PHYS 772 - Standard Model Problem Set 3 Spring 2024

Problems 1 and 2 are optional, as they should be familiar from QFT I. However, if you are not comfortable
with manipulating Gamma matrices, I encourage you to complete them. Completing them will result in
bonus points.

1. The Dirac matrices v* = (7°,77) in the chiral (Weyl) representation are defined as

el -(0).

where I is the 2 x 2 identity matrix and o7 are the Pauli matrices.

(a) With this representation, confirm that {v#,+"} = 2g*".

Solution: To clarify some of the manipulations in these problems, we introduce I, as
the 4 x 4 identity, and let I — I be the 2 x 2 identity. Thus, what is to be shown is
{y*, 4"} = 2g"¥ 14, given the chiral representation

0 __ 0 IQ i 0 O'j
7—(1-2 0), WJ—(_JJ» 0).

Recall the properties of the Pauli matrices, {¢7, 0%} = 267%I,.

{70770} = 2(70)27
. 0 I 0 I
o I, 0 I, 0)”°
_ofl2 0\ _ o 00
- (0 I2> - 2g I47

2%, 47} =197 + 4970,
_ (0 LY(0 o\, (0 (0 L
=\ 0/)\=o7 o0 o 0 )\, 0)"
—gd 0 ol 0 0 0 .
:<0 aﬂ'>+(0 aﬂ'>:<o 0):290”“’
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where we note that ¢°© = +1 and g% = ¢’° = 0. Continuing,
{72 =+ = A =2 L =29 1,

(¥, 7} =¥+ 45,
(0 o 0 o " 0 o 0 ol
“\—0? 0 —gk 0 —ok 0 —gl 0
_ (—dio* 0 n —okgl 0
o 0 —olok 0 —gkgi )
_ ook + oFgi 0
o 0 glok 4okl )

(26", 0
- 0 26FL,)

= —Z(Sjk I4 = 29jk I4

Therefore, we have shown {~v#*,~"} = 2g*¥ I,

(b) Using the result in (a), show that ~,y* = 4.

Solution: Contract {y*,v"} = 2¢"¥ I with g,
guu{'}/ﬂa ’Vy} = 2gul/guy I,
YY"y = 29", 1s,
2y, =2-414.

So, we conclude vy, v* = 4 I4.

(c) Prove that v,v"y* = —2+" without using an explicit matrix representation.

V¥ Y = (29" 1y — A7),

=27 — Y,
=27, — 47",
=—-2v,.

Solution: Using the anticommutator relation, as well as the result from part (b), we find

(d) Similarly, prove that v,7"y*y* = 4¢*”.
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Solution: Using the anticommutator relation, as well as the result from part (c), we find
YWY VA =y (297 I — A7),
=29 =AY,
=29 + 299",
=2{+"7"},

= 4gup I4 .

2. Given v° = 45 = iv%y'y243, prove the following trace identities:

(a) tr(yHq”) = 49",

Solution: Taking the trace, we use the cyclic properties of the trace and the anticommu-
tation relations, we have

tr (v9") = 5 tr(v"y +4"7"),

[tr(v"v”) + tr(v"v“)} ;

(v +9"7"),

tr({v*7"}),

N~ N~ N~ NR N

<29 tr(1y)

I
W

e}
=
<

where tr(Iy) = 4.

(b) tr (y#y¥yPy7) = 4(g" g*7 — g"Pg" + g7 g""),
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Solution: Here we use the anticommutation relation inside the trace,
tr(y"7yP7) = tr[yy (2977 1s — v7")],
= 2977 tr(4"") — tr(v"9"777")
= 89" 9”7 — tr[y* (29”7 I — 7)1,
=8¢""g"" — 29”7 tr(v"9") + tr(v"7"")
= 8¢""g"7 — 8g"7gM" + tr[2¢"7 Iy — 7)Yy,
= 8g""g"7 —8g"7g"" + 2gM7 tr(v"4”) — tr(v7H "),
= 8¢ g’ — 89”7 g"" +8g"7 g"" — tr(v"v"v"77),

where in the last line we used the cyclic property of the trace. Then, adding this final trace
to the left-hand side, we find

2tr(y"y"yPy7) = 89" g7 — 89”7 g"" + 89" g""

= tr(y"""7) = 4(¢"9" — 9”7 g"" + ¢"79"")

(c) The trace of any odd number of gamma matrices is zero.

