1. Consider a general binary reaction $a b \rightarrow c d$, where the masses of the particles are m_{j} and their fourmomenta are $p_{j}=\left(E_{j}, \mathbf{p}_{j}\right)$ with $E_{j}^{2}=m_{j}^{2}+\mathbf{p}_{j}^{2}$ for each $j=\{a, b, c, d\}$. Prove the following results.
(a) The Mandelstam invariants are defined as

$$
s=\left(p_{a}+p_{b}\right)^{2}, \quad t=\left(p_{a}-p_{c}\right)^{2}, \quad u=\left(p_{a}-p_{d}\right)^{2} .
$$

Show that $s+t+u=m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}$. Hint: Consider conservation of four-momentum.
Solution: Taking the sum $s+t+u$, we find

$$
\begin{aligned}
s+t+u & =\left(p_{a}+p_{b}\right)^{2}+\left(p_{a}-p_{c}\right)^{2}+\left(p_{a}-p_{d}\right)^{2}, \\
& =\sum_{j} p_{j}^{2}+2 p_{a}^{2}+2 p_{a} \cdot p_{b}-2 p_{a} \cdot p_{c}-2 p_{a} \cdot p_{d}, \\
& =\sum_{j} m_{j}^{2}+2 p_{a} \cdot\left(p_{a}+p_{b}-p_{c}-p_{d}\right), \\
& =\sum_{j} m_{j}^{2},
\end{aligned}
$$

where in the third line we used conservation of four-momentum states $p_{a}+p_{b}=p_{c}+p_{d}$.
(b) Show in the center-of-momentum (CM) frame, the frame where $\mathbf{p}_{a}+\mathbf{p}_{b}=\mathbf{0}$, that

$$
s=\left(E_{a}+E_{b}\right)^{2}=\left(E_{c}+E_{d}\right)^{2} .
$$

Show that $s \geq \max \left(\left(m_{a}+m_{b}\right)^{2},\left(m_{c}+m_{d}\right)^{2}\right)$.
Solution: In the CM frame, $\mathbf{p}_{a}+\mathbf{p}_{b}=\mathbf{0}$. Therefore,

$$
\begin{equation*}
s=\left(p_{a}+p_{b}\right)^{2}=\left(E_{a}+E_{b}\right)^{2}-\left(\mathbf{p}_{a}+\mathbf{p}_{b}\right)^{2}=\left(E_{a}+E_{b}\right)^{2} . \tag{1}
\end{equation*}
$$

Since $\mathbf{p}_{a}+\mathbf{p}_{b}=\mathbf{p}_{c}+\mathbf{p}_{d}$ by momentum conservation, in the CM frame we also have $\mathbf{p}_{c}+\mathbf{p}_{d}=\mathbf{0}$. Therefore, we also find

$$
\begin{equation*}
s=\left(p_{c}+p_{d}\right)^{2}=\left(E_{c}+E_{d}\right)^{2}-\left(\mathbf{p}_{c}+\mathbf{p}_{d}\right)^{2}=\left(E_{c}+E_{d}\right)^{2} . \tag{2}
\end{equation*}
$$

Let $\mathbf{p} \equiv \mathbf{p}_{a}=-\mathbf{p}_{b}$ and $\mathbf{p}^{\prime}=\mathbf{p}_{c}=-\mathbf{p}_{d}$. The energies of each particle are $E_{a}=\sqrt{m_{a}^{2}+\mathbf{p}^{2}}$, $E_{b}=\sqrt{m_{b}^{2}+\mathbf{p}^{2}}, E_{c}=\sqrt{m_{c}^{2}+\mathbf{p}^{\prime 2}}$, and $E_{d}=\sqrt{m_{d}^{2}+\mathbf{p}^{\prime 2}}$. The minimum energy for each particle is when $\mathbf{p}=\mathbf{p}^{\prime}=\mathbf{0}$. So, the minimum $s_{\text {min }}$. is given by $s_{\text {min }}=\left(m_{a}+m_{b}\right)^{2}$ or $s_{\text {min }}=\left(m_{c}+m_{d}\right)^{2}$. Thus, the minimum s is given by $\max \left(\left(m_{a}+m_{b}\right)^{2},\left(m_{c}+m_{d}\right)^{2}\right)$ since the physical scattering occurs only when the total energy can produce the pair of particles. Note since $|\mathbf{p}|,\left|\mathbf{p}^{\prime}\right| \in[0, \infty)$, s has no maximum bound.
(c) Show in the CM frame that the energy of the particles are

