1. Show that the Lie algebra structure constants $c_{j k l}$, defined by the Lie bracket $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, satisfy the relation $c_{j k m} c_{m l n}+c_{k l m} c_{m j n}+c_{l j m} c_{m k n}=0$.

Solution: Here we use the Jacobi identity for the elements of the Lie algebra,

$$
\sum_{(j, k, l)}\left[\left[X^{j}, X^{k}\right], X^{l}\right]=0,
$$

where (j, k, l) indicates the cyclic sum. Performing the sum, and using $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, we find

$$
\begin{aligned}
\sum_{(j, k, l)}\left[\left[X^{j}, X^{k}\right], X^{l}\right] & =\left[\left[X^{j}, X^{k}\right], X^{l}\right]+\left[\left[X^{k}, X^{l}\right], X^{j}\right]+\left[\left[X^{l}, X^{j}\right], X^{k}\right], \\
& =c_{j k m}\left[X^{m}, X^{l}\right]+c_{k l m}\left[X^{m}, X^{j}\right]+c_{l j m}\left[X^{m}, X^{k}\right], \\
& =c_{j k m} c_{m l n} X^{n}+c_{k l m} c_{m j n} X^{n}+c_{l j m} c_{m k n} X^{n}, \\
& =\left(c_{j k m} c_{m l n}+c_{k l m} c_{m j n}+c_{l j m} c_{m k n}\right) X^{n}, \\
& =0 .
\end{aligned}
$$

Since this must be zero for any X^{n}, we must have $c_{j k m} c_{m l n}+c_{k l m} c_{m j n}+c_{l j m} c_{m k n}=0$, as desired.
2. Consider a general Lie algebra $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, where $c_{j k l}=-c_{k j l}$. From the structure constants, we may form matrices M^{j} with matrix elements $\left(M^{j}\right)_{l k}=c_{j k l}$. Note the order of the indices. Show that these matrices furnish a representation of the algebra, i.e., show that $\left[M^{j}, M^{k}\right]=c_{j k l} M^{l}$. This representation is called the adjoint representation. Hint: The Jacobi identity may be helpful.

Solution: Looking at the matrix elements of the commutator of $\left(M^{j}\right)_{l k}=c_{j k l}$,

$$
\begin{aligned}
\left(\left[M^{j}, M^{k}\right]\right)_{l n} & =\left(M^{j}\right)_{l m}\left(M^{k}\right)_{m n}-\left(M^{k}\right)_{l m}\left(M^{j}\right)_{m n}, \\
& =c_{j m l} c_{k n m}-c_{k m l} c_{j n m}, \\
& =c_{l j m} c_{m k n}+c_{k l m} c_{m j n},
\end{aligned}
$$

where we used the antisymmetry of the structure constants. From the Jacobi identity of the structure constants, $c_{j k m} c_{m l n}+c_{k l m} c_{m j n}+c_{l j m} c_{m k n}=0$, we have $c_{l j m} c_{m k n}+c_{k l m} c_{m j n}=$ $-c_{j k m} c_{m l n}$. So, the commutator is

$$
\begin{aligned}
\left(\left[M^{j}, M^{k}\right]\right)_{l n} & =c_{l j m} c_{m k n}+c_{k l m} c_{m j n} \\
& =-c_{j k m} c_{m l n} \\
& =c_{j k m} c_{m n l} \\
& =c_{j k m}\left(M^{m}\right)_{l n}
\end{aligned}
$$

Therefore $\left[M^{j}, M^{k}\right]=c_{j k l} M^{l}$, and we conclude that $\left(M^{j}\right)_{l k}=c_{j k l}$ is a valid representation of the Lie algebra.
3. Suppose X^{j} is a generator for the Lie algebra $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$. Show that $X^{2}=\sum_{j} X^{j} X^{j}$ commutes with the group generators, and therefore we may write $\left(X^{2}\right)_{a b}=C_{2}(r) \delta_{a b}$ where $C_{2}(r)$ is a constant called the quadratic Casimir of the representation r.

