
PHYS 772 - Standard Model Problem Set 5 Spring 2024

1. Show that the global U(1) symmetry, ψ → eiαψ with α ∈ R, of the spinor field theory

L =
1

2
iψ̄ /∂ψ + h.c.−mψ̄ψ ,

leads to a conserved current J µ = ψ̄γµψ. Show explicitly that this current is conserved.

Solution: Under the U(1) transformation, the fermion fields transform as

ψ → ψ′ = eiαψ ,

= ψ + iαψ +O(α2) ,

≡ ψ + α
δψ

δα
+O(α2) ,

and for the antifermion field

ψ̄ → ψ̄′ = e−iαψ̄ ,

= ψ̄ − iαψ̄ +O(α2) ,

≡ ψ̄ + α
δψ̄

δα
+O(α2) ,

where we defined δψ/δα = iψ and δψ̄/δα = −iψ̄. From Noether’s theorem, the conserved
current is given by

J µ = − δL
δ(∂µψ)

δψ

δα
− δψ̄

δα

δL
δ(∂µψ̄)

.

The Lagrange density is L = i
2 ψ̄γ

µ∂µψ − i
2∂µψ̄γ

µψ −mψ̄ψ, so

δL
δ(∂µψ)

=
i

2
ψ̄γµ ,

δL
δ(∂µψ̄)

= − i
2
γµψ ,

which gives the current

J µ = − δL
δ(∂µψ)

δψ

δα
− δψ̄

δα

δL
δ(∂µψ̄)

,

= −
(
i

2
ψ̄γµ

)
(iψ)−

(
−iψ̄

)(
− i
2
γµψ

)
,

= ψ̄γµψ .

The current is conserved, ∂µJ µ = 0, which can be shown explicitly,

∂µJ µ = ∂µ(ψ̄γ
µψ) ,

= (∂µψ̄)γ
µψ + ψ̄γµ(∂µψ) .
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Recall the Dirac equation, (i/∂−m)ψ =⇒ γµ(∂µψ) = −imψ, as well as the conjugate equation,
(∂µψ̄)γ

µ = imψ̄. So, we have

∂µJ µ = (∂µψ̄)γ
µψ + ψ̄γµ(∂µψ) ,

= imψ̄ψ − imψ̄ψ ,

= 0 .

Therefore, the current is conserved.

2. Derive the classical equations of motion for spinor electrodynamics given the Lagrange density

L =
1

2
iψ̄ /Dψ + h.c.−mψ̄ψ − 1

4
FµνF

µν ,

with Dµ = ∂µ + iqAµ and Fµν = ∂µAν − ∂νAµ, and the Euler-Lagrange equations

∂µ

(
δL

δ(∂µψ)

)
=
δL
δψ

, ∂µ

(
δL

δ(∂µψ̄)

)
=
δL
δψ̄

, ∂µ

(
δL

δ(∂µAν)

)
=

δL
δAν

.

Solution: Rewriting the Lagrange density as

L =
i

2
ψ̄γµ(∂µψ)−

i

2
(∂µψ̄)γ

µψ −mψ̄ψ − 1

4
FµνF

µν − qAµψ̄γ
µψ ,

we can find the classical equations of motion by direct evaluation. Let us first obtains the
equations for the ψ field, which come from the Euler-Lagrange equations as

∂µ

(
δL

δ(∂µψ̄)

)
= ∂µ

(
− i
2
γµψ

)
= − i

2
γµ∂µψ ,

δL
δψ̄

=
i

2
γµ(∂µψ)−mψ − qAµγ

µψ .

Combining together, we find the equations

− i
2
γµ∂µψ =

i

2
γµ(∂µψ)−mψ − qAµγ

µψ ,

=⇒ (i/∂ −m− q /A)ψ = 0 .

For the ψ̄ field,

∂µ

(
δL

δ(∂µψ)

)
= ∂µ

(
i

2
ψ̄γµ

)
=
i

2
∂µψ̄γ

µ ,

δL
δψ

= − i
2
(∂µψ̄)γ

µ −mψ̄ − qAµψ̄γ
µ .