Solution: We first prove that tr(y*) = 0, which is obvious in the Weyl basis but is true
in general. Recall that (75)? = v57° = 4I,. Therefore, the trace can be written as

tr(v") = tr(vIy) = tr(v#9°7%) = —tr(7"9"9%) = — tr(v#4°7°) = —tr(+#),

where in the fourth equality we used the anticommutation relation v#y® = —v5* and in
the fifth equality results from the cyclic properties of the trace. Therefore, we conclude
tr(v*) =0.

A generic trace over an odd number of gamma matrices can be written as a trace over
2n + 1 gamma matrices where n € N, tr(y#1qH2 ... yH2nyhznt1)  So inserting Iy = (7°)?
at the end gives,

br (Y 1yH2 ) = (gt )
= tr(yHe . .»Yuzn,yuznﬂ,y5,ys) 7
= (71)2n+1 tr('y5ry“1»y”2 .. .Vﬂzn,ymnﬂ,ﬁ) :
= — tr(,yﬂlfym .. .7”2717/—L2n+1,.y575) ’
= —tr(yHryke .. yPen et

where the factor (—1)2"*! = (—1) comes from anticommuting 7° to the left through all
2n + 1 gamma matrices. We conclude that tr(y#ty#2 ... yH2nhentt) =
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(d) tr(7°) = tr (v°9*) = tr (v°7#9¥) = tr (7°y#4"4*) = 0,

Solution: We begin by first proving tr(7°) = 0. By definition, v°y* = —y*~5. Now,
taking the trace, and inserting the identity in the form I, = (7°)2,

tr(y”) = tr(147°),

=tr(y"7%")

= —tr(7"7%7°),

= —tr(y"7%°),

= _tr(’75) )

where we anticommuted 7° to the right going to line 3, and the used the cyclic property
of the trace in line 4. Therefore, we conclude tr(y°) = 0.

We note that since 7° is defined as 7° = iv%y1y243, that tr(y°y*) = tr(y5y#y"y?) = 0
since this is the trace of an odd number of gamma matrices.

Therefore, the remaining identity to show is tr(y5y#y*) = 0. Note that if u = v, then
(v*)? = £1, where the ‘+’ is for u = 0, and ‘—’ otherwise. So, if u = v, then tr(y>y#4") —
+tr(y°14) = 0 by the first identity proved in this solution. What remains is the case where
p # v. We insert an identity of the form I, = +(7”)?, where we are free to choose p #
and p # v, so that {v*,y*} = {+*,7”} = 0. Taking the trace,

tr(y°9"9") = tr(Iiy°+"4"),

I
H
—

\
—

S~—
w
-+
=
—
2
>
=2
ot
)
=
)
N
-2
=

where in the third line we anticommuted v” to the right three times, and in the fourth
used the cyclic property of the trace. We conclude that tr(y5y#y") = 0 for all u,v.

(€) tr(v79y"yPy7) = —dierre.

Solution: Using the anticommutation relation on the last two gamma matrices, we find
tr(y79"y" 7Py 7) = trly’ vy (2077 Is — v7y")]
= 2977 tr(y°7M") — tr(1°"9" ")
= —tr(v"1"7"v77")

where we used the result from part d that tr(y°y#+") = 0. If p = o, then ()% = £,
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where the ‘4’ is for p = 0 and ‘—’ otherwise. Thus, if p = o, we have tr(y>y*y"v*4%) —
Ftr(y°y#4") = 0. So, we conclude that tr(y>y#y*~P~?) is antisymmetric in p and o. We
can repeat this argument for any pair of indices, ultimately concluding that tr(y5y*y*~P~7)
is completely antisymmetric in all u,v,p,o indices. In 4D spacetime, the only Lorentz
tensor that is completely antisymmetric is the Levi-Civita, therefore we conclude

tr(y°94y" 7)) = AP,
where A is an undetermined constant and €**?° is defined such that €%123 = 41.

