
PHYS 772 - Standard Model Problem Set 3 Spring 2024

Problems 1 and 2 are optional, as they should be familiar from QFT I. However, if you are not comfortable
with manipulating Gamma matrices, I encourage you to complete them. Completing them will result in
bonus points.

1. The Dirac matrices γµ = (γ0, γj) in the chiral (Weyl) representation are defined as

γ0 =
(
0 I
I 0

)
, γj =

(
0 σj

−σj 0

)
,

where I is the 2× 2 identity matrix and σj are the Pauli matrices.

(a) With this representation, confirm that {γµ, γν} = 2gµν .

Solution: To clarify some of the manipulations in these problems, we introduce I4 as
the 4 × 4 identity, and let I → I2 be the 2 × 2 identity. Thus, what is to be shown is
{γµ, γν} = 2gµνI4, given the chiral representation

γ0 =
(
0 I2
I2 0

)
, γj =

(
0 σj

−σj 0

)
.

Recall the properties of the Pauli matrices, {σj , σk} = 2δjkI2.

{γ0, γ0} = 2(γ0)2 ,

= 2

(
0 I2
I2 0

)(
0 I2
I2 0

)
,

= 2

(
I2 0
0 I2

)
= 2g00 I4 ,

{γ0, γj} = γ0γj + γjγ0 ,

=

(
0 I2
I2 0

)(
0 σj

−σj 0

)
+

(
0 σj

−σj 0

)(
0 I2
I2 0

)
,

=

(
−σj 0
0 σj

)
+

(
σj 0
0 −σj

)
=

(
0 0
0 0

)
= 2g0j I4 ,
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where we note that g00 = +1 and g0j = gj0 = 0. Continuing,

{γj , γ0} = γjγ0 + γ0γj = {γ0, γj} = 2g0j I4 = 2gj0 I4 ,

{γj , γk} = γjγk + γkγj ,

=

(
0 σj

−σj 0

)(
0 σk

−σk 0

)
+

(
0 σk

−σk 0

)(
0 σj

−σj 0

)
,

=

(
−σjσk 0

0 −σjσk

)
+

(
−σkσj 0

0 −σkσj

)
,

= −
(
σjσk + σkσj 0

0 σjσk + σkσj

)
,

= −
(
2δjkI2 0

0 2δjkI2

)
,

= −2δjk I4 = 2gjk I4

Therefore, we have shown {γµ, γν} = 2gµν I4

(b) Using the result in (a), show that γµγ
µ = 4.

Solution: Contract {γµ, γν} = 2gµν I4 with gµν ,

gµν{γµ, γν} = 2gµνg
µν I4 ,

{γµ, γµ} = 2gµµ I4 ,

2γµγ
µ = 2 · 4 I4 .

So, we conclude γµγ
µ = 4 I4.

(c) Prove that γµγ
νγµ = −2γν without using an explicit matrix representation.

Solution: Using the anticommutator relation, as well as the result from part (b), we find

γµγ
νγµ = γµ(2g

µν I4 − γµγν) ,

= 2γν − γµγ
µγν ,

= 2γν − 4γν ,

= −2γν .

(d) Similarly, prove that γµγ
νγργµ = 4gνρ.
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Solution: Using the anticommutator relation, as well as the result from part (c), we find

γµγ
νγργµ = γµγ

ν(2gρµ I4 − γµγρ) ,

= 2γργν − γµγ
νγµγρ ,

= 2γργν + 2γνγρ ,

= 2{γρ, γν} ,

= 4gνρ I4 .

2. Given γ5 = γ5 = iγ0γ1γ2γ3, prove the following trace identities:

(a) tr (γµγν) = 4gµν ,

Solution: Taking the trace, we use the cyclic properties of the trace and the anticommu-
tation relations, we have

tr (γµγν) =
1

2
tr(γµγν + γµγν) ,

=
1

2

[
tr(γµγν) + tr(γµγν)

]
,

=
1

2
tr(γµγν + γνγµ) ,

=
1

2
tr({γµγν}) ,

=
1

2
· 2gµν tr(I4) ,

= 4gµν ,

where tr(I4) = 4.