William & Mary Page 2 of 13 Department of Physics



PHYS 772 - Standard Model Problem Set 5 Spring 2024

Combining, we find

i

2
∂µψ̄γ

µ = − i
2
(∂µψ̄)γ

µ −mψ̄ − qAµψ̄γ
µ ,

=⇒ ψ̄(i
←−
/∂ + q /A+m) = 0 .

Finally, for the electromagnetic field, we find

∂µ

(
δL

δ(∂µAν)

)
= −1

4
∂µ

(
2Fαβ δFαβ

δ(∂µAν)

)
,

= −1

2
∂µ

(
Fαβ δ

δ(∂µAν)
(∂αAβ − ∂βAα)

)
,

= −1

2
∂µ

(
Fαβ

(
δµαδ

ν
β − δ

µ
βδ

ν
α

))
,

= −1

2
∂µ (F

µν − F νµ) ,

= −∂µFµν ,

where in the fourth line we used F νµ = −Fµν . For the potential term,

δL
δAν

= −qψ̄γνψ ,

from which we arrive at

∂µF
µν = qψ̄γνψ .

Therefore, the classical equations of motion are

(i/∂ − q /A−m)ψ = 0 , ψ̄(i
←−
/∂ + q /A+m) = 0 , ∂µF

µν = qψ̄γµψ .

3. An alternative Lagrange density for the classical free electromagnetic field is

L′ = −1

2
∂µAν ∂

µAν .

(a) Under what assumption does L′ yield the free inhomogeneous Maxwell equations?

Solution: The free inhomogeneous Maxwell equations are ∂µF
µν = 0. Since Fµν =

∂µAν − ∂νAµ, we have

0 = ∂µF
µν = ∂µ(∂

µAν − ∂νAµ) ,

= ∂µ∂µA
ν − ∂ν(∂µAµ) ,

= ∂2Aν − ∂ν(∂µAµ) = 0 .

So, the free inhomogeneous Maxwell equations, in terms of Aµ, are ∂
2Aν − ∂ν(∂µAµ) = 0.
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Now, for the Lagrange density L′ = − 1
2∂µAν∂

µAν , we can derive the equations of motion
through the Euler-Lagrange equations,

∂µ

(
δL′

δ(∂µAν)

)
=

δL′

δAν

=⇒ ∂µ

[
δ

δ(∂µAν)

(
−1

2
∂αAβ∂

αAβ

)]
=

δ

δAν

(
−1

2
∂αAβ∂

αAβ

)
,

−1

2
∂µ

(
δ(∂αAβ)

δ(∂µAν)
∂αAβ + ∂αAβ δ(∂αAβ)

δ(∂µAν)

)
= 0 ,

−∂µ
(
δµαδ

ν
β ∂

αAβ
)
= 0 ,

=⇒ ∂µ∂
µAν = 0 .

Therefore, we find that the equations of motion are ∂2Aν = 0, which differs from ∂2Aν −
∂ν(∂µA

µ) = 0 by a four-divergence ∂ν(∂µA
µ). Therefore, the assumption that L′ yields

the free inhomogeneous Maxwell equations is the Lorentz gauge condition, ∂µA
µ = 0.

(b) With this assumption, show that L′ differs from L = − 1
4FµνF

µν by a four-divergence.

Solution: Starting from the definition,

L = −1

4
FµνF

µν ,

= −1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ) ,

= −1

2
(∂µAν∂

µAν − ∂νAµ∂
µAν) ,

= −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ ,

= L′ +
1

2
∂µAν∂

νAµ .

Note that ∂µ(Aν∂
νAµ) = ∂µAν∂

νAµ + Aν∂µ∂
νAµ = ∂µAν∂

νAµ + Aν∂
ν∂µA

µ, where in
the last equality we used the fact that the derivatives are symmetric on the second term.
Moreover, we can rewrite the second term with ∂ν(Aν∂µA

µ) = (∂µA
µ)2 + Aν∂

ν∂µA
µ.

Relabeling the summed indices on the second term, µ ↔ ν, and combining with the first
relation we obtain

∂µ(A
ν∂νAµ −Aµ∂νA

ν) = ∂µAν∂
νAµ − (∂µA

µ)2 .

