- 1. Consider a general binary reaction $ab \to cd$, where the masses of the particles are m_j and their fourmomenta are $p_j = (E_j, \mathbf{p}_j)$ with $E_j^2 = m_j^2 + \mathbf{p}_j^2$ for each $j = \{a, b, c, d\}$. Prove the following results.
 - (a) The Mandelstam invariants are defined as

$$s = (p_a + p_b)^2$$
, $t = (p_a - p_c)^2$, $u = (p_a - p_d)^2$.

Show that $s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$. Hint: Consider conservation of four-momentum.

Solution: Taking the sum s + t + u, we find

$$\begin{split} s+t+u &= (p_a+p_b)^2 + (p_a-p_c)^2 + (p_a-p_d)^2 \,, \\ &= \sum_j p_j^2 + 2p_a^2 + 2p_a \cdot p_b - 2p_a \cdot p_c - 2p_a \cdot p_d \,, \\ &= \sum_j m_j^2 + 2p_a \cdot (p_a+p_b-p_c-p_d) \,, \\ &= \sum_j m_j^2 \,, \end{split}$$

where in the third line we used conservation of four-momentum states $p_a + p_b = p_c + p_d$.

(b) Show in the *center-of-momentum* (CM) frame, the frame where $\mathbf{p}_a + \mathbf{p}_b = \mathbf{0}$, that

$$s = (E_a + E_b)^2 = (E_c + E_d)^2.$$

Show that $s \ge \max((m_a + m_b)^2, (m_c + m_d)^2).$

Solution: In the CM frame, $\mathbf{p}_a + \mathbf{p}_b = \mathbf{0}$. Therefore, $s = (p_a + p_b)^2 = (E_a + E_b)^2 - (\mathbf{p}_a + \mathbf{p}_b)^2 = (E_a + E_b)^2$. (1)

Since $\mathbf{p}_a + \mathbf{p}_b = \mathbf{p}_c + \mathbf{p}_d$ by momentum conservation, in the CM frame we also have $\mathbf{p}_c + \mathbf{p}_d = \mathbf{0}$. Therefore, we also find

$$s = (p_c + p_d)^2 = (E_c + E_d)^2 - (\mathbf{p}_c + \mathbf{p}_d)^2 = (E_c + E_d)^2.$$
(2)

Let $\mathbf{p} \equiv \mathbf{p}_a = -\mathbf{p}_b$ and $\mathbf{p}' = \mathbf{p}_c = -\mathbf{p}_d$. The energies of each particle are $E_a = \sqrt{m_a^2 + \mathbf{p}^2}$, $E_b = \sqrt{m_b^2 + \mathbf{p}^2}$, $E_c = \sqrt{m_c^2 + {\mathbf{p}'}^2}$, and $E_d = \sqrt{m_d^2 + {\mathbf{p}'}^2}$. The minimum energy for each particle is when $\mathbf{p} = \mathbf{p}' = \mathbf{0}$. So, the minimum s_{\min} is given by $s_{\min} = (m_a + m_b)^2$ or $s_{\min} = (m_c + m_d)^2$. Thus, the minimum s is given by $\max((m_a + m_b)^2, (m_c + m_d)^2)$ since the physical scattering occurs only when the total energy can produce the pair of particles. Note since $|\mathbf{p}|, |\mathbf{p}'| \in [0, \infty)$, s has no maximum bound.

(c) Show in the CM frame that the energy of the particles are

$$E_a = \frac{s + m_a^2 - m_b^2}{2\sqrt{s}}, \quad E_b = \frac{s - m_a^2 + m_b^2}{2\sqrt{s}}, \quad E_c = \frac{s + m_c^2 - m_d^2}{2\sqrt{s}}, \quad E_d = \frac{s - m_c^2 + m_d^2}{2\sqrt{s}},$$