$$
E_{a}=\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}}, \quad E_{b}=\frac{s-m_{a}^{2}+m_{b}^{2}}{2 \sqrt{s}}, \quad E_{c}=\frac{s+m_{c}^{2}-m_{d}^{2}}{2 \sqrt{s}}, \quad E_{d}=\frac{s-m_{c}^{2}+m_{d}^{2}}{2 \sqrt{s}},
$$

and the momenta are

$$
\left|\mathbf{p}_{a}\right|=\left|\mathbf{p}_{b}\right|=\frac{1}{2 \sqrt{s}} \lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right), \quad\left|\mathbf{p}_{c}\right|=\left|\mathbf{p}_{d}\right|=\frac{1}{2 \sqrt{s}} \lambda^{1 / 2}\left(s, m_{c}^{2}, m_{d}^{2}\right),
$$

where $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2(x y+y z+z x)$ is the Källén triangle function.
Hint: The following equivalent forms of the Källén function may be useful

$$
\begin{aligned}
\lambda(x, y, z) & =x^{2}+y^{2}+z^{2}-2(x y+y z+z x), \\
& =x^{2}-2(y+z) x+(y-z)^{2}, \\
& =\left[x-(\sqrt{y}+\sqrt{z})^{2}\right]\left[x-(\sqrt{y}-\sqrt{z})^{2}\right], \\
& =(x-y-z)^{2}-4 y z .
\end{aligned}
$$

Solution: In the CM frame, $\sqrt{s}=E_{a}+E_{b}$. Take the square of $\left(\sqrt{s}-E_{a}\right)^{2}=E_{b}^{2}$ to find

$$
\begin{aligned}
E_{b}^{2} & =\left(\sqrt{s}-E_{a}\right)^{2}, \\
& =s+E_{a}^{2}-2 \sqrt{s} E_{a} .
\end{aligned}
$$

Now, the on-shell condition gives $E_{a}^{2}=m_{a}^{2}+\mathbf{p}_{a}^{2}$ and $E_{b}^{2}=m_{b}^{2}+\mathbf{p}_{b}^{2}$, with $\mathbf{p}_{a}^{2}=\mathbf{p}_{b}^{2}$ in the CM frame. So, solving for E_{a},

$$
E_{a}=\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}} .
$$

From $\sqrt{s}=E_{a}+E_{b}$, we then find

$$
\begin{aligned}
E_{b} & =\sqrt{s}-E_{a}, \\
& =\sqrt{s}-\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}}, \\
& =\frac{s-m_{a}^{2}+m_{b}^{2}}{2 \sqrt{s}} .
\end{aligned}
$$

Following similar arguments, we find E_{c} and E_{d}.
To find the momentum, use

$$
\begin{aligned}
\left|\mathbf{p}_{a}\right|^{2} & =E_{a}^{2}-m_{a}^{2}, \\
& =\left(\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}}\right)^{2}-m_{a}^{2}, \\
& =\frac{1}{4 s}\left(\left(s+m_{a}^{2}-m_{b}^{2}\right)^{2}-4 s m_{a}^{2}\right), \\
& =\frac{1}{4 s}\left(\left(m_{b}^{2}-s-m_{a}^{2}\right)^{2}-4 s m_{a}^{2}\right) .
\end{aligned}
$$