(b) tr (γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ),
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Solution: Here we use the anticommutation relation inside the trace,

tr(γµγνγργσ) = tr[γµγν(2gρσ I4 − γσγρ)] ,

= 2gρσ tr(γµγν)− tr(γµγνγσγρ) ,

= 8gµνgρσ − tr[γµ(2gνσ I4 − γσγν)γρ] ,

= 8gµνgρσ − 2gνσ tr(γµγρ) + tr(γµγσγνγρ) ,

= 8gµνgρσ − 8gνσgµρ + tr[2gµσ I4 − γσγµ)γνγρ] ,

= 8gµνgρσ − 8gνσgµρ + 2gµσ tr(γνγρ)− tr(γσγµγνγρ) ,

= 8gµνgρσ − 8gνσgµρ + 8gµσgνρ − tr(γµγνγργσ) ,

where in the last line we used the cyclic property of the trace. Then, adding this final trace
to the left-hand side, we find

2 tr(γµγνγργσ) = 8gµνgρσ − 8gνσgµρ + 8gµσgνρ

=⇒ tr(γµγνγργσ) = 4 (gµνgρσ − gνσgµρ + gµσgνρ)

(c) The trace of any odd number of gamma matrices is zero.

Solution: We first prove that tr(γµ) = 0, which is obvious in the Weyl basis but is true
in general. Recall that (γ5)

2 = γ5γ
5 = 4I4. Therefore, the trace can be written as

tr(γµ) = tr(γµI4) = tr(γµγ5γ5) = − tr(γ5γµγ5) = − tr(γµγ5γ5) = − tr(γµ) ,

where in the fourth equality we used the anticommutation relation γµγ5 = −γ5γµ and in
the fifth equality results from the cyclic properties of the trace. Therefore, we conclude

tr(γµ) = 0 .

A generic trace over an odd number of gamma matrices can be written as a trace over
2n + 1 gamma matrices where n ∈ N, tr(γµ1γµ2 · · · γµ2nγµ2n+1). So, inserting I4 = (γ5)2

at the end gives,

tr(γµ1γµ2 · · · γµ2nγµ2n+1) = tr(γµ1γµ2 · · · γµ2nγµ2n+1I4) ,

= tr(γµ1γµ2 · · · γµ2nγµ2n+1γ5γ5) ,

= (−1)2n+1 tr(γ5γµ1γµ2 · · · γµ2nγµ2n+1γ5) ,

= − tr(γµ1γµ2 · · · γµ2nγµ2n+1γ5γ5) ,

= − tr(γµ1γµ2 · · · γµ2nγµ2n+1) ,

where the factor (−1)2n+1 = (−1) comes from anticommuting γ5 to the left through all
2n+ 1 gamma matrices. We conclude that tr(γµ1γµ2 · · · γµ2nγµ2n+1) = 0
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(d) tr (γ5) = tr (γ5γµ) = tr (γ5γµγν) = tr (γ5γµγνγρ) = 0,

Solution: We begin by first proving tr(γ5) = 0. By definition, γ5γµ = −γµγ5. Now,
taking the trace, and inserting the identity in the form I4 = (γ0)2,

tr(γ5) = tr(I4γ
5) ,

= tr(γ0γ0γ5) ,

= − tr(γ0γ5γ0) ,

= − tr(γ0γ0γ5) ,

= − tr(γ5) ,

where we anticommuted γ0 to the right going to line 3, and the used the cyclic property
of the trace in line 4. Therefore, we conclude tr(γ5) = 0.

We note that since γ5 is defined as γ5 = iγ0γ1γ2γ3, that tr(γ5γµ) = tr(γ5γµγνγρ) = 0
since this is the trace of an odd number of gamma matrices.