and the momenta are

$$|\mathbf{p}_a| = |\mathbf{p}_b| = \frac{1}{2\sqrt{s}} \,\lambda^{1/2}(s, m_a^2, m_b^2) \,, \qquad |\mathbf{p}_c| = |\mathbf{p}_d| = \frac{1}{2\sqrt{s}} \,\lambda^{1/2}(s, m_c^2, m_d^2) \,,$$

where $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2(xy + yz + zx)$ is the Källén triangle function. Hint: The following equivalent forms of the Källén function may be useful

$$\begin{split} \lambda(x,y,z) &= x^2 + y^2 + z^2 - 2(xy + yz + zx) \,, \\ &= x^2 - 2(y+z)x + (y-z)^2 \,, \\ &= [x - (\sqrt{y} + \sqrt{z})^2][x - (\sqrt{y} - \sqrt{z})^2] \,, \\ &= (x - y - z)^2 - 4yz \,. \end{split}$$

Solution: In the CM frame, $\sqrt{s} = E_a + E_b$. Take the square of $(\sqrt{s} - E_a)^2 = E_b^2$ to find $E_b^2 = (\sqrt{s} - E_a)^2 \,,$ $= s + E_a^2 - 2\sqrt{s}E_a \,.$ Now, the on-shell condition gives $E_a^2 = m_a^2 + \mathbf{p}_a^2$ and $E_b^2 = m_b^2 + \mathbf{p}_b^2$, with $\mathbf{p}_a^2 = \mathbf{p}_b^2$ in the

CM frame. So, solving for E_a ,

$$E_a = \frac{s + m_a^2 - m_b^2}{2\sqrt{s}} \,.$$

From $\sqrt{s} = E_a + E_b$, we then find

$$E_b = \sqrt{s} - E_a ,$$

$$= \sqrt{s} - \frac{s + m_a^2 - m_b^2}{2\sqrt{s}}$$

$$= \frac{s - m_a^2 + m_b^2}{2\sqrt{s}} .$$

Following similar arguments, we find E_c and E_d .

To find the momentum, use

$$\begin{split} |\mathbf{p}_a|^2 &= E_a^2 - m_a^2 \,, \\ &= \left(\frac{s + m_a^2 - m_b^2}{2\sqrt{s}}\right)^2 - m_a^2 \,, \\ &= \frac{1}{4s} \Big((s + m_a^2 - m_b^2)^2 - 4sm_a^2 \Big) \,, \\ &= \frac{1}{4s} \Big((m_b^2 - s - m_a^2)^2 - 4sm_a^2 \Big) \,. \end{split}$$

By the definition of the Källén function, we find

$$|\mathbf{p}_{a}|^{2} = \frac{1}{4s} \lambda(s, m_{a}^{2}, m_{b}^{2})$$
(3)

which is holds since the λ function is symmetric in all arguments. In the CM frame, $|\mathbf{p}_a| = |\mathbf{p}_b|$, therefore

$$|\mathbf{p}_a| = |\mathbf{p}_b| = \frac{1}{2\sqrt{s}} \,\lambda^{1/2}(s, m_a^2, m_b^2) \,.$$

We repeat the above arguments for both $|\mathbf{p}_c|$ and $|\mathbf{p}_d|$, finding the desired results.

 $(\mathbf{d})~$ Show in the CM frame that

$$t = t_0 - 2|\mathbf{p}_a| |\mathbf{p}_c|(1 - \cos\theta),$$

where $t_0 \equiv \Delta^2/4s - (|\mathbf{p}_a| - |\mathbf{p}_c|)^2$ is the maximum value t can take with $\Delta = (m_a^2 - m_b^2) - (m_c^2 - m_d^2)$, and θ is the scattering angle defined by

$$\cos\theta \equiv \frac{\mathbf{p}_a \cdot \mathbf{p}_c}{|\mathbf{p}_a||\mathbf{p}_c|} \,.$$

Show that $t_1 \leq t \leq t_0$ where $t_1 = t_0 - 4|\mathbf{p}_a||\mathbf{p}_c|$ is the minimum value t can take.