Solution: We want to show that $\left[X^{2}, X^{k}\right]=0$ where $X^{2}=\sum_{j} X^{j} X^{j}$ and $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$. So, taking the commutator

$$
\begin{aligned}
{\left[X^{2}, X^{k}\right] } & =\sum_{j}\left[X^{j} X^{j}, X^{k}\right] \\
& =\sum_{j} X^{j}\left[X^{j}, X^{k}\right]+\sum_{j}\left[X^{j}, X^{k}\right] X^{j}
\end{aligned}
$$

where we used $[A B, C]=A[B, C]+[A, C] B$. Now, we use $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, noting l is being summed over implicitly. So, we find

$$
\begin{aligned}
{\left[X^{2}, X^{k}\right] } & =\sum_{j} X^{j}\left[X^{j}, X^{k}\right]+\sum_{j}\left[X^{j}, X^{k}\right] X^{j} \\
& =\sum_{j, l} X^{j}\left(c_{j k l} X^{l}\right)+\sum_{j, l}\left(c_{j k l} X^{l}\right) X^{j} \\
& =\sum_{j, l} c_{j k l} X^{j} X^{l}+\sum_{j, l} c_{j k l} X^{l} X^{j} \\
& =\sum_{j, l} c_{j k l} X^{j} X^{l}+\sum_{j, l} c_{l k j} X^{j} X^{l} \\
& =\sum_{j, l} c_{j k l} X^{j} X^{l}-\sum_{j, l} c_{j k l} X^{j} X^{l}=0
\end{aligned}
$$

where in the fourth line we interchanged the summed indices, and in going to the last line we noted that $c_{l k j}=-c_{j k l}$. Therefore, X^{2} commutes with all the generators X^{j}. Therefore, we can write $\left(X^{2}\right)_{a b}=C_{2}(r) \delta_{a b}$, where $C_{2}(r)$ is some constant which depends on the representation r, and a, b span the dimension of the representation, $a, b=1, \ldots, r$.
4. Let X^{j} be a generator for a generic $\mathfrak{s u}(N)$ Lie algebra, $\left[X^{j}, X^{k}\right]=c_{j k l} X^{l}$, and $U\left(\alpha^{j}\right)$ is an element of the corresponding Lie group $\mathrm{SU}(N)$, with $U\left(\alpha^{j}\right)=\exp \left(\alpha^{j} X_{j}\right)$ with $\alpha^{j} \in \mathbb{R}$. Show that X^{j} are traceless, antihermitian $N \times N$ matrices.

Solution: Since $U\left(\alpha^{j}\right) \in \mathrm{SU}(N)$, then we require

$$
U\left(\alpha^{j}\right)^{\dagger} U\left(\alpha^{j}\right)=U\left(\alpha^{j}\right) U\left(\alpha^{j}\right)^{\dagger}=I_{N}
$$

where I_{N} is the $N \times N$ identity. Furthermore, $\operatorname{det}\left(U\left(\alpha^{j}\right)\right)=1$. From the properties of matrix exponentials, $\exp \left(\alpha^{j} X_{j}\right)^{\dagger}=\exp \left(\alpha^{j} X_{j}^{\dagger}\right)$. Let us Taylor expand the product $U\left(\alpha^{j}\right)^{\dagger} U\left(\alpha^{j}\right)$ about

$$
\alpha^{j}=0,
$$

$$
\begin{aligned}
I_{N}=U\left(\alpha^{j}\right)^{\dagger} U\left(\alpha^{j}\right) & =\left(I_{N}+\alpha^{j} X_{j}^{\dagger}+\mathcal{O}\left(\alpha^{2}\right)\right)\left(I_{N}+\alpha^{j} X_{j}+\mathcal{O}\left(\alpha^{2}\right)\right), \\
& =I_{N}+\alpha^{j} X_{j}+\alpha^{j} X_{j}^{\dagger}+\mathcal{O}\left(\alpha^{2}\right), \\
& =I_{N}+\alpha^{j}\left(X_{j}+X_{j}^{\dagger}\right)+\mathcal{O}\left(\alpha^{2}\right),
\end{aligned}
$$