By the definition of the Källén function, we find

$$
\begin{equation*}
\left|\mathbf{p}_{a}\right|^{2}=\frac{1}{4 s} \lambda\left(s, m_{a}^{2}, m_{b}^{2}\right) \tag{3}
\end{equation*}
$$

which is holds since the λ function is symmetric in all arguments. In the CM frame, $\left|\mathbf{p}_{a}\right|=\left|\mathbf{p}_{b}\right|$, therefore

$$
\left|\mathbf{p}_{a}\right|=\left|\mathbf{p}_{b}\right|=\frac{1}{2 \sqrt{s}} \lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right)
$$

We repeat the above arguments for both $\left|\mathbf{p}_{c}\right|$ and $\left|\mathbf{p}_{d}\right|$, finding the desired results.
(d) Show in the CM frame that

$$
t=t_{0}-2\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{c}\right|(1-\cos \theta)
$$

where $t_{0} \equiv \Delta^{2} / 4 s-\left(\left|\mathbf{p}_{a}\right|-\left|\mathbf{p}_{c}\right|\right)^{2}$ is the maximum value t can take with $\Delta=\left(m_{a}^{2}-m_{b}^{2}\right)-\left(m_{c}^{2}-m_{d}^{2}\right)$, and θ is the scattering angle defined by

$$
\cos \theta \equiv \frac{\mathbf{p}_{a} \cdot \mathbf{p}_{c}}{\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{c}\right|}
$$

Show that $t_{1} \leq t \leq t_{0}$ where $t_{1}=t_{0}-4\left|\mathbf{p}_{a} \| \mathbf{p}_{c}\right|$ is the minimum value t can take.
Solution: From the definition, $t=\left(p_{a}-p_{c}\right)^{2}$, we find

$$
\begin{aligned}
t & =\left(p_{a}-p_{c}\right)^{2} \\
& =\left(E_{a}-E_{c}\right)^{2}-\left(\mathbf{p}_{a}-\mathbf{p}_{c}\right)^{2} \\
& =\left(E_{a}-E_{c}\right)^{2}-\mathbf{p}_{a}^{2}-\mathbf{p}_{c}^{2}+2\left|\mathbf{p}_{a} \| \mathbf{p}_{c}\right| \cos \theta \\
& =\left(E_{a}-E_{c}\right)^{2}-\mathbf{p}_{a}^{2}-\mathbf{p}_{c}^{2}+\left(2\left|\mathbf{p}_{a}\left\|\mathbf{p}_{c}|-2| \mathbf{p}_{a}\right\| \mathbf{p}_{c}\right|\right)+2\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{c}\right| \cos \theta \\
& =\left(E_{a}-E_{c}\right)^{2}-\left(\left|\mathbf{p}_{a}\right|-\left|\mathbf{p}_{c}\right|\right)^{2}-2\left|\mathbf{p}_{a} \| \mathbf{p}_{c}\right|(1-\cos \theta)
\end{aligned}
$$

The maximum value of t occurs when $\cos \theta=1$, so we define

$$
\begin{aligned}
t_{0} & \left.\equiv t\right|_{\cos \theta=1}, \\
& =\left(E_{a}-E_{c}\right)^{2}-\left(\left|\mathbf{p}_{a}\right|-\left|\mathbf{p}_{c}\right|\right)^{2} .
\end{aligned}
$$

so that

$$
t=t_{0}-2\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{c}\right|(1-\cos \theta)
$$

Now, we can manipulate t_{0} using the expressions for energies,

$$
\begin{aligned}
E_{a}-E_{c} & =\frac{1}{2 \sqrt{s}}\left(\left(m_{a}^{2}-m_{b}^{2}\right)-\left(m_{c}^{2}-m_{d}^{2}\right)\right) \\
& \equiv \frac{\Delta}{2 \sqrt{s}}
\end{aligned}
$$