Solution: From the definition, $t = (p_a - p_c)^2$, we find $t = (p_a - p_c)^2$, $= (E_a - E_c)^2 - (\mathbf{p}_a - \mathbf{p}_c)^2$, $= (E_a - E_c)^2 - \mathbf{p}_a^2 - \mathbf{p}_c^2 + 2|\mathbf{p}_a||\mathbf{p}_c|\cos\theta$, $= (E_a - E_c)^2 - \mathbf{p}_a^2 - \mathbf{p}_c^2 + (2|\mathbf{p}_a||\mathbf{p}_c| - 2|\mathbf{p}_a||\mathbf{p}_c|) + 2|\mathbf{p}_a||\mathbf{p}_c|\cos\theta$, $= (E_a - E_c)^2 - (|\mathbf{p}_a| - |\mathbf{p}_c|)^2 - 2|\mathbf{p}_a||\mathbf{p}_c|(1 - \cos\theta)$.

The maximum value of t occurs when $\cos \theta = 1$, so we define

$$t_0 \equiv t|_{\cos\theta=1},$$

= $(E_a - E_c)^2 - (|\mathbf{p}_a| - |\mathbf{p}_c|)^2$

so that

$$t = t_0 - 2|\mathbf{p}_a||\mathbf{p}_c|(1 - \cos\theta).$$

Now, we can manipulate t_0 using the expressions for energies,

$$E_a - E_c = \frac{1}{2\sqrt{s}} ((m_a^2 - m_b^2) - (m_c^2 - m_d^2)),$$

$$\equiv \frac{\Delta}{2\sqrt{s}},$$

so $t_0 = \Delta^2/4s - (|\mathbf{p}_a| - |\mathbf{p}_c|)^2$. Note that when $\mathbf{p}_a = \mathbf{p}_c = \mathbf{0}$, then $\Delta^2 \ge 0$. For non-zero \mathbf{p}_a and \mathbf{p}_c , t_0 can be either positive or negative depending on the scattering process (e.g. if $m_a = m_b = m_c = m_d$, then $t_0 \le 0$.) The minimum value of t coincides with $\cos \theta = -1$, or

$$t_1 \equiv t|_{\cos\theta = -1} ,$$

= $t_0 - 4|\mathbf{p}_a||\mathbf{p}_c|$

So, $t_1 \leq t \leq t_0$.

(e) Show that in the high-energy limit $|\mathbf{p}_j| \approx E_j \approx \sqrt{s/2}$ for every $j = \{a, b, c, d\}$.

Solution: Consider first particle a. It's CM frame energy is

$$E_a = \frac{s + m_a^2 - m_b^2}{2\sqrt{s}},$$

= $\frac{\sqrt{s}}{2} + \frac{m_a^2 - m_b^2}{2\sqrt{s}},$
= $\frac{\sqrt{s}}{2} + \mathcal{O}(s^{-1/2}),$

and for the momentum, using the second form of the Källén function, we find

$$\begin{aligned} |\mathbf{p}_{a}| &= \frac{\sqrt{s}}{2} \sqrt{1 - \frac{2(m_{a}^{2} + m_{b}^{2})}{s} + \frac{(m_{a}^{2} - m_{b}^{2})^{2}}{s^{2}}} \\ &= \frac{\sqrt{s}}{2} - \frac{m_{a}^{2} + m_{b}^{2}}{2\sqrt{s}} + \mathcal{O}(s^{-3/2}) \,, \\ &= \frac{\sqrt{s}}{2} + \mathcal{O}(s^{-1/2}) \,, \end{aligned}$$

where in the second line we performed a series expansion about 1/s = 0. Therefore, both $|\mathbf{p}_a|$ and E_a scale as

$$E_a = |\mathbf{p}_a| = \frac{\sqrt{s}}{2} + \mathcal{O}(s^{-1/2}),$$

as $s \to \infty$. Repeating this analysis for particles b, c, and d, we find that at high-energy $|\mathbf{p}_j| \approx E_j \approx \sqrt{s/2}$ for each $j = \{a, b, c, d\}$.