To determine the constant, we can take any particular combination of Lorentz indices. Let
us take (p,v,p,0) = (0,1,2,3), so that
tr(’75’YO’Yl’7273) — A60123 —A.

1,2~3

Using the definition v° = 7%y'4243, we evaluate the trace,

tr(y°7°7 1 %y?) = itr (70 20y )

—)%itr(7°y v 23y 2R
—1)*(=1)%i tr(°7* v ' 2P,

(
(

= (—1)*(=1)*(=Di tr(y°" v vy,
(

|
[
<
-+
=
=
=
=

= —i4,

where in the second, third, and fourth lines we anticommutation relations to arrange
identical gamma matrices into pairs, and in the fifth line we used that (7°)? = +1I, while
(747)? = —I4. We conclude that A = —4i, so that

tr(,y5,yu,yu,yp,ya) — _4jetvro

3. The chiral projectors are defined as
1 5 1 5
Pr=g(s+7’),  Pr=5i=7),

where I, is the 4 x 4 identity matrix. Prove the following properties:

(a) ¥’Pp = —Pp, and y°Pr = Pg ,
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(d)

Solution: Note that (v°)% = I, thus,

Y P g =

(VY F L),

Il
N~ N~ N
—
2
ot
H
—~
2
(o3
S~—
[\v]
S~—

1

=F- (I, F1°),

=FPL/R-

(PL/r)* = Pr/r

Solution: Taking the square of the projectors,

2
(Pr/r)* = (%(14 :F’)/S)) ;
- (L F°)LsF7°),

LiF° F4°+ (7)?),

[ |

(I4+ F+°) = Pr/r

PpPr = PrPr =0,

Solution: Taking product

1 1
Pr/rPr/L = 5(14 F9°)- 5(14 +°),
1 5 5 5\2
=5(LaFr £ = 07)),
1
— (I, — L) =0.
51— 1)

Therefore, we conclude Pr,Pr = PrPr, = 0.

P+ Pr=1,.
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Solution: Taking P;, + Pg, we find

1
PL+Pr=—-(Is—7")+ §(I4+75)7

N | =

1
=5 (2L-7"+7"),

=1,.

0

4. Suppose the charge conjugation operator is defined as C' = i24°. Confirm that in the Weyl represen-

tation,

(a) cl=CT=Ct=—-C.

Solution: Given C = iv27°, we first check if the matrix C is unitary, CTC = CCt = I,.
Note the following useful property,

1
(y*)? = 5{7“77“} (no sum on p),
1 o
:§~29 Iy (no sum on p),

= g"* I (no sum on p),
so (V)2 =I; and (77)? = —I4.
OF = (iy"7")1 = =i("")1 () = =ir* (%) = in"7? = —in*y* = —C
So,
CTC = (=) (7*1°) = v*7°*" = =12 = " = +Ly

Since C is unitary, we conclude that CT = C~1.

O =(CN) = =0 = ~(iv*1")" = ~(=1)(»*)" (")

In the Weyl basis, 79 is real, so (7°)* =4, and (¢?)* is

()= )

2

where we used the fact that (02)* = —o? since the non-zero entries of o2 are purely

imaginary. Therefore,
CT = =(=)(P?) (") =i = —ir*+" = -C.
We thus conclude that C' is a real matrix, C* = C, and that
cl=cT=ct=-C,

as desired.
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CyC~t=—(y")",

Solution: To prove this, first recall that (v#)" = 7%y#4%. Since 4 is real in the Weyl

basis, then we conclude (y*) T = 7% (y#)*4°, where the * denote complex conjugation. Now,
with C' = i727°? = —i7042, with C~1 = OT = —iy24% = —C, multiply (v*)T = 7% (y#)*+°
on the left with C~! and on the right with C,
Ciy) e =0t (' (")) O,

= (=i7*7°) (°(")*°) (=in°¥?)