so $t_{0}=\Delta^{2} / 4 s-\left(\left|\mathbf{p}_{a}\right|-\left|\mathbf{p}_{c}\right|\right)^{2}$. Note that when $\mathbf{p}_{a}=\mathbf{p}_{c}=\mathbf{0}$, then $\Delta^{2} \geq 0$. For non-zero \mathbf{p}_{a} and \mathbf{p}_{c}, t_{0} can be either positive or negative depending on the scattering process (e.g. if $m_{a}=m_{b}=m_{c}=m_{d}$, then $t_{0} \leq 0$.) The minimum value of t coincides with $\cos \theta=-1$, or

$$
\begin{aligned}
t_{1} & \left.\equiv t\right|_{\cos \theta=-1} \\
& =t_{0}-4\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{c}\right|
\end{aligned}
$$

So, $t_{1} \leq t \leq t_{0}$.
(e) Show that in the high-energy limit $\left|\mathbf{p}_{j}\right| \approx E_{j} \approx \sqrt{s} / 2$ for every $j=\{a, b, c, d\}$.

Solution: Consider first particle a. It's CM frame energy is

$$
\begin{aligned}
E_{a} & =\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}} \\
& =\frac{\sqrt{s}}{2}+\frac{m_{a}^{2}-m_{b}^{2}}{2 \sqrt{s}} \\
& =\frac{\sqrt{s}}{2}+\mathcal{O}\left(s^{-1 / 2}\right)
\end{aligned}
$$

and for the momentum, using the second form of the Källén function, we find

$$
\begin{aligned}
\left|\mathbf{p}_{a}\right| & =\frac{\sqrt{s}}{2} \sqrt{1-\frac{2\left(m_{a}^{2}+m_{b}^{2}\right)}{s}+\frac{\left(m_{a}^{2}-m_{b}^{2}\right)^{2}}{s^{2}}} \\
& =\frac{\sqrt{s}}{2}-\frac{m_{a}^{2}+m_{b}^{2}}{2 \sqrt{s}}+\mathcal{O}\left(s^{-3 / 2}\right) \\
& =\frac{\sqrt{s}}{2}+\mathcal{O}\left(s^{-1 / 2}\right)
\end{aligned}
$$

where in the second line we performed a series expansion about $1 / s=0$. Therefore, both $\left|\mathbf{p}_{a}\right|$ and E_{a} scale as

$$
E_{a}=\left|\mathbf{p}_{a}\right|=\frac{\sqrt{s}}{2}+\mathcal{O}\left(s^{-1 / 2}\right)
$$

as $s \rightarrow \infty$. Repeating this analysis for particles b, c, and d, we find that at high-energy $\left|\mathbf{p}_{j}\right| \approx E_{j} \approx \sqrt{s} / 2$ for each $j=\{a, b, c, d\}$.
(f) For the case where all masses are equal, $m_{a}=m_{b}=m_{c}=m_{d} \equiv m$, write expressions for kinematic quantities in parts (a) through (d).

Solution: By direct substitution into the general formulae we derived,

$$
E \equiv E_{a}=E_{b}=E_{c}=E_{d}=\frac{\sqrt{s}}{2}
$$

and

$$
|\mathbf{p}| \equiv\left|\mathbf{p}_{a}\right|=\left|\mathbf{p}_{b}\right|=\left|\mathbf{p}_{c}\right|=\left|\mathbf{p}_{d}\right|=\frac{1}{2} \sqrt{s-4 m^{2}},
$$

with $s=4 E^{2}$, and since $E=\sqrt{m^{2}+\mathbf{p}^{2}} \geq m$, so $s \geq 4 m^{2}$. For $t, t_{0}=0$, and

$$
t=-2 \mathbf{p}^{2}(1-\cos \theta)
$$

2. The two-body differential Lorentz invariant phase space for some initial total momentum $P=(E, \mathbf{P})$ is defined as

$$
\mathrm{d} \Phi_{2}\left(P \rightarrow p_{1}+p_{2}\right)=\frac{1}{\mathcal{S}} \frac{\mathrm{~d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{(4)}\left(P-p_{1}-p_{2}\right)
$$