Therefore, the remaining identity to show is tr(γ5γµγν) = 0. Note that if µ = ν, then
(γµ)2 = ±I4 where the ‘+’ is for µ = 0, and ‘−’ otherwise. So, if µ = ν, then tr(γ5γµγν) →
± tr(γ5I4) = 0 by the first identity proved in this solution. What remains is the case where
µ ̸= ν. We insert an identity of the form I4 = ±(γρ)2, where we are free to choose ρ ̸= µ
and ρ ̸= ν, so that {γρ, γµ} = {γρ, γν} = 0. Taking the trace,

tr(γ5γµγν) = tr(I4γ
5γµγν) ,

= ± tr(γργργ5γµγν) ,

= (±1)(−1)3 tr(γργ5γµγνγρ) ,

= (±1)(−1)3 tr(γργργ5γµγν) ,

= (−1)3 tr(γ5γµγν) = − tr(γ5γµγν) ,

where in the third line we anticommuted γρ to the right three times, and in the fourth
used the cyclic property of the trace. We conclude that tr(γ5γµγν) = 0 for all µ, ν.

(e) tr (γ5γµγνγργσ) = −4iϵµνρσ.

Solution: Using the anticommutation relation on the last two gamma matrices, we find

tr(γ5γµγνγργσ) = tr[γ5γµγν(2gρσ I4 − γσγρ)] ,

= 2gρσ tr(γ5γµγν)− tr(γ5γµγνγσγρ) ,

= − tr(γ5γµγνγσγρ) ,

where we used the result from part d that tr(γ5γµγν) = 0. If ρ = σ, then (γρ)2 = ±I4
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where the ‘+’ is for ρ = 0 and ‘−’ otherwise. Thus, if ρ = σ, we have tr(γ5γµγνγργσ) →
∓ tr(γ5γµγν) = 0. So, we conclude that tr(γ5γµγνγργσ) is antisymmetric in ρ and σ. We
can repeat this argument for any pair of indices, ultimately concluding that tr(γ5γµγνγργσ)
is completely antisymmetric in all µ, ν, ρ, σ indices. In 4D spacetime, the only Lorentz
tensor that is completely antisymmetric is the Levi-Civita, therefore we conclude

tr(γ5γµγνγργσ) = Aϵµνρσ ,

where A is an undetermined constant and ϵµνρσ is defined such that ϵ0123 = +1.

To determine the constant, we can take any particular combination of Lorentz indices. Let
us take (µ, ν, ρ, σ) = (0, 1, 2, 3), so that

tr(γ5γ0γ1γ2γ3) = Aϵ0123 = A .

Using the definition γ5 = iγ0γ1γ2γ3, we evaluate the trace,

tr(γ5γ0γ1γ2γ3) = i tr(γ0γ1γ2γ3γ0γ1γ2γ3) ,

= (−)3i tr(γ0γ0γ1γ2γ3γ1γ2γ3) ,

= (−1)3(−1)2i tr(γ0γ0γ1γ1γ2γ3γ2γ3) ,

= (−1)3(−1)2(−1)i tr(γ0γ0γ1γ1γ2γ2γ3γ3) ,

= (−1)3(−1)2(−1)i tr((+I4)(−I4)(−I4)(−I4)) ,

= −i tr(I4) ,

= −i4 ,

where in the second, third, and fourth lines we anticommutation relations to arrange
identical gamma matrices into pairs, and in the fifth line we used that (γ0)2 = +I4 while
(γj)2 = −I4. We conclude that A = −4i, so that

tr(γ5γµγνγργσ) = −4iϵµνρσ

3. The chiral projectors are defined as

PR =
1

2
(I4 + γ5) , PL =

1

2
(I4 − γ5) ,

where I4 is the 4× 4 identity matrix. Prove the following properties:

(a) γ5PL = −PL, and γ
5PR = PR ,
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Solution: Note that (γ5)2 = I4, thus,

γ5PL/R =
1

2
γ5(I4 ∓ γ5) ,

=
1

2
(γ5 ∓ (γ5)2) ,

=
1

2
(γ5 ∓ I4) ,

= ∓1

2
(I4 ∓ γ5) ,

= ∓PL/R .