= - (v)**,
where in the last line we used (79)? = I;. For pu = 0,1,3, then (y#)* = v* since they
are real in the Weyl basis. Then, y#v? = —24# for u # 2. Since ()2 = —1I4, we
find C~1(y")TC = —42(—29*) = (=1)%(—y*) = —* for p # 2. When p = 2, then
(v?)* = =%, So, C~H(y")TC = —42(—~?)y? = —+2. Therefore, we conclude for all 1,
C~Y(y*)TC = —+*. Now, multiply on the left by C, and on the right by C~1,

cCi(y)TeC™! = —Cy'C7t, = Oy e = —(v")T,

which was to be proved.

CyP et =0T,

Solution: Here, let us take the commutator of C and ~°,
[C,7°] = Cy* —»°C,
= iv*7%y" —iv°7*°,
= iv*7°7° —in?y%°,
=0

since {7°,7*} = 0. Thus, Cy°C~! = 4°. Note that (y°) = 4°, and in the Weyl basis
7 = (v)*. Thus, we conclude Cy°C~! = (v°)T.

5. A Dirac spinor 1 is called a Majorana spinor if it satisfies the condition 1 = C% T, and is called a
Weyl spinor if it satisfies either 1) = Pt or ¢ = Pr1). Determine whether or not a spinor can be both
Majorana and Weyl.

Solution: Let us define ¢ = C¢ ", 41, = Pr, and ¥ = Prtp. We take the charge conjugation
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where we used that 1T =

where we used C~17°C = (7°) 7

where we used C(y

Finally, we use again C~17°C =

of a chiral fermion. For example,

(4 T)* and P} = Py, since (%) = 4. Now, we note that

(P)"

NTCO~1 = 4% Recall that v°7° =

let us take (¢)¢ = Ot} . Since ¢ = 1170, we have

(7/’L)C = quz )

(i7"

«&W%
(TP T
(

)P,

QQQQ

L) T,

)T,

=
|

wlr—‘ N = N

CRBE

A
=
|

(Is — C™ 1550,

1|1
2

=C7'pP.C,

I
=

I

)
at
S~—

—_—

Q

and C~1C = I4. So, we have
(Vo) =CH°)TC POy,

—YPLOY*,
—54% 50 Y P, = Ppy®. Thus, we have
(Y1) = —"PLCOY",
= —Ppr°Cy*.
~(")T = yC=-C(")T
(Y1) = —Pry°Cy,
= PrC(Y°) Ty,

= PrC(yTy%) "

, so that

= PrCy 7,
- PR¢C )
(¥)r-

William & Mary

Page 10 of 18 Department of Physics



PHYS 772 - Standard Model Problem Set 3 Spring 2024

We find that (¢r)¢ = (¢°)r. Similar arguments show that (¥r)° = (¥°)r. We conclude
under charge conjugation the chirality flips for a Weyl fermion. So, if we consider a four-
component spinor, ¥ = (¢,1%r)", then charge conjugation flips the chirality, but the spinor
is simply a rotated version. The two-component spinors themselves are not eigenstates of both
the Majorana and Weyl equation.

6. Consider a generic 2 — n reaction ab — cics...cy, in the lab frame or fized-target frame, that is the
frame where particle b is at rest and « is the incident beam. Assume max(mq, mp) < min(me,, Mey, - - -, Me,, )-

(a) Show that s =m2 + mg + 2mp/m2 + Pfab. where P, is the beam momentum.

Solution: By definition, s = (p, +pp)? = m2+mi +2p, - py, where p2 = m2 and pf = m3.

Since in the lab frame, p, = 0 and E, = my, we have p, - pp = EqEp = mp/m2 + |pal?
Since the beam momentum is |p,| = Plap., we find the desired result,

s =m2+mj + 2mpy/m2 + P2, .

(b) Express the beam kinetic energy, T, = FE, — my, in terms of s.

Solution: From the previous result, s = m2 + mg +2my E, where E, = \/m2 + Plzab_7 we

have

g o5~ m2 —m3

a me )
in the lab frame. Then, the kinetic energy is
2 2 2
s—ms—m s — (Mg + myp)
To=FE;—mqg="—3"—Lb—mg="—2"—"".
a a a me a me

(c) What is the minimum kinetic energy of the beam with which the reaction can occur?