where \mathcal{S} is a symmetry factor. Perform partial integrations to show that in the CM frame $(\mathbf{P}=\mathbf{0})$ the differential phase space is given by

$$
\mathrm{d} \Phi_{2}\left(P \rightarrow p_{1}+p_{2}\right)=\frac{1}{\mathcal{S}} \frac{\left|\mathbf{p}_{1}\right|}{4 \pi \sqrt{s}} \frac{\mathrm{~d} \Omega}{4 \pi} \Theta\left(\sqrt{s}-m_{1}-m_{2}\right)
$$

where $\mathrm{d} \Omega$ is the differential solid angle of $\mathbf{p}_{1}, s=P^{2}=E^{2}$, and $\Theta(x)$ is the Heaviside step function.

Assume we are integrating against a test function $f\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$. Since the phase space is Lorentz invariant, we can evaluate in any reference frame. We choose the CM frame. The four-dimensional Dirac delta can be written as

$$
\delta^{(4)}\left(P-p_{1}-p_{2}\right)=\delta^{(4)}\left(E-E_{1}-E_{2}\right) \delta^{(3)}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)
$$

where we used $\mathbf{P}=\mathbf{0}$.
So, we can integrate over the measure $\mathrm{d}^{3} \mathbf{p}_{2}$, eliminating the spatial momentum Dirac delta functions,

$$
\mathrm{d} \Phi_{2}\left(P \rightarrow p_{1}+p_{2}\right)=\frac{1}{(4 \pi)^{2}} \frac{1}{\mathcal{S}} \frac{\mathrm{~d}^{3} \mathbf{p}_{1}}{E_{1} E_{2}} \delta^{(4)}\left(E-E_{1}-E_{2}\right)
$$

Note that since $\mathbf{p}_{1}=-\mathbf{p}_{2}, E_{1}=\sqrt{m_{1}^{2}+\mathbf{p}_{1}^{2}}$ and $E_{2}=\sqrt{m_{2}^{2}+\mathbf{p}_{1}^{2}}$. The remaining delta function can be evaluated by a change of variables to $\left|\mathbf{p}_{1}\right|$,

$$
\begin{aligned}
\delta\left(E-E_{1}-E_{2}\right) & =\left|\frac{\partial\left(E-E_{1}-E_{2}\right)}{\partial\left|\mathbf{p}_{1}\right|}\right|^{-1} \delta\left(\left|\mathbf{p}_{1}\right|-\left|\mathbf{p}_{1}^{\star}\right|\right) \\
& =\frac{E_{1} E_{2}}{\left|\mathbf{p}_{1}\right| \sqrt{s}} \delta\left(\left|\mathbf{p}_{1}\right|-\left|\mathbf{p}_{1}^{\star}\right|\right)
\end{aligned}
$$

where $\left|\mathbf{p}_{1}^{\star}\right|$ is the solution to $E-E_{1}-E_{2}=0$. So, converting the measure to spherical coordinates, we find

$$
\begin{aligned}
\mathrm{d} \Phi_{2}\left(P \rightarrow p_{1}+p_{2}\right) & =\frac{1}{(4 \pi)^{2}} \frac{1}{\mathcal{S}} \frac{\mathrm{~d}^{3} \mathbf{p}_{1}}{E_{1} E_{2}} \frac{E_{1} E_{2}}{\left|\mathbf{p}_{1}\right| \sqrt{s}} \delta\left(\left|\mathbf{p}_{1}\right|-\left|\mathbf{p}_{1}^{\star}\right|\right) \\
& =\frac{1}{(4 \pi)^{2}} \frac{1}{\mathcal{S}} \frac{\mathrm{~d} \Omega \mathrm{~d}\left|\mathbf{p}_{1}\right|\left|\mathbf{p}_{1}\right|^{2}}{E_{1} E_{2}} \frac{E_{1} E_{2}}{\left|\mathbf{p}_{1}\right| \sqrt{s}} \delta\left(\left|\mathbf{p}_{1}\right|-\left|\mathbf{p}_{1}^{\star}\right|\right) \\
& =\frac{1}{\mathcal{S}} \frac{\left|\mathbf{p}_{1}^{\star}\right|}{4 \pi \sqrt{s}} \frac{\mathrm{~d} \Omega}{4 \pi} \Theta\left(\sqrt{s}-m_{1}-m_{2}\right)
\end{aligned}
$$