(f) For the case where all masses are equal, $m_a = m_b = m_c = m_d \equiv m$, write expressions for kinematic quantities in parts (a) through (d).

Solution: By direct substitution into the general formulae we derived, $E \equiv E_a = E_b = E_c = E_d = \frac{\sqrt{s}}{2},$

and

$$|\mathbf{p}| \equiv |\mathbf{p}_a| = |\mathbf{p}_b| = |\mathbf{p}_c| = |\mathbf{p}_d| = \frac{1}{2}\sqrt{s - 4m^2},$$

with $s = 4E^2$, and since $E = \sqrt{m^2 + \mathbf{p}^2} \ge m$, so $s \ge 4m^2$. For $t, t_0 = 0$, and

$$t = -2\mathbf{p}^2(1 - \cos\theta) \,.$$

2. The two-body differential Lorentz invariant phase space for some initial total momentum $P = (E, \mathbf{P})$ is defined as

$$\mathrm{d}\Phi_2(P \to p_1 + p_2) = \frac{1}{\mathcal{S}} \frac{\mathrm{d}^3 \mathbf{p}_1}{(2\pi)^3 \, 2E_1} \frac{\mathrm{d}^3 \mathbf{p}_2}{(2\pi)^3 \, 2E_2} \, (2\pi)^4 \delta^{(4)}(P - p_1 - p_2) \, d^{(4)}(P - p_1 - p_2) \, d^{(4)}(P$$

where \mathcal{S} is a symmetry factor. Perform partial integrations to show that in the CM frame ($\mathbf{P} = \mathbf{0}$) the differential phase space is given by

$$d\Phi_2(P \to p_1 + p_2) = \frac{1}{S} \frac{|\mathbf{p}_1|}{4\pi\sqrt{s}} \frac{d\Omega}{4\pi} \Theta(\sqrt{s} - m_1 - m_2),$$

where $d\Omega$ is the differential solid angle of \mathbf{p}_1 , $s = P^2 = E^2$, and $\Theta(x)$ is the Heaviside step function.

Assume we are integrating against a test function $f(\mathbf{p}_1, \mathbf{p}_2)$. Since the phase space is Lorentz invariant, we can evaluate in any reference frame. We choose the CM frame. The four-dimensional Dirac delta can be written as

$$\delta^{(4)}(P - p_1 - p_2) = \delta^{(4)}(E - E_1 - E_2)\,\delta^{(3)}(\mathbf{p}_1 + \mathbf{p}_2)\,,$$

where we used $\mathbf{P} = \mathbf{0}$.

So, we can integrate over the measure $d^3\mathbf{p}_2$, eliminating the spatial momentum Dirac delta functions,

$$d\Phi_2(P \to p_1 + p_2) = \frac{1}{(4\pi)^2} \frac{1}{\mathcal{S}} \frac{d^3 \mathbf{p}_1}{E_1 E_2} \,\delta^{(4)}(E - E_1 - E_2) \,.$$

Note that since $\mathbf{p}_1 = -\mathbf{p}_2$, $E_1 = \sqrt{m_1^2 + \mathbf{p}_1^2}$ and $E_2 = \sqrt{m_2^2 + \mathbf{p}_1^2}$. The remaining delta function can be evaluated by a change of variables to $|\mathbf{p}_1|$,

$$\delta(E - E_1 - E_2) = \left| \frac{\partial(E - E_1 - E_2)}{\partial |\mathbf{p}_1|} \right|^{-1} \delta(|\mathbf{p}_1| - |\mathbf{p}_1^{\star}|),$$
$$= \frac{E_1 E_2}{|\mathbf{p}_1| \sqrt{s}} \delta(|\mathbf{p}_1| - |\mathbf{p}_1^{\star}|)$$

where $|\mathbf{p}_1^{\star}|$ is the solution to $E - E_1 - E_2 = 0$. So, converting the measure to spherical coordinates, we find