So, substituting this into L = L′ + 1
2∂µAν∂

νAµ, we have

L = L′ +
1

2
∂µ(A

ν∂νAµ −Aµ∂νA
ν) +

1

2
(∂µA

µ)2 .

So, L differs from L′ by a four-divergence so long as we restrict L to the Lorentz gauge,
∂µA

µ = 0.
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4. Verify that the field strength tensor Fµν can be computed through the commutator iqFµν = [Dµ, Dν ].

Solution: Evaluating the commutator against some test function φ,

[Dµ, Dν ]φ = [∂µ + iqAµ, ∂ν + iqAν ]φ ,

= [∂µ, ∂ν ]φ+ iq[∂µ, Aν ]φ+ iq[Aµ, ∂ν ]φ− q2[Aµ, Aν ]φ ,

= iq[∂µ, Aν ]φ+ iq[Aµ, ∂ν ]φ ,

= iq (∂µ(Aνφ)−Aν∂µφ+Aµ∂νφ− ∂ν(Aµφ)) ,

where in going to the third line we used that ∂µ∂νφ = ∂ν∂µφ, and [Aµ, Aν ] = 0. Now, ∂µ(Aνφ) =
(∂µAν)φ+Aν∂µφ and ∂ν(Aµφ) = (∂νAµ)φ+Aµ∂νφ. So,

1

iq
[Dµ, Dν ]φ = ∂µ(Aνφ)−Aν∂µφ+Aµ∂νφ− ∂ν(Aµφ) ,

= (∂µAν)φ+Aν∂µφ−Aν∂µφ+Aµ∂νφ− (∂νAµ)φ−Aµ∂νφ ,

= (∂µAν − ∂νAµ)φ ,

= Fµνφ ,

so we conclude that iqFµν = [Dµ, Dν ].

5. Show that the radiative transition, e− → e− + γ, is forbidden in vacuum.

Solution: Let us defined the following kinematics,

e−(p)→ e−(p′) + γ(k) ,

where p = (E,p), p′ = (E′,p′), and k = (ω,k) are the four-momenta of the incoming electron,
outgoing electron, and outgoing photon, respectively. In vacuum, each of these particles are on
their mass-shell, p2 = p′2 = m2

e, and k
2 = 0. The S matrix element is given by

S(e− → e−γ) = (2π)4δ(4)(p− p′ − k) iM(e− → e−γ) ,

where the delta function enforces conservation of four-momentum, p = p′ + k and M is the
amplitude. The leading order amplitude is non-zero, given by iM = −ieū(p′)/ϵu(p) +O(e2).

Let us examine conservation of four-momentum, which in terms of its components are E = E′+ω
and p = p′+k. Let us choose to evaluate the amplitude in the rest frame of the initial electron, so
p = 0, and E = me. Therefore, by conservation of energy and momentum, we have me = E′+ω
and p′ = −k, respectively. Since the particles are on-shell, we further have E′ =

√
m2

e + p′2

and ω = |k|. Combining these results, conservation of energy imposes the condition

me =
√
m2

e + k2 + |k| ,

This condition is only true if k = 0, that is there is no photon emitted. We conclude that
conservation of momentum forbids this reaction, giving S(e− → e−γ) = 0.
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6. Consider “Bhabha scattering”, e−e+ → e−e+, within QED in the high-energy limit, i.e., the ultra-
relativistic limit m2

e/s → 0. Compare the experimentally measured unpolarized differential cross-
section to the theoretical prediction at leading order in α = e2/4π, the fine-structure constant.

(a) Working in the center-of-momentum (CM) frame, what are the energies and momenta of each
particle in the reaction as a function of the Mandelstam invariant s? What is the invariant
momentum transfer, t, as a function of s and cos θ where θ is the scattering angle?