Since this must hold order-by-order in α, we have $X_{j}+X_{j}^{\dagger}=0$, or $X_{j}=-X_{j}^{\dagger}$, proving that the generators are antihermitian. Next, recall for matrix exponentials $\operatorname{det}\left(\exp ^{A}\right)=\exp (\operatorname{tr}(A))$ where A is an $N \times N$ matrix. Since $\operatorname{det}\left(U\left(\alpha^{j}\right)\right)=1$, we have the following

$$
\begin{aligned}
1=\operatorname{det}\left(U\left(\alpha^{j}\right)\right) & =\operatorname{det}\left(\exp \left(\alpha^{j} X_{j}\right)\right) \\
& =\exp \left(\operatorname{tr}\left(\alpha^{j} X_{j}\right)\right) \\
& =\exp \left(\alpha^{j} \operatorname{tr}\left(X_{j}\right)\right)
\end{aligned}
$$

Since this must hold for any α^{j}, we conclude that $\operatorname{tr}\left(X_{j}\right)=0$.
5. Consider the set of all complex 2×2 matrices M with $\operatorname{det}(M)=i$. Does this set form a group under the usual matrix multiplication? Explain your reasoning.

Solution: Let G be the set of all 2×2 matrices with $\operatorname{det}(M)=i$. Let us assume that $M \in \mathrm{G}$, some group where $\operatorname{det}(M)=i$. If M_{1} and M_{2} are elements of the group, then the product $M_{1} \cdot M_{2}$ should close under the group multiplication, that is $M_{3}=M_{1} \cdot M_{2} \in \mathrm{G}$. Since M_{3} is in G, then $\operatorname{det}\left(M_{3}\right)=i$. But, consider $\operatorname{det}\left(M_{3}\right)=\operatorname{det}\left(M_{1} \cdot M_{2}\right)=\operatorname{det}\left(M_{1}\right) \operatorname{det}\left(M_{2}\right)$, from the properties of determinants. So, $\operatorname{det}\left(M_{3}\right)=\operatorname{det}\left(M_{1}\right) \operatorname{det}\left(M_{2}\right)=(i)(i)=-1 \neq i$, which contradicts our assumption. Therefore, the product of two group elements does not close under group multiplication, and thus G does not form a group.

Alternatively, assume the existence of an inverse matrix $M^{-1} \in G$. The determinant of an inverse matrix is $\operatorname{det}\left(M^{-1}\right)=1 / \operatorname{det}(M)=1 / i=-i \neq i$. Therefore, we conclude that such an inverse matrix does not exist, and therefore G is not a group.
6. Consider $X_{j}=-\frac{1}{2} i \sigma_{j}$ as a bases element of the $\mathfrak{s u}(2)$ algebra, $\left[X_{j}, X_{k}\right]=\epsilon_{j k l} X_{l}$, where σ_{j} are the Pauli matrices,

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Verify the following:
(a) $\left[\sigma_{j}, \sigma_{k}\right] \equiv \sigma_{j} \sigma_{k}-\sigma_{k} \sigma_{j}=2 i \epsilon_{j k l} \sigma_{l}$.

Solution: We compute the following products,

$$
\begin{aligned}
& \sigma_{1} \sigma_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=i \sigma_{3}, \\
& \sigma_{2} \sigma_{1}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)=-i \sigma_{3}, \\
& \sigma_{2} \sigma_{3}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=i \sigma_{1}, \\
& \sigma_{3} \sigma_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)=-i \sigma_{1}, \\
& \sigma_{3} \sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=i \sigma_{2}, \\
& \sigma_{1} \sigma_{3}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=-i \sigma_{2},
\end{aligned}
$$

as well as the squares of the Pauli matrices

$$
\begin{aligned}
& \sigma_{1}^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}, \\
& \sigma_{2}^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}, \\
& \sigma_{3}^{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2} .
\end{aligned}
$$