(b) (PL/R)
2 = PL/R ,

Solution: Taking the square of the projectors,

(PL/R)
2 =

(
1

2
(I4 ∓ γ5)

)2

,

=
1

4
(I4 ∓ γ5)(I4 ∓ γ5) ,

=
1

4
(I4 ∓ γ5 ∓ γ5 + (γ5)2) ,

=
1

2
(I4 ∓ γ5) = PL/R

(c) PLPR = PRPL = 0 ,

Solution: Taking product

PL/RPR/L =
1

2
(I4 ∓ γ5) · 1

2
(I4 ± γ5) ,

=
1

2
(I4 ∓ γ5 ± γ5 − (γ5)2) ,

=
1

2
(I4 − I4) = 0 .

Therefore, we conclude PLPR = PRPL = 0.

(d) PL + PR = I4 .
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Solution: Taking PL + PR, we find

PL + PR =
1

2
(I4 − γ5) +

1

2
(I4 + γ5) ,

=
1

2

(
2I4 − γ5 + γ5

)
,

= I4 .

4. Suppose the charge conjugation operator is defined as C = iγ2γ0. Confirm that in the Weyl represen-
tation,

(a) C−1 = C⊤ = C† = −C .

Solution: Given C = iγ2γ0, we first check if the matrix C is unitary, C†C = CC† = I4.
Note the following useful property,

(γµ)2 =
1

2
{γµ, γµ} (no sum on µ) ,

=
1

2
· 2gµµ I4 (no sum on µ) ,

= gµµ I4 (no sum on µ) ,

so (γ0)2 = I4 and (γj)2 = −I4.

C† = (iγ2γ0)† = −i(γ0)†(γ2)† = −iγ0(−γ2) = iγ0γ2 = −iγ2γ0 = −C

So,

C†C = (−iγ2γ0)(iγ2γ0) = γ2γ0γ2γ0 = −γ2γ0γ0γ2 = −γ2γ2 = +I4

Since C is unitary, we conclude that C† = C−1.

C⊤ = (C†)∗ = −C∗ = −(iγ2γ0)∗ = −(−i)(γ2)∗(γ0)∗ .

In the Weyl basis, γ0 is real, so (γ0)∗ = γ0, and (γ2)∗ is

(γ2)∗ =

(
0 (σ2)∗

−(σ2)∗ 0

)
= −

(
0 σ2

−σ2 0

)
= −γ2 ,

where we used the fact that (σ2)∗ = −σ2 since the non-zero entries of σ2 are purely
imaginary. Therefore,

C⊤ = −(−i)(γ2)∗(γ0)∗ = i(−γ2)γ0 = −iγ2γ0 = −C .

We thus conclude that C is a real matrix, C∗ = C, and that

C−1 = C⊤ = C† = −C ,

as desired.

William & Mary Page 8 of 18 Department of Physics



PHYS 772 - Standard Model Problem Set 3 Spring 2024

(b) CγµC−1 = −(γµ)⊤ ,

Solution: To prove this, first recall that (γµ)† = γ0γµγ0. Since γ0 is real in the Weyl
basis, then we conclude (γµ)⊤ = γ0(γµ)∗γ0, where the ∗ denote complex conjugation. Now,
with C = iγ2γ0 = −iγ0γ2, with C−1 = C† = −iγ2γ0 = −C, multiply (γµ)⊤ = γ0(γµ)∗γ0

on the left with C−1 and on the right with C,

C−1(γµ)⊤C = C† (γ0(γµ)∗γ0)C ,
= (−iγ2γ0)