Solution: Since max(mg,mp) < min(me,, Mey, - - -, Me, ), the minimum s is

2

n
st — (Mey + 1y +---me,)* = chj
j=1

So, the minimum kinetic energy is

S(min) _ (ma =+ mb)2

T(min):
a 2my ;
2
1 = )
o | (e ) e
j=1
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7. Consider the following Yukawa theory as a simplified model of an interacting proton p, neutron n, and
neutral pion 7°. We assume that the proton and neutron are distinguishable, but mass degenerate.
The Lagrange density is given by

- — 1 1 _
L=) Shsduy+he =Y Mss+ 50,00"0 — Sm*0* =3 gty r*vy,
f f f
where f is fermion index f = {n,p}, M is the proton and neutron mass, m is the pion mass, and g is

the coupling between proton and pion, as well as the neutron and pion.

(a) Consider the elastic reaction
n(p,s) +p(k,r) = n(p',s") + (K, '),

where the arguments are the momenta and the subscripts are the spin-state. Write down the
np — np scattering amplitude to leading order in the coupling g. Hint: Only one diagram
contributes at O(g?). Refer to the summary notes on Feynman rules - Yukawa Theory.

Solution: From the Feynman rules, we find a single diagram at O(g?),

p p
- -«
— <<
M= : lp—p/ +O(g4),
— <
D S D
K k

(b) The spin-averaged squared amplitude is defined as

<|M‘2> = %Z%ZZZ 'M(nspr — ns’pr/)

Show that at leading order

2

i HO0)

(M%) =g
where s, t, and u are the Mandelstam invariants. Note: You are encouraged to use a computer
algebra software such as FeynCalc (https://feyncalc.github.io), which is a Mathematica package
for symbolic evaluation of Feynman diagrams and algebraic calculations in quantum field theory
and elementary particle physics. A useful tutorial can be found here. Mathematica is free to all
students at William & Mary (see https://software.wm.edu).
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Solution: By definition,

)7 (

Sk

rr!

as desired.

Now,
MIM = (t_g;z)z [t (') (P)] [t (K )P ()] [t (0 )7 s (p)] [t ()7 ur (K)] 4+ O(9°)
Note that
[Usf%us]T = W’g
= ulri(u T/VO)T,

= Ul%(WO)Tus' )

= Ul%vous' )

= —uly"y5uy

= —UsY5Us ,
where 7] =75, (7°)F =+, and {7°,7°} =0

> () s () i ()7 us(p 534% s () i (') ())

where t = (p' — p)? = 2M? —

=4(M? -k -k)=2t.
Putting all the pieces together, we find
(MP) =2 Ly o) =o' — v 0(g")
4(t —m?)? (t —m?)? ’

)

<WH—*Z DAL

r s r

iZZMTM

:tr( Zus Ug! ’)75Zus(p)u p

= tr ((p + M)y (p+ M),
=4(M? —p' -p) = 2t,
2p' - p. Similarly, we find

K (K up () = tr (32 (B + M)y + M) )

William & Mary
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(c) Compute the unpolarized differential cross-section do/dt in terms of the Mandelstam invariants.

Solution: The unpolarized differential cross section for equal mass scattering is
do 1 9
dQ ~ 64n2s (IMF) -

To find do/dt, note that for these kinematics t = —2|p|?(1 — cos#), where |p| is the
magnitude of the relative momentum of the neutron in the CM frame. So, dt = 2|p|? d cos¥,
and dQ = 2w d cosd. Finally, |p|? = (s — 4M?)/4. So, the unpolarized do/dt is

do d©2 do T 1 9
@ = a0~ IpP oaezs WM

1
~ 16ms(s — 4M?)

2
(IMP?) .
Therefore, given that the spin-averaged matrix element squared is

12 6
5 +0(9°),

<|M|2> = 94 m

we have

do gt 1 2 ]
dt 167 s(s — 4M?2) (t — m2)? +0(g°)

(d) Express do/dQ) in terms of s and the center-of-momentum frame scattering angle 6.