Therefore, we have $\sigma_{j}^{2}=I_{2}$ and $\sigma_{j} \sigma_{k}=-\sigma_{k} \sigma_{j}$ for $j \neq k$. So, the commutator $\left[\sigma_{j}, \sigma_{j}\right]=0$, while $\left[\sigma_{1}, \sigma_{2}\right]=+2 i \sigma_{3},\left[\sigma_{2}, \sigma_{3}\right]=+2 i \sigma_{1}$, and $\left[\sigma_{3}, \sigma_{1}\right]=+2 i \sigma_{2}$. The commutators are completely antisymmetric, thus we can write it in terms of the Levi-Civita $\epsilon_{j k l}$ tensor, $\left[\sigma_{j}, \sigma_{k}\right]=2 i \epsilon_{j k l} \sigma_{l}$.
(b) $\left\{\sigma_{j}, \sigma_{k}\right\} \equiv \sigma_{j} \sigma_{k}+\sigma_{k} \sigma_{j}=2 \delta_{j k} I_{2}$.

Solution: From the results of part (a), we find that $\sigma_{j} \sigma_{k}+\sigma_{k} \sigma_{j}=0$ for $j \neq k$. Therefore, $\left\{\sigma_{k}, \sigma_{k}\right\}=\sigma_{j} \sigma_{k}+\sigma_{k} \sigma_{j}=\delta_{j k}\left(2 \sigma_{j} \sigma_{j}\right)=2 \delta_{j k} I_{2}$.
(c) $\sigma_{j} \sigma_{k}=\delta_{j k} I_{2}+i \epsilon_{j k l} \sigma_{l}$.

Solution: Let us add the two results $\left[\sigma_{j}, \sigma_{k}\right]=2 i \epsilon_{j k l} \sigma_{l}$ and $\left\{\sigma_{j}, \sigma_{k}\right\}=2 \delta_{j k} I_{2}$,

$$
\left[\sigma_{j}, \sigma_{k}\right]+\left\{\sigma_{j}, \sigma_{k}\right\}=2 \sigma_{j} \sigma_{k}=2 i \epsilon_{j k l} \sigma_{l}+2 \delta_{j k} I_{2}
$$

Therefore, we immediately find that $\sigma_{j} \sigma_{k}=\delta_{j k} I_{2}+i \epsilon_{j k l} \sigma_{l}$.
(d) Show that a group element $U\left(\alpha^{j}\right) \in \mathrm{SU}(2)$ can be written as

$$
U\left(\alpha^{j}\right)=\exp \left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right)=I_{2} \cos \left(\frac{1}{2} \alpha\right)-i \frac{\alpha^{j} \sigma_{j}}{\alpha} \sin \left(\frac{1}{2} \alpha\right),
$$

where $\alpha^{2}=\sum_{j}\left(\alpha_{j}\right)^{2}$.
Solution: Let us Taylor expand about $\alpha^{j}=0$,

$$
\begin{aligned}
\exp \left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right) & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right)^{n}, \\
& =\sum_{n=0}^{\infty} \frac{1}{(2 n)!}\left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right)^{2 n}+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}\left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right)^{2 n+1},
\end{aligned}
$$

where we split the sum into even and odd terms. Now, $\left(-i \alpha^{j} \sigma_{j} / 2\right)^{2 n}=(-1)^{n}\left(\alpha^{j} \sigma_{j} / 2\right)^{2 n}$, while $\left(-i \alpha^{j} \sigma_{j} / 2\right)^{2 n+1}=-i(-1)^{n}\left(\alpha^{j} \sigma_{j} / 2\right)^{2 n+1}$. Now, we evaluate $\left(\alpha^{j} \sigma_{j}\right)^{2}$,

$$
\begin{aligned}
\left(\alpha^{j} \sigma_{j}\right)^{2} & =\left(\alpha^{j} \sigma_{j}\right)\left(\alpha^{k} \sigma_{k}\right), \\
& =\alpha^{j} \alpha^{k}\left(\sigma_{j} \sigma_{k}\right), \\
& =\alpha^{j} \alpha^{k}\left(\delta_{j k} I_{2}+i \epsilon_{j k l} \sigma_{l}\right), \\
& =\alpha^{j} \alpha^{j} I_{2}=\alpha^{2} I_{2} .
\end{aligned}
$$