where the integral over the delta function yields the Heaviside function, enforcing the total energy to be greater than the threshold. Since the \star is a label, we arrive at the desired result.
3. Consider the binary reaction $a b \rightarrow c d$ where each particle is a scalar boson. The differential crosssection is defined as

$$
\mathrm{d} \sigma=\frac{1}{\mathcal{F}}|\mathcal{M}|^{2} \mathrm{~d} \Phi_{2}\left(p_{a}+p_{b} \rightarrow p_{c}+p_{d}\right)
$$

where $\mathcal{F}=4 \sqrt{\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}}$ is the flux factor. Show that the differential cross-section can be written as

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{64 \pi^{2} s} \frac{\left|\mathbf{p}_{c}\right|}{\left|\mathbf{p}_{a}\right|} \frac{1}{\mathcal{S}}|\mathcal{M}|^{2}
$$

where the solid angle is defined in the CM frame.
Solution: From Problem 2, we have an expression for the phase space in the CM frame,

$$
\mathrm{d} \Phi_{2}\left(P \rightarrow p_{1}+p_{2}\right)=\frac{1}{\mathcal{S}} \frac{\left|\mathbf{p}_{c}\right|}{16 \pi^{2} \sqrt{s}} \mathrm{~d} \Omega
$$

where we leave the Heaviside function implicit. Therefore, we only need to express the flux factor in the CM frame. Note that $s=\left(p_{a}+p_{b}\right)^{2}=m_{a}^{2}+m_{b}^{2}+2 p_{a} \cdot p_{b}$. So, $\left(p_{a} \cdot p_{b}\right)^{2}=\left(s-m_{a}^{2}-m_{b}^{2}\right)^{2} / 4$, therefore

$$
\begin{aligned}
\mathcal{F} & =4 \sqrt{\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}} \\
& =4 \sqrt{\frac{\left(s-m_{a}^{2}-m_{b}^{2}\right)^{2}}{4}-m_{a}^{2} m_{b}^{2}} \\
& =2 \lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right)
\end{aligned}
$$

Since $2 \sqrt{s}\left|\mathbf{p}_{a}\right|=\lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right)$, we find $\mathcal{F}=4 \sqrt{s}\left|\mathbf{p}_{a}\right|$. Combining the pieces, we find the desired result

$$
\begin{aligned}
\mathrm{d} \sigma & =\frac{1}{4 \sqrt{s}\left|\mathbf{p}_{a}\right|}|\mathcal{M}|^{2} \frac{1}{\mathcal{S}} \frac{\left|\mathbf{p}_{c}\right|}{16 \pi^{2} \sqrt{s}} \mathrm{~d} \Omega \\
& =\frac{1}{64 \pi^{2} s} \frac{\left|\mathbf{p}_{c}\right|}{\left|\mathbf{p}_{a}\right|} \frac{1}{\mathcal{S}}|\mathcal{M}|^{2} \mathrm{~d} \Omega
\end{aligned}
$$

4. Consider the elastic scattering of two scalar particles $(\varphi \varphi \rightarrow \varphi \varphi)$ of mass m described $\lambda \varphi^{4}$ theory.
(a) At leading order in the coupling λ, the scattering amplitude is given by

$$
i \mathcal{M}=-i \lambda+\mathcal{O}\left(\lambda^{2}\right)
$$

Compute the total cross-section σ as a function of s.