(
γ0(γµ)∗γ0

)
(−iγ0γ2) ,

= −γ2(γµ)∗γ2 ,

where in the last line we used (γ0)2 = I4. For µ = 0, 1, 3, then (γµ)∗ = γµ since they
are real in the Weyl basis. Then, γµγ2 = −γ2γµ for µ ̸= 2. Since (γ2)2 = −I4, we
find C−1(γµ)⊤C = −γ2(−γ2γµ) = (−1)2(−γµ) = −γµ for µ ̸= 2. When µ = 2, then
(γ2)∗ = −γ2. So, C−1(γµ)⊤C = −γ2(−γ2)γ2 = −γ2. Therefore, we conclude for all µ,
C−1(γµ)⊤C = −γµ. Now, multiply on the left by C, and on the right by C−1,

CC−1(γµ)⊤CC−1 = −CγµC−1 , =⇒ CγµC−1 = −(γµ)⊤ ,

which was to be proved.

(c) Cγ5C−1 = (γ5)⊤ ,

Solution: Here, let us take the commutator of C and γ5,

[C, γ5] = Cγ5 − γ5C ,

= iγ2γ0γ5 − iγ5γ2γ0 ,

= iγ2γ0γ5 − iγ2γ0γ5 ,

= 0

since {γ5, γµ} = 0. Thus, Cγ5C−1 = γ5. Note that (γ5)† = γ5, and in the Weyl basis
γ5 = (γ)∗. Thus, we conclude Cγ5C−1 = (γ5)⊤.

5. A Dirac spinor ψ is called a Majorana spinor if it satisfies the condition ψ = Cψ̄⊤, and is called a
Weyl spinor if it satisfies either ψ = PRψ or ψ = PLψ. Determine whether or not a spinor can be both
Majorana and Weyl.

Solution: Let us define ψc ≡ Cψ̄⊤, ψL ≡ PLψ, and ψR ≡ PRψ. We take the charge conjugation
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of a chiral fermion. For example, let us take (ψL)
c = Cψ̄⊤

L . Since ψ̄ = ψ†γ0, we have

(ψL)
c = Cψ̄⊤

L ,

= C(ψ†
Lγ

0)⊤ ,

= C((PLψ)
†γ0)⊤ ,

= C(ψ†PLγ
0)⊤ ,

= C(γ0)⊤(PL)
⊤ψ∗ ,

where we used that ψ† = (ψ⊤)∗ and P †
L = PL since (γ5)† = γ5. Now, we note that

(PL)
⊤ =

1

2
(I4 − γ5)⊤ ,

=
1

2
(I4 − (γ5)⊤) ,

=
1

2
(I4 − C−1γ5C) ,

= C−1

[
1

2
(I4 − γ5)

]
C ,

= C−1PLC ,

where we used C−1γ5C = (γ5)⊤ and C−1C = I4. So, we have

(ψL)
c = C(γ0)⊤C−1PLCψ

∗ ,

= −γ0PLCψ
∗ ,

where we used C(γ0)⊤C−1 = −γ0. Recall that γ0γ5 = −γ5γ0, so γ0PL = PRγ
0. Thus, we have

(ψL)
c = −γ0PLCψ

∗ ,

= −PRγ
0Cψ∗ .

Finally, we use again C−1γ0C = −(γ0)⊤ =⇒ γ0C = −C(γ0)⊤, so that

(ψL)
c = −PRγ

0Cψ∗ ,

= PRC(γ
0)⊤ψ∗ ,

= PRC(ψ
†γ0)⊤ ,

= PRCψ̄
⊤ ,

= PRψ
c ,

= (ψc)R .
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We find that (ψL)
c = (ψc)R. Similar arguments show that (ψR)

c = (ψc)L. We conclude
under charge conjugation the chirality flips for a Weyl fermion. So, if we consider a four-
component spinor, ψ = (ψL, ψR)

⊤, then charge conjugation flips the chirality, but the spinor
is simply a rotated version. The two-component spinors themselves are not eigenstates of both
the Majorana and Weyl equation.

6. Consider a generic 2 → n reaction ab → c1c2 . . . cn in the lab frame or fixed-target frame, that is the
frame where particle b is at rest and a is the incident beam. Assume max(ma,mb) < min(mc1 ,mc2 , . . . ,mcn).