So, $\left(\alpha^{j} \sigma_{j}\right)^{2 n}=(\alpha)^{2 n} I_{2}$, and $\left(\alpha^{j} \sigma_{j}\right)^{2 n+1}=\left(\alpha^{j} \sigma_{j}\right)^{2 n}\left(\alpha^{j} \sigma_{j}\right)=(\alpha)^{2 n}\left(\alpha^{j} \sigma_{j}\right)$. So, the exponential expansion is

$$
\begin{aligned}
\exp \left(-\frac{1}{2} i \alpha^{j} \sigma_{j}\right) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{1}{2} \alpha^{j} \sigma_{j}\right)^{2 n}-i \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{1}{2} \alpha^{j} \sigma_{j}\right)^{2 n+1}, \\
& =I_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\alpha}{2}\right)^{2 n}-i\left(\frac{\alpha^{j} \sigma_{j}}{\alpha}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{\alpha}{2}\right)^{2 n+1}, \\
& =I_{2} \cos \left(\frac{\alpha}{2}\right)-i \frac{\alpha^{j} \sigma_{j}}{\alpha} \sin \left(\frac{\alpha}{2}\right) .
\end{aligned}
$$

7. Consider $X_{j}=L_{j}$ as a bases element of the $\mathfrak{s o}(3)$ algebra, $\left[X_{j}, X_{k}\right]=\epsilon_{j k l} X_{l}$, where L_{j} are the matrices,

$$
L_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad L_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad L_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Verify the following:
(a) $\left[L_{j}, L_{k}\right]=\epsilon_{j k l} L_{l}$.

Solution: Notice that $\left(L^{j}\right)_{l k}=\epsilon_{j k l}$. So, the commutator is

$$
\begin{aligned}
\left(\left[L^{j}, L^{k}\right]\right)_{l n} & =\left(L^{j}\right)_{l m}\left(L^{k}\right)_{m n}-\left(L^{k}\right)_{l m}\left(L^{j}\right)_{m n} \\
& =\epsilon_{j m l} \epsilon_{k n m}-\epsilon_{k m l} \epsilon_{j n m}
\end{aligned}
$$

Recall the Jacobi identity for the structure constants, here the Levi-Civita, $\epsilon_{j k m} \epsilon_{m l n}+$ $\epsilon_{k l m} \epsilon_{m j n}+\epsilon_{l j m} \epsilon_{m k n}=0$. We can use the antisymmetry of $\epsilon_{j k l}$ to write

$$
\begin{aligned}
-\epsilon_{j k m} \epsilon_{m l n} & =\epsilon_{k l m} \epsilon_{m j n}+\epsilon_{l j m} \epsilon_{m k n} \\
& =\epsilon_{j m l} \epsilon_{k n m}-\epsilon_{k m l} \epsilon_{j n m} \\
& =\left(L^{j}\right)_{l m}\left(L^{k}\right)_{m n}-\left(L^{k}\right)_{l m}\left(L^{j}\right)_{m n}
\end{aligned}
$$

where we identified the difference in Levi-Civita's as the commutator of $\left[L^{j}, L^{k}\right]$. So, we find

$$
\begin{aligned}
\left(L^{j}\right)_{l m}\left(L^{k}\right)_{m n}-\left(L^{k}\right)_{l m}\left(L^{j}\right)_{m n} & =-\epsilon_{j k m} \epsilon_{m l n} \\
& =\epsilon_{j k m} \epsilon_{m n l} \\
& =\epsilon_{j k m}\left(L^{m}\right)_{l n}
\end{aligned}
$$

We conclude that $\left[L^{j}, L^{k}\right]=\epsilon_{j k l} L^{l}$.
(b) $\left\{L_{j}, L_{k}\right\} \neq N \delta_{j k}$ for any j, k, and N.