$$d\Phi_{2}(P \to p_{1} + p_{2}) = \frac{1}{(4\pi)^{2}} \frac{1}{\mathcal{S}} \frac{d^{3}\mathbf{p}_{1}}{E_{1}E_{2}} \frac{E_{1}E_{2}}{|\mathbf{p}_{1}|\sqrt{s}} \,\delta(|\mathbf{p}_{1}| - |\mathbf{p}_{1}^{\star}|) \,,$$

$$= \frac{1}{(4\pi)^{2}} \frac{1}{\mathcal{S}} \frac{d\Omega d|\mathbf{p}_{1}| |\mathbf{p}_{1}|^{2}}{E_{1}E_{2}} \frac{E_{1}E_{2}}{|\mathbf{p}_{1}|\sqrt{s}} \,\delta(|\mathbf{p}_{1}| - |\mathbf{p}_{1}^{\star}|) \,,$$

$$= \frac{1}{\mathcal{S}} \frac{|\mathbf{p}_{1}^{\star}|}{4\pi\sqrt{s}} \frac{d\Omega}{4\pi} \,\Theta(\sqrt{s} - m_{1} - m_{2}) \,,$$

where the integral over the delta function yields the Heaviside function, enforcing the total energy to be greater than the threshold. Since the \star is a label, we arrive at the desired result.

3. Consider the binary reaction $ab \rightarrow cd$ where each particle is a scalar boson. The differential crosssection is defined as

$$\mathrm{d}\sigma = \frac{1}{\mathcal{F}} |\mathcal{M}|^2 \,\mathrm{d}\Phi_2(p_a + p_b \to p_c + p_d) \,,$$

where $\mathcal{F} = 4\sqrt{(p_a \cdot p_b)^2 - m_a^2 m_b^2}$ is the flux factor. Show that the differential cross-section can be written as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2 s} \frac{|\mathbf{p}_c|}{|\mathbf{p}_a|} \frac{1}{\mathcal{S}} |\mathcal{M}|^2,$$

where the solid angle is defined in the CM frame.

Solution: From Problem 2, we have an expression for the phase space in the CM frame,

$$\mathrm{d}\Phi_2(P \to p_1 + p_2) = \frac{1}{\mathcal{S}} \frac{|\mathbf{p}_c|}{16\pi^2 \sqrt{s}} \,\mathrm{d}\Omega\,,$$

where we leave the Heaviside function implicit. Therefore, we only need to express the flux factor in the CM frame. Note that $s = (p_a + p_b)^2 = m_a^2 + m_b^2 + 2p_a \cdot p_b$. So, $(p_a \cdot p_b)^2 = (s - m_a^2 - m_b^2)^2/4$, therefore

$$\begin{aligned} \mathcal{F} &= 4\sqrt{(p_a \cdot p_b)^2 - m_a^2 m_b^2} \,, \\ &= 4\sqrt{\frac{(s - m_a^2 - m_b^2)^2}{4} - m_a^2 m_b^2} \\ &= 2\lambda^{1/2}(s, m_a^2, m_b^2) \,. \end{aligned}$$

Since $2\sqrt{s}|\mathbf{p}_a| = \lambda^{1/2}(s, m_a^2, m_b^2)$, we find $\mathcal{F} = 4\sqrt{s}|\mathbf{p}_a|$. Combining the pieces, we find the desired result

$$d\sigma = \frac{1}{4\sqrt{s}|\mathbf{p}_{a}|} |\mathcal{M}|^{2} \frac{1}{\mathcal{S}} \frac{|\mathbf{p}_{c}|}{16\pi^{2}\sqrt{s}} d\Omega,$$
$$= \frac{1}{64\pi^{2}s} \frac{|\mathbf{p}_{c}|}{|\mathbf{p}_{a}|} \frac{1}{\mathcal{S}} |\mathcal{M}|^{2} d\Omega.$$

- 4. Consider the elastic scattering of two scalar particles $(\varphi \varphi \rightarrow \varphi \varphi)$ of mass m described $\lambda \varphi^4$ theory.
 - (a) At leading order in the coupling λ , the scattering amplitude is given by

$$i\mathcal{M} = -i\lambda + \mathcal{O}(\lambda^2) \,.$$

Compute the total cross-section σ as a function of s.