(a) Show that s = m2
a +m2

b + 2mb

√
m2

a + P 2
lab. where Plab. is the beam momentum.

Solution: By definition, s = (pa+pb)
2 = m2

a+m
2
b +2pa ·pb, where p2a = m2

a and p2b = m2
b .

Since in the lab frame, pb = 0 and Eb = mb, we have pa · pb = EaEb = mb

√
m2

a + |pa|2.
Since the beam momentum is |pa| = Plab., we find the desired result,

s = m2
a +m2

b + 2mb

√
m2

a + P 2
lab. .

(b) Express the beam kinetic energy, Ta ≡ Ea −ma, in terms of s.

Solution: From the previous result, s = m2
a +m2

b + 2mbEa where Ea =
√
m2

a + P 2
lab., we

have

Ea =
s−m2

a −m2
b

2mb
,

in the lab frame. Then, the kinetic energy is

Ta = Ea −ma =
s−m2

a −m2
b

2mb
−ma =

s− (ma +mb)
2

2mb
.

(c) What is the minimum kinetic energy of the beam with which the reaction can occur?

Solution: Since max(ma,mb) < min(mc1 ,mc2 , . . . ,mcn), the minimum s is

s(min) = (mc1 +mc2 + · · ·mcn)
2 =

 n∑
j=1

mcj

2

.

So, the minimum kinetic energy is

T (min)
a =

s(min) − (ma +mb)
2

2mb
,

=
1

2mb


 n∑

j=1

mcj

2

− (ma +mb)
2

 .
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7. Consider the following Yukawa theory as a simplified model of an interacting proton p, neutron n, and
neutral pion π0. We assume that the proton and neutron are distinguishable, but mass degenerate.
The Lagrange density is given by

L =
∑
f

i

2
ψ̄f /∂ψf + h.c.−

∑
f

Mψ̄fψf +
1

2
∂µφ∂

µφ− 1

2
m2φ2 −

∑
f

gφψ̄fγ
5ψf ,

where f is fermion index f = {n, p}, M is the proton and neutron mass, m is the pion mass, and g is
the coupling between proton and pion, as well as the neutron and pion.

(a) Consider the elastic reaction

n(p, s) + p(k, r) → n(p′, s′) + p(k′, r′) ,

where the arguments are the momenta and the subscripts are the spin-state. Write down the
np → np scattering amplitude to leading order in the coupling g. Hint: Only one diagram
contributes at O(g2). Refer to the summary notes on Feynman rules - Yukawa Theory.

Solution: From the Feynman rules, we find a single diagram at O(g2),

iM = p− p′

kk′

p′ p

+O(g4),

= ūs′(p
′)(−igγ5)us(p)

i

(p− p′)2 −m2
ūr′(k

′)(−igγ5)ur(k) +O(g4) ,

= − ig2

t−m2
[ūs′(p

′)γ5us(p)][ūr′(k
′)γ5ur(k)] +O(g4)

(b) The spin-averaged squared amplitude is defined as

〈
|M|2

〉
≡ 1

2

∑
s

1

2

∑
r

∑
s′

∑
r′

∣∣∣M(nspr → ns′pr′)
∣∣∣2 .

Show that at leading order

〈
|M|2

〉
= g4

t2

(t−m2)2
+O

(
g6
)

where s, t, and u are the Mandelstam invariants. Note: You are encouraged to use a computer
algebra software such as FeynCalc (https://feyncalc.github.io), which is a Mathematica package
for symbolic evaluation of Feynman diagrams and algebraic calculations in quantum field theory
and elementary particle physics. A useful tutorial can be found here. Mathematica is free to all
students at William & Mary (see https://software.wm.edu).
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Solution: By definition, 〈
|M|2

〉
≡ 1

2

∑
s

1

2

∑
r

∑
s′

∑
r′

∣∣∣M∣∣∣2 ,
≡ 1

4

∑
s,s′

∑
r,r′

M†M

Now,

M†M =
g4

(t−m2)2
[ūs′(p

′)γ5us(p)]
†[ūr′(k

′)γ5ur(k)]
†[ūs′(p

′)γ5us(p)][ūr′(k
′)γ5ur(k)] +O(g6)