Solution: The anticommutator $\left\{L_{j}, L_{k}\right\}=L_{j} L_{k}+L_{k} L_{j}$. Since $\left(L^{j}\right)_{l k}=\epsilon_{j k l}$, we have

$$
\begin{aligned}
\left(L^{j}\right)_{l m}\left(L^{k}\right)_{m n}+\left(L^{k}\right)_{l m}\left(L^{j}\right)_{m n} & =\epsilon_{j m l} \epsilon_{k n m}+\epsilon_{k m l} \epsilon_{j n m} \\
& =-\epsilon_{j l m} \epsilon_{k n m}-\epsilon_{k l m} \epsilon_{j n m},
\end{aligned}
$$

where in the last line we used the antisymmetry properties of the permutation tensor. Now, we use the property $\epsilon_{j l m} \epsilon_{k n m}=\delta_{j k} \delta_{l n}-\delta_{j n} \delta_{k l}$. So, we have

$$
\begin{aligned}
\left(L^{j}\right)_{l m}\left(L^{k}\right)_{m n}+\left(L^{k}\right)_{l m}\left(L^{j}\right)_{m n} & =-\epsilon_{j l m} \epsilon_{k n m}-\epsilon_{k l m} \epsilon_{j n m}, \\
& =-\left(\delta_{j k} \delta_{l n}-\delta_{j n} \delta_{k l}\right)-\left(\delta_{k j} \delta_{l n}-\delta_{k n} \delta_{l j}\right), \\
& =-2 \delta_{j k} \delta_{l n}+\delta_{j n} \delta_{k l}+\delta_{k n} \delta_{l j}
\end{aligned}
$$

Thus, we see that $\left\{L_{j}, L_{k}\right\} \neq N \delta_{j k}$ for any j, k, and N.
(c) Show that a group element $O\left(\alpha^{j}\right) \in \mathrm{SO}(3)$ can be written as

$$
O\left(\alpha^{j}\right)=\exp \left(\alpha^{j} L_{j}\right)=I_{3}+\frac{\alpha^{j} L_{j}}{\alpha} \sin \alpha+\left(\frac{\alpha^{j} L_{j}}{\alpha}\right)^{2}(1-\cos \alpha)
$$

where $\alpha^{2}=\sum_{j}\left(\alpha_{j}\right)^{2}$.

Solution: Taylor expanding about $\alpha^{j}=0$, we find

$$
\begin{aligned}
\exp \left(\alpha^{j} L_{j}\right) & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\alpha^{j} L_{j}\right)^{n}, \\
& =\sum_{n=0}^{\infty} \frac{1}{(2 n)!}\left(\alpha^{j} L_{j}\right)^{2 n}+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}\left(\alpha^{j} L_{j}\right)^{2 n+1},
\end{aligned}
$$

where we split the sum into even and odd terms. Let us evaluate $\left(\alpha^{j} L_{j}\right)^{2}$,

$$
\begin{aligned}
{\left[\left(\alpha^{j} L_{j}\right)^{2}\right]_{l n} } & =\left[\left(\alpha^{j} L_{j}\right)\left(\alpha^{k} L_{k}\right)\right]_{l n}, \\
& =\alpha^{j} \alpha^{k}\left(L_{j}\right)_{l m}\left(L_{k}\right)_{m n}, \\
& =\alpha^{j} \alpha^{k} \epsilon_{j m l} \epsilon_{k n m}, \\
& =-\alpha^{j} \alpha^{k} \epsilon_{j l m} \epsilon_{k n m}, \\
& =-\alpha^{j} \alpha^{k}\left(\delta_{j k} \delta_{l n}-\delta_{j n} \delta_{k l}\right), \\
& =-\left(\alpha^{2} \delta_{l n}-\alpha_{n} \alpha_{l}\right),
\end{aligned}
$$

where in the fourth line we used $\epsilon_{j m l}=-\epsilon_{j l m}$, and in the fifth line we used the property $\epsilon_{j l m} \epsilon_{k n m}=\delta_{j k} \delta_{l n}-\delta_{j n} \delta_{k l}$. Next, we evaluate $\left(\alpha^{j} L_{j}\right)^{3}$,