Solution: For equal mass scattering, $|\mathbf{p}_a| = |\mathbf{p}_c|$. So, the differential cross section is

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{1}{64\pi^2 s} \, \frac{1}{2} \, |\mathcal{M}|^2 \,, \\ &= \frac{\lambda^2}{128\pi^2 s} + \mathcal{O}(\lambda^3) \,. \end{aligned}$$

Integrating, we have

$$\begin{split} \sigma &= \int \mathrm{d}\Omega \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \,, \\ &= \frac{\lambda^2}{32\pi s} + \mathcal{O}(\lambda^3) \,. \end{split}$$

(b) As the energy approaches threshold, $s \to 4m^2$, the total cross-section can be written in terms of the scattering length $a, \sigma \to 4\pi a_0^2/S$. Determine a_0 in terms of the coupling λ .

Solution: As $s \to m^2$, then

$$\sigma \rightarrow \frac{1}{\mathcal{S}} \frac{\lambda^2}{16\pi (4m^2)} + \mathcal{O}(\lambda^3) = \frac{4\pi a_0^2}{\mathcal{S}}$$

So, we find

$$a_0 = \frac{\lambda}{16\pi m} + \mathcal{O}(\lambda^3)$$

(c) The *partial wave expansion* is defined as

$$\mathcal{M}(s,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) \,\mathcal{M}_{\ell}(s) \,P_{\ell}(\cos\theta) \,,$$

where ℓ is the angular momentum, θ is the scattering angle defined in the CM frame, and $P_{\ell}(z)$ are the Legendre polynomials. Given the scattering amplitude at leading order in λ , calculate the *partial wave amplitudes* \mathcal{M}_{ℓ} for every ℓ .

Hint: The following properties of the Legendre polynomials may be useful. Given the first two polynomials, $P_0(z) = 1$ and $P_1(z) = z$, all remaining P_{ℓ} can be generated through the Bonnet recursion relation for $\ell > 1$,

$$\ell P_{\ell}(z) = z(2\ell - 1) P_{\ell-1}(z) - (\ell - 1) P_{\ell-2}(z).$$

The polynomial are orthogonal over $-1 \le z \le +1$,

$$\int_{-1}^{+1} \mathrm{d}z \, P_{\ell'}(z) P_{\ell}(z) = \frac{2}{2\ell+1} \delta_{\ell'\ell} \,.$$

Solution: From the orthogonality of P_{ℓ} , we find

$$\mathcal{M}_{\ell}(s) = \frac{1}{2} \int_{-1}^{+1} \mathrm{d}\cos\theta \, P_{\ell}(\cos\theta) \, \mathcal{M}(s,\theta) \, .$$

Now, $\mathcal{M} = -\lambda + \mathcal{O}(\lambda^2)$, which is a constant at leading order. Recognizing that $1 = P_0(\cos \theta)$, we find

$$\mathcal{M}_{\ell}(s) = -\frac{\lambda}{2} \int_{-1}^{+1} \mathrm{d}\cos\theta P_{\ell}(\cos\theta) + \mathcal{O}(\lambda^2) ,$$

$$= -\frac{\lambda}{2} \int_{-1}^{+1} \mathrm{d}\cos\theta P_{\ell}(\cos\theta) P_{0}(\cos\theta) + \mathcal{O}(\lambda^2) ,$$

$$= -\frac{\lambda}{2} \frac{2}{2\ell+1} \delta_{\ell 0} + \mathcal{O}(\lambda^2) ,$$

$$= -\lambda \delta_{\ell 0} + \mathcal{O}(\lambda^2)$$

So, the scattering amplitude is the S wave $(\ell = 0)$ amplitude, all other $\ell \neq 0$ partial wave amplitudes are identically zero at this order.