Note that

[ūs′γ5us]
† = u†sγ

†
5ū

†
s′ ,

= u†sγ
†
5(u

†
s′γ

0)† ,

= u†sγ5(γ
0)†us′ ,

= u†sγ5γ
0us′ ,

= −u†sγ0γ5us′ ,

= −ūsγ5us′ ,

where γ†5 = γ5, (γ
0)† = γ0, and {γ0, γ5} = 0∑

s,s′

ūs(p)γ
5us′(p

′) ūs′(p
′)γ5us(p) =

∑
s,s′

tr
(
ūs(p)γ

5us′(p
′) ūs′(p

′)γ5us(p)
)
,

= tr
(
γ5

∑
s′

us′(p
′) ūs′(p

′)γ5
∑
s

us(p)ūs(p)
)
,

= tr
(
γ5(/p

′ +M)γ5(/p+M)
)
,

= 4(M2 − p′ · p) = 2t ,

where t = (p′ − p)2 = 2M2 − 2p′ · p. Similarly, we find∑
r,r′

ūr(k)γ
5ur′(k

′) ūr′(k
′)γ5ur(k) = tr

(
γ5(/k ′ +M)γ5(/k +M)

)
,

= 4(M2 − k′ · k) = 2t .

Putting all the pieces together, we find〈
|M|2

〉
=

1

4

g4

(t−m2)2
(2t)2 +O(g6) = g4

t2

(t−m2)2
+O(g6) ,

as desired.
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(c) Compute the unpolarized differential cross-section dσ/dt in terms of the Mandelstam invariants.

Solution: The unpolarized differential cross section for equal mass scattering is

dσ

dΩ
=

1

64π2s

〈
|M|2

〉
.

To find dσ/dt, note that for these kinematics t = −2|p|2(1 − cos θ), where |p| is the
magnitude of the relative momentum of the neutron in the CM frame. So, dt = 2|p|2 d cos θ,
and dΩ = 2π d cos θ. Finally, |p|2 = (s− 4M2)/4. So, the unpolarized dσ/dt is

dσ

dt
=

dΩ

dt

dσ

dΩ
=

π

|p|2
1

64π2s

〈
|M|2

〉
,

=
1

16πs(s− 4M2)

〈
|M|2

〉
.

Therefore, given that the spin-averaged matrix element squared is

〈
|M|2

〉
= g4

t2

(t−m2)2
+O(g6) ,

we have

dσ

dt
=

g4

16π

1

s(s− 4M2)

t2

(t−m2)2
+O(g6)

(d) Express dσ/dΩ in terms of s and the center-of-momentum frame scattering angle θ.

Solution:

dσ

dΩ
=

g4

64π2s

t2

(t−m2)2
+O(g6) ,

=
g4

64π2s

4|p|4(1− cos θ)2

(−2|p|2(1− cos θ)−m2)2
+O(g6) ,

=
g4

64π2s

(
1− cos θ

ζ(s)− cos θ

)2

+O(g6) ,

where in the last line we defined for convenience,

ζ(s) ≡ 1 +
m2

2|p|2
= 1 +

2m2

s− 4M2
.

(e) Compute the total cross-section as a function of s.

William & Mary Page 14 of 18 Department of Physics



PHYS 772 - Standard Model Problem Set 3 Spring 2024

Solution: The total cross-section is defined as

σ =

∫
dΩ

dσ

dΩ
= 2π

∫ +1

−1

d cos θ
dσ

dΩ
,

=
g4

32πs

∫ +1

−1

d cos θ

(
1− cos θ

ζ(s)− cos θ

)2

+O(g6) .