Solution:

do g* t? 6
@~ 6ans (¢ 7O

_ gt 4lp[*(1 — cos H)?
6472s (—2|p|?(1 — cosf) — m?)

4 2
g 1 —cosf 6
6472 (C(s) —cos@) +0(g"),

5 +0(g°%),

where in the last line we defined for convenience,

m? 2m

=1 .
+2|p|2 +s—4M2

2

((s)=1

(e) Compute the total cross-section as a function of s.
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Solution: The total cross-section is defined as

+1

do do
o /d a9 T B dcosOdQ,

4 L 2
g 1 —cosf 6
= dcost | ——— (@) .
327s /_1 o8 (C(s) - c050> +0(")
Note that for physical scattering, ((s) > 1 for all s > 4M?2. So, the integral yields

[ s () = e [ @0 (6557

So, the total cross-section is

7= o gy 1 X0+ @ -0 ee ()]
- (fj T 0+ @0 - ()|
-(£) 5[+ e - (S557)]

(f) Estimate the magnitude of the pion-nucleon coupling g, as well as the quantity g2/4x, from the
experimentally observed np total cross-section. Note: You do not need to fit the data, however
feel free to do so. The Review of Particle Physics contains experimental cross-sections for select
processes. See the course webpage for the data file.

Solution: The summary data from the Review of Particle Physics is given in terms of the
lab frame beam momentum P,;, , which is related to s via

s =2M?+2M\/M? + P2, .

So, the total cross-section is given by

2 2
7 (Pap.) = (L) (he)2 T <2M2 oM/ M2+ Plib) :

where Z(s) is a distribution function

2= [ - (452

and s = 2M? + 2M+/M? + P2, . The factor (hc)? converts the cross-section in natural
units to millibarn (mb), with (he)? ~ 0.389 GeV? - mb.

Note that the first inelastic threshold in this theory is 7° production, np — npn®, when
s = (2M + m)?. Therefore, we must only include data when (2M)? < s < (2M + m)?, or
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in terms of Py,

(2M +m)? —2M2\*
-Plab < \/( M M )

1
= m\/m(4M+m)(2M+m)2

Since M = 0.940 GeV and m ~ 0.140 GeV, then P, < 0.790 GeV /c.

0.7

0.5
04 +
0.3
0.2 +
0.1
0.0

I(s) |/ GeV~2

| | |
0.1 0.2 0.3 04 0.5 06 0.7
Plab. / GeV/c

Figure 1: The function Z as a function of Py,

We can gain some insight into this theoretical cross-section by plotting the function Z as
a function of P,p.. In Fig 1, we see that the function increases as P}, increases. This
is not the behavior of the data, which can be seen in Fig. 2, which rises dramatically as
we approach threshold. Therefore, we suspect that this calculation is incomplete, either
in the need for higher orders (which seems problematic from the want of a perturbative
expansion if the threshold behavior is so different), or that the theory itself is incomplete
(indeed, np scattering contains charge exchange, but even still this theory is not well-defined
perturbatively.)
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100000

10000

1000

o / mb

100

| |
0.1 0.2 0.3 0.4 0.5 0.6 0.

10 | |

P, / GeV/e

Figure 2: np cross-section as a function of Py,..

Nevertheless, we can still obtain a rough estimate for the coupling can then be given
by comparing the theoretical cross-section to the measured cross-section at some P,p..
Since the near threshold region is not captured, let’s consider taking a data point near
Pp.. For example, point 440 from the RPP table, Plab. = 0.696 GeV /¢ with Oexp. =
(38.963 & 0.169) mb. At this momentum, seyp, = 3.97 GV, and Z(seyp.) = 0.601 GeV ™2,
So,

2\ 2
gf s Uexp.
(47T> (hc)? Z(sexp.) ’
38.963 mb
(0.389 GeV? - mb)(0.601 GeV~2)’

~
~

~ 166 .

So, g?/4m ~ 13, and g ~ 12.8. The coupling is extremely large, which clearly indicates
that this theory does not admit a valid interpretation as a perturbation series.
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