ2)

So, the scattering amplitude is the S wave (ℓ = 0) amplitude, all other ℓ ̸= 0 partial wave
amplitudes are identically zero at this order.
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