PHYS 772 - Standard Model Problem Set 2 Spring 2024

1. Consider a general binary reaction ab — cd, where the masses of the particles are m; and their four-
momenta are p; = (E;, p;) with EJ2 = m? + p? for each j = {a,b,c,d}. Prove the following results.

(a) The Mandelstam invariants are defined as
s=(pat+m)?  t=Pa—p)?,  u=(pa—pa)’.

Show that s+t +u =m?2 +m? + m? + m2. Hint: Consider conservation of four-momentum.

Solution: Taking the sum s + ¢ 4 u, we find
s+t+u=(pa+p)?+ (pa—pe)’ + (Pa — pa)?®,

=Zzﬁ+2p3+2pa-pb—2pa-pc—2pa-pd,
j

:Zm?‘i‘Qpa'(pa +pb_pc_pd)7
J

>t
J

where in the third line we used conservation of four-momentum states p, + pp = pe + pq.

(b) Show in the center-of-momentum (CM) frame, the frame where p, + pp = 0, that
s= (B, + Ep)? = (B.+ Ey)*.

Show that s > max((mg + mp)?, (Mme + ma)?).

Solution: In the CM frame, p, + py = 0. Therefore,
s = (pa+pb)° = (Ea + Ep)? = (Pa + P1)* = (Ea + Ep)”. (1)

Since pg + Pr = Pe + Pg by momentum conservation, in the CM frame we also have
Pc + Pa = 0. Therefore, we also find

s = (pe +pa)® = (Be + Ea)* — (pc + Pa)” = (Ec + Eq)® . (2)

Let p = p, = —py and p’ = p. = —pg. The energies of each particle are E, = /m2 + p2,

E, = /mj +p?, E. = \/m? + p'?, and Eg = \/m2+ p’?. The minimum energy for each
particle is when p = p’ = 0. So, the minimum sy, . is given by syin. = (mg + mp)? or
Smin. = (Me+mg)?. Thus, the minimum s is given by max((m, +ms)?2, (m. +mgy)?) since
the physical scattering occurs only when the total energy can produce the pair of particles.
Note since |p|, |p’| € [0, 00), s has no maximum bound.

(c) Show in the CM frame that the energy of the particles are

Ea:8+mgimga Lk =
2y/s

2 2
s —mg+my

N

2 2
s —mg +my

N

s+m§fm§

Ec = )
2y/s

By =
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and the momenta are

1
[Pa| = [Ps| = 2\7)\1/2(5,m§,m§), Ipel = [pd| = TﬁAl/Z(Sym
where \(z,y,2) = 2% + y? + 22 — 2(zy + yz + zz) is the Kéllén triangle function.
Hint: The following equivalent forms of the Kallén function may be useful

1
2 2
S c7md)a

Mz, y,2) = 2 +y* + 2% — 2(xy + yz + 22),
=2 =20y +2)z+(y—2)*,
= [z~ (Vy +V2)llz - (Vy = V2)°],

=(r—y—2)*—4dyz.

Solution: In the CM frame, /s = E, + E},. Take the square of (/s — E,)* = E} to find
El? = (\[ - Ea)2 )
=5+ E?—-2\/sE,.

Now, the on-shell condition gives E? = m?2 + p? and EE = mg + p%7 with p2 = p% in the
CM frame. So, solving for E,,

2 2
s+ my —my

E =
a 2\/§
From /s = E, + E}, we then find
Eb:\/g_Eam
s—l—mg—mg
SVem TR
s—mz—i—m%

2/s
Following similar arguments, we find E. and E .
To find the momentum, use
Ipa|* = EG —mg,

semdomi\?
=|——F] —m
25

William & Mary Page 2 of 8 Department of Physics



PHYS 772 - Standard Model Problem Set 2 Spring 2024

By the definition of the Ké&llén function, we find

1
|pa|2 = & A(Svm?mmg) (3)

which is holds since the A function is symmetric in all arguments. In the CM frame,
|pa| = |Pol, therefore

A2 (s,m2 m?).

pa pb f

We repeat the above arguments for both |p.| and |pg|, finding the desired results.