Solution: For equal mass scattering, $\left|\mathbf{p}_{a}\right|=\left|\mathbf{p}_{c}\right|$. So, the differential cross section is

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} & =\frac{1}{64 \pi^{2} s} \frac{1}{2}|\mathcal{M}|^{2} \\
& =\frac{\lambda^{2}}{128 \pi^{2} s}+\mathcal{O}\left(\lambda^{3}\right)
\end{aligned}
$$

Integrating, we have

$$
\begin{aligned}
\sigma & =\int \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \\
& =\frac{\lambda^{2}}{32 \pi s}+\mathcal{O}\left(\lambda^{3}\right) .
\end{aligned}
$$

(b) As the energy approaches threshold, $s \rightarrow 4 m^{2}$, the total cross-section can be written in terms of the scattering length $a, \sigma \rightarrow 4 \pi a_{0}^{2} / \mathcal{S}$. Determine a_{0} in terms of the coupling λ.

Solution: As $s \rightarrow m^{2}$, then

$$
\sigma \rightarrow \frac{1}{\mathcal{S}} \frac{\lambda^{2}}{16 \pi\left(4 m^{2}\right)}+\mathcal{O}\left(\lambda^{3}\right)=\frac{4 \pi a_{0}^{2}}{\mathcal{S}}
$$

So, we find

$$
a_{0}=\frac{\lambda}{16 \pi m}+\mathcal{O}\left(\lambda^{3}\right)
$$

(c) The partial wave expansion is defined as

$$
\mathcal{M}(s, \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) \mathcal{M}_{\ell}(s) P_{\ell}(\cos \theta)
$$

where ℓ is the angular momentum, θ is the scattering angle defined in the CM frame, and $P_{\ell}(z)$ are the Legendre polynomials. Given the scattering amplitude at leading order in λ, calculate the partial wave amplitudes \mathcal{M}_{ℓ} for every ℓ.
Hint: The following properties of the Legendre polynomials may be useful. Given the first two polynomials, $P_{0}(z)=1$ and $P_{1}(z)=z$, all remaining P_{ℓ} can be generated through the Bonnet recursion relation for $\ell>1$,

$$
\ell P_{\ell}(z)=z(2 \ell-1) P_{\ell-1}(z)-(\ell-1) P_{\ell-2}(z) .
$$

The polynomial are orthogonal over $-1 \leq z \leq+1$,

$$
\int_{-1}^{+1} \mathrm{~d} z P_{\ell^{\prime}}(z) P_{\ell}(z)=\frac{2}{2 \ell+1} \delta_{\ell^{\prime} \ell} .
$$

Solution: From the orthogonality of P_{ℓ}, we find

$$
\mathcal{M}_{\ell}(s)=\frac{1}{2} \int_{-1}^{+1} \mathrm{~d} \cos \theta P_{\ell}(\cos \theta) \mathcal{M}(s, \theta)
$$

Now, $\mathcal{M}=-\lambda+\mathcal{O}\left(\lambda^{2}\right)$, which is a constant at leading order. Recognizing that $1=$ $P_{0}(\cos \theta)$, we find

$$
\begin{aligned}
\mathcal{M}_{\ell}(s) & =-\frac{\lambda}{2} \int_{-1}^{+1} \mathrm{~d} \cos \theta P_{\ell}(\cos \theta)+\mathcal{O}\left(\lambda^{2}\right) \\
& =-\frac{\lambda}{2} \int_{-1}^{+1} \mathrm{~d} \cos \theta P_{\ell}(\cos \theta) P_{0}(\cos \theta)+\mathcal{O}\left(\lambda^{2}\right) \\
& =-\frac{\lambda}{2} \frac{2}{2 \ell+1} \delta_{\ell 0}+\mathcal{O}\left(\lambda^{2}\right) \\
& =-\lambda \delta_{\ell 0}+\mathcal{O}\left(\lambda^{2}\right)
\end{aligned}
$$

So, the scattering amplitude is the S wave $(\ell=0)$ amplitude, all other $\ell \neq 0$ partial wave amplitudes are identically zero at this order.