Note that for physical scattering, ζ(s) > 1 for all s ≥ 4M2. So, the integral yields∫ +1

−1

d cos θ

(
1− cos θ

ζ(s)− cos θ

)2

=
2

ζ(s) + 1

[
2ζ(s) +

(
ζ2(s)− 1

)
log

(
ζ(s)− 1

ζ(s) + 1

)]
.

So, the total cross-section is

σ =
g4

16πs

1

ζ(s) + 1

[
2ζ(s) +

(
ζ2(s)− 1

)
log

(
ζ(s)− 1

ζ(s) + 1

)]
,

=

(
g2

4π

)2
π

s(ζ(s) + 1)

[
2ζ(s) +

(
ζ2(s)− 1

)
log

(
ζ(s)− 1

ζ(s) + 1

)]
,

=

(
g2

4π

)2
π

s

[
2ζ(s)

ζ(s) + 1
+ (ζ(s)− 1) log

(
ζ(s)− 1

ζ(s) + 1

)]
.

(f) Estimate the magnitude of the pion-nucleon coupling g, as well as the quantity g2/4π, from the
experimentally observed np total cross-section. Note: You do not need to fit the data, however
feel free to do so. The Review of Particle Physics contains experimental cross-sections for select
processes. See the course webpage for the data file.

Solution: The summary data from the Review of Particle Physics is given in terms of the
lab frame beam momentum Plab., which is related to s via

s = 2M2 + 2M
√
M2 + P 2

lab. .

So, the total cross-section is given by

σ(Plab.) =

(
g2

4π

)2

(ℏc)2 I
(
2M2 + 2M

√
M2 + P 2

lab.

)
,

where I(s) is a distribution function

I(s) ≡ π

s

[
2ζ(s)

ζ(s) + 1
+ (ζ(s)− 1) log

(
ζ(s)− 1

ζ(s) + 1

)]
,

and s = 2M2 + 2M
√
M2 + P 2

lab.. The factor (ℏc)2 converts the cross-section in natural
units to millibarn (mb), with (ℏc)2 ≈ 0.389GeV2 ·mb.
Note that the first inelastic threshold in this theory is π0 production, np → npπ0, when
s = (2M +m)2. Therefore, we must only include data when (2M)2 ≤ s < (2M +m)2, or
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in terms of Plab.,

Plab. <

√(
(2M +m)2 − 2M2

2M

)2

−M2 ,

=
1

2M

√
m(4M +m)(2M +m)2

Since M ≈ 0.940GeV and m ≈ 0.140GeV, then Plab. ≲ 0.790GeV/c.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

I(
s)

/
G
eV

−
2

Plab. / GeV/c

Figure 1: The function I as a function of Plab.

We can gain some insight into this theoretical cross-section by plotting the function I as
a function of Plab.. In Fig 1, we see that the function increases as Plab. increases. This
is not the behavior of the data, which can be seen in Fig. 2, which rises dramatically as
we approach threshold. Therefore, we suspect that this calculation is incomplete, either
in the need for higher orders (which seems problematic from the want of a perturbative
expansion if the threshold behavior is so different), or that the theory itself is incomplete
(indeed, np scattering contains charge exchange, but even still this theory is not well-defined
perturbatively.)
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10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ
/

m
b

Plab. / GeV/c

Figure 2: np cross-section as a function of Plab..

Nevertheless, we can still obtain a rough estimate for the coupling can then be given
by comparing the theoretical cross-section to the measured cross-section at some Plab..
Since the near threshold region is not captured, let’s consider taking a data point near
Plab.. For example, point 440 from the RPP table, P lab. = 0.696GeV/c with σexp. =
(38.963 ± 0.169)mb. At this momentum, sexp. = 3.97GeV2, and I(sexp.) = 0.601GeV−2.
So, (

g2

4π

)2

≈ σexp.
(ℏc)2 I(sexp.)

,

≈ 38.963mb

(0.389GeV2 ·mb)(0.601GeV−2)
,

≈ 166 .

So, g2/4π ≈ 13, and g ≈ 12.8. The coupling is extremely large, which clearly indicates
that this theory does not admit a valid interpretation as a perturbation series.
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