$$
\begin{aligned}
{\left[\left(\alpha^{j} L_{j}\right)^{3}\right]_{l p} } & =\left[\left(\alpha^{j} L_{j}\right)\left(\alpha^{k} L_{k}\right)\left(\alpha^{r} L_{r}\right)\right]_{l p}, \\
& =\alpha^{j} \alpha^{k} \alpha^{r}\left(L_{j}\right)_{l m}\left(L_{k}\right)_{m n}\left(L_{r}\right)_{n p}, \\
& =-\left(\alpha^{2} \delta_{l n}-\alpha^{n} \alpha^{l}\right) \alpha^{r}\left(L_{r}\right)_{n p}, \\
& =-\alpha^{2} \alpha^{r}\left(L_{r}\right)_{l p}+\alpha^{n} \alpha^{l} \alpha^{r}\left(L_{r}\right)_{n p} \\
& =-\alpha^{2} \alpha^{r}\left(L_{r}\right)_{l p}, \\
& =-\alpha^{2}\left(\alpha^{j} L_{j}\right)_{l p},
\end{aligned}
$$

where we used that $\alpha^{n} \alpha^{r}\left(L_{r}\right)_{n p}=\alpha^{n} \alpha^{r} \epsilon_{r p n}=0$ since we have a symmetric sum over a completely antisymmetric object. So, we find that $\left(\alpha^{j} L_{j}\right)^{3}=-\alpha^{2}\left(\alpha^{j} L_{j}\right)$. Finally, we evaluate $\left(\alpha^{j} L_{j}\right)^{4}$ as

$$
\begin{aligned}
\left(\alpha^{j} L_{j}\right)^{4} & =\left(\alpha^{j} L_{j}\right)^{3}\left(\alpha^{j} L_{j}\right), \\
& =-\alpha^{2}\left(\alpha^{k} L_{k}\right)\left(\alpha^{j} L_{j}\right)=-\alpha^{2}\left(\alpha^{j} L_{j}\right)^{2} .
\end{aligned}
$$

Therefore, the sum over even terms can be expressed in terms of $\left(\alpha^{j} L_{j}\right)^{2}$, while the odd terms can be written in terms of $\left(\alpha^{j} L_{j}\right)$. Specifically,

$$
\begin{aligned}
\left(\alpha^{j} L_{j}\right)^{2 n} & =(-1)^{n+1} \alpha^{2 n}\left(\frac{\alpha^{j} L_{j}}{\alpha}\right)^{2}, \\
\left(\alpha^{j} L_{j}\right)^{2 n+1} & =(-1)^{n} \alpha^{2 n+1}\left(\frac{\alpha^{j} L_{j}}{\alpha}\right), \\
& n \geq 0
\end{aligned}
$$

Substituting these expressions into the series expansion,

$$
\begin{aligned}
\exp \left(\alpha^{j} L_{j}\right) & =I_{3}+\sum_{n=1}^{\infty} \frac{1}{(2 n)!}\left(\alpha^{j} L_{j}\right)^{2 n}+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}\left(\alpha^{j} L_{j}\right)^{2 n+1} \\
& =I_{3}-\left(\frac{\alpha^{j} L_{j}}{\alpha}\right)^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!} \alpha^{2 n}+\left(\frac{\alpha^{j} L_{j}}{\alpha}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \alpha^{2 n+1} \\
& =I_{3}+\left(\frac{\alpha^{j} L_{j}}{\alpha}\right)^{2}\left(1-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \alpha^{2 n}\right)+\left(\frac{\alpha^{j} L_{j}}{\alpha}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \alpha^{2 n+1} \\
& =I_{3}+\left(\frac{\alpha^{j} L_{j}}{\alpha}\right)^{2}(1-\cos \alpha)+\left(\frac{\alpha^{j} L_{j}}{\alpha}\right) \sin \alpha
\end{aligned}
$$