(d) Show in the CM frame that

t=19— 2|pa| |pc|(1 - COSQ))

where tg = A? /4s—(|pa|—|Pc|)? is the maximum value ¢ can take with A = (m2—m?2)—(m2—m32),

and 6 is the scattering angle defined by

Pa " Pc

cosf = .
IPallPel

Show that ¢; <t <ty where t; =ty — 4|pal||Pc| is the minimum value ¢ can take.

Solution: From the definition, ¢t = (p, — p.)?, we find

= (pa — Pc)*

= (Ba — Ec)? = (Pa — Po)°,

= (E, — E.)*> — p2 — p? + 2|pa||pc| cos b,

= (Eq — Ec)” = P2 — P? + (2pallpel — 2[Pallpel) + 2|Pallpel cos b,
= (Eq — Ec)” = (IPal = IPc])” = 2|Pal|pe/(1 — cos6) .

The maximum value of ¢ occurs when cosf = 1, so we define

tO = t|c030=1 )
= (Ba = Ec)? = (Ipal — IPc/)? -

so that

t=1to— 2|pa||pc|(1 - COSG)'
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Now, we can manipulate to using the expressions for energies,

1
E,—E:.= Tﬁ((mifmf)*(mgfmﬁ)),
A
=57

so tg = A?/4s — (|pa| — |Pc])?. Note that when p, = p. = 0, then A? > 0. For non-zero
pq and pe, to can be either positive or negative depending on the scattering process (e.g.

if my, = my = me = my, then tg < 0.) The minimum value of ¢ coincides with cosf = —1,
or

ty = t|cos€:—1 ,
= to — 4|Pal|Pe| -

SO, tl Stgt().

(e) Show that in the high-energy limit |p;| = E; ~ \/s/2 for every j = {a,b, ¢, d}.

Solution: Consider first particle a. It’s CM frame energy is

Eazs—i—mi—mi7
2/5

V5, ma —mp
2 25

and for the momentum, using the second form of the Kéllén function, we find

Ay el
S

|pa| - 2 82 ’
_VE et g
2 2\/5 ’
- \f +0(s71?),

where in the second line we performed a series expansion about 1/s = 0. Therefore, both
|pa| and E, scale as

S _
E, = |pa| = % +O(S 1/2)7

as s — 0o. Repeating this analysis for particles b, ¢, and d, we find that at high-energy
Ip;j| = Ej = /s/2 for each j = {a,b,c,d}.
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(f) For the case where all masses are equal, m, = my = m. = mgq = m, write expressions for
kinematic quantities in parts (a) through (d).

Solution: By direct substitution into the general formulae we derived,

and
1
IP| = |Pal = |Ps| = |Pe| = [Pl = SV - 4m?,

with s = 4E2, and since E = \/m?2 + p2? > m, so s > 4m?. For t, ty = 0, and

t = —2p?(1 — cos ).

2. The two-body differential Lorentz invariant phase space for some initial total momentum P = (E,P)
is defined as
d*ps d’py

|
A22(P =P+ 12) = 555598, (Br) 25, ()"0 (E =1 = p2),

where S is a symmetry factor. Perform partial integrations to show that in the CM frame (P = 0) the
differential phase space is given by
1 [pi| d

d<I>2(P—>p1+p2)=§4W\/§EG(\/§—m1—m2),

where dQ is the differential solid angle of p;, s = P? = E2, and O(z) is the Heaviside step function.

Assume we are integrating against a test function f(p1, p2). Since the phase space is Lorentz in-
variant, we can evaluate in any reference frame. We choose the CM frame. The four-dimensional
Dirac delta can be written as

5(4)(13 — D1 —p2) = 5(4)(E —F1 - E2)5(3)(p1 + p2),

where we used P = 0.
So, we can integrate over the measure d®>p,, eliminating the spatial momentum Dirac delta
functions,

1 l d’p,
(471')2 S ElEQ

Note that since p1 = —p2, F1 = /m? + p7 and E3 = y/m3 + p?. The remaining delta function
can be evaluated by a change of variables to |p1],

dq)Q(P*)pl +p2) = 5(4)(E7E1 7E2)

OE - Ey — By)| ™" .
o(8 - 1~ ) = | 2PEZE B g o,

_ EiB»
p1lv/s

(lp1| = Ipil)
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where |p7] is the solution to E—E;—E> = 0. So, converting the measure to spherical coordinates,
we find

1 l d3p1 ElEQ
(47)* S ErEs |p1ly/s

1 1dd|pi||pi|* EiEs

d®y(P — p1+p2) = 3(Ip1| = [PTl) s

= 5 J— * y
(47T)ZS E, B |p1‘\/§ (|p1| |p1|)

_ 1 |pj] d

- Sdmy/s 4n O(s —mi —ma),

where the integral over the delta function yields the Heaviside function, enforcing the total
energy to be greater than the threshold. Since the % is a label, we arrive at the desired result.

3. Consider the binary reaction ab — cd where each particle is a scalar boson. The differential cross-
section is defined as

1
do = f |M‘2d‘1)2(pa + Dy _>pc+pd)7

where F = 4y/(p, - pp)? — m2m? is the flux factor. Show that the differential cross-section can be
written as
do 1 |pc|1
dQ 64725 |pa| S

M2,

where the solid angle is defined in the CM frame.

Solution: From Problem 2, we have an expression for the phase space in the CM frame,
1 |p|
d®y (P — = = ,
2P = pitp) = g5 7
where we leave the Heaviside function implicit. Therefore, we only need to express the flux factor
in the CM frame. Note that s = (p,+pp)? = m2+m2 +2pa . S0, (pa-pp)? = (s—m2—m?)? /4,
therefore

F= 4\/(pa “py)? = mgmy

(s —m2 —m2)2
:4\/“4 bl —m2m?,

= 2A12(s,m, m3) .

Since 2v/s|pa| = AY/2(s,m2,m?), we find F = 4,/s|p,|. Combining the pieces, we find the
desired result
1

 4y/5|pd|

_ 1 Ipel1
6472s |pal S

1 |pe
M]? = ,
M S 16m24/s

do

|IM|>dS2.
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4. Consider the elastic scattering of two scalar particles (¢ — @) of mass m described A\p? theory.

(a) At leading order in the coupling A, the scattering amplitude is given by
iM=—id+0O(\?).

Compute the total cross-section o as a function of s.

Solution: For equal mass scattering, |pa| = |p¢|- So, the differential cross section is
do | |
dQ 647r2
)\2
=—— +00\).
128725 +O()

Integrating, we have

do

f— Qi
o /d 19
)\2

- 32ms

+O(N\%).

(b) As the energy approaches threshold, s — 4m?, the total cross-section can be written in terms of
the scattering length a, o — 4wa3/S. Determine ag in terms of the coupling .

Solution: As s — m?2, then
— Sl67r?jm2) + 0O\ = 47;&
So, we find
ag 165\'('771 + 0O\,
(c) The partial wave expansion is defined as
i 204 1) My(s) Py(cos @),
=0

where ¢ is the angular momentum, 6 is the scattering angle defined in the CM frame, and P (z)
are the Legendre polynomials. Given the scattering amplitude at leading order in A, calculate the
partial wave amplitudes My for every £.

Hint: The following properties of the Legendre polynomials may be useful. Given the first two
polynomials, Py(z) = 1 and P;(z) = z, all remaining Py can be generated through the Bonnet
recursion relation for £ > 1,

CPy(2) = 2(20 = 1) Pr—1(2) — (€ = 1) Pr—2(2) .
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The polynomial are orthogonal over —1 < z < +1,

+1 9
dz Py (2)Pi(z) = dere -
L (2)Po(2) = 5 0ee
Solution: From the orthogonality of P, we find
1 +1
Me(s) = 3 dcosf Py(cos8) M(s,0) .
-1
Now, M = —\ + O(\?), which is a constant at leading order. Recognizing that 1 =
Py(cos @), we find
by +1
My(s) = —3 / dcos @ Py(cos 0) + O(\?),
-1
AT
=-3 / d cos 0 Py(cos 0) Py(cos 0) + O(N\?),
-1
A2
== 4,0+ O(N\?
2201100 O,
= —Xdw + O(N?)
So, the scattering amplitude is the S wave (£ = 0) amplitude, all other ¢ # 0 partial wave
amplitudes are identically zero at this order.
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