Solution: Let us define the following kinematics in the CM frame, consulting the results
from Problem Set 2,

e−(p) + e+(k)→ e−(p′) + e+(k′) ,

where p = (E,p) and p′ = (E,p′) are incoming and outgoing electron four-momenta,
respectively, and k = (E,k) and k′ = (E,k′) are incoming and outgoing positron four-
momenta, respectively. Note that since all particles have equal mass me, they all have
identical energy, E =

√
s/2. Further, all the momenta obey p = −k and p′ = −k′, so their

magnitudes are also identical,

|p| = |k| = |p′| = |k′| = 1

2

√
s− 4m2

e =

√
s

2
+O(m2

e/s) ,

= E +O(m2
e/s)

So, each particles energy and momenta are E = |p| =
√
s/2 as m2

e/s→ 0.

Also, note that the Mandelstam variables are s = 2p · k, t = 2p · p′, and u = 2p · k′, with
the constraint s+ t+ u = 0 in the ultrarelativistic limit, so we have

t = −2|p|2(1− cos θ) = −2E2(1− cos θ) = −s
2
(1− cos θ) .

(b) Compute the unpolarized differential cross-section dσ/dΩ, where Ω is the solid angle of the electron
in the e−e+ CM frame, to order α2 in terms of the Mandelstam invariants s and t.

Solution: Here we consider the reaction,

e−(p, s) + e+(k, r)→ e−(p′, s′) + e+(k′, r′) .

where the momenta are as defined in part (a), with s and s′ are the spin projections
(helicities) for the incoming and outgoing electrons, while r and r′ are the helicities of the
incoming and outgoing positrons.

The unpolarized differential cross section is given by

dσ

dΩ
=

1

64πs

〈
|M|2

〉
where the spin-averaged amplitude,

〈
|M|2

〉
, is defined by〈

|M|2
〉
≡ 1

2

∑
s

1

2

∑
r

∑
s′

∑
r′

∣∣∣M(e−s e
+
r → e−s′e

+
r′)
∣∣∣2 .
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At leading order in the QED coupling, there are two diagrams which contribute to e−e+ →
e−e+. The amplitude is then

iM =

p+ k

p

k

p′

k′

− p− p′

kk′

p′ p

+O(α2),

= v̄r(k)(−ieγµ)us(p)
−igµν

(p+ k)2 + iϵ
ūs′(p

′)(−ieγν)vr′(k′)

− v̄r(k)(−ieγµ)vr′(k′)
−igµν

(p− p′)2 + iϵ
ūs′(p

′)(−ieγν)us(p) +O(α2) ,

=
4πiα

s
[v̄r(k)γ

µus(p)][ūs′(p
′)γµvr′(k

′)]

− 4πiα

t
[v̄r(k)γ

νvr′(k
′)][ūs′(p

′)γνus(p)] +O(α2) ,

≡ iMs − iMt +O(α2) ,

where we have defined the annihilation amplitudeMs (associated with the first diagram)
and the exchange amplitude Mt (associated with the second diagram), and used that
e2 = 4πα, s = (p + k)2, and t = (p − p′)2. Note the relative minus sign on the exchange
diagram is due to the exchange of an incoming positron and outgoing electron from
the annihilation diagram. From here forward we implicitly assume an iϵ shift in the
propagators.

For the cross-section, we need the spin-averaged amplitude,〈
|M|2

〉
≡ 1

4

∑
s,s′

∑
r,r′

M∗M ,

=
1

4

∑
s,s′

∑
r,r′

(|Ms|2 + |Mt|2 −M∗
sMt −M∗

tMs) +O(α3) ,

=
1

4

∑
s,s′

∑
r,r′

[
|Ms|2 + |Mt|2 − 2Re (M∗

sMt)
]
+O(α3) .

We then evaluate the spin sums on the squared amplitudes using Casimir’s trick. Focusing
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first on |Ms|2,

|Ms|2 =

(
4πα

s

)2

[v̄r(k)γ
µus(p)]

∗[ūs′(p
′)γµvr′(k

′)]∗[v̄r(k)γ
νus(p)][ūs′(p

′)γνvr′(k
′)] ,

=

(
4πα

s

)2

[v̄r(k)γ
µus(p)]

†[ūs′(p
′)γµvr′(k

′)]†[v̄r(k)γ
νus(p)][ūs′(p

′)γνvr′(k
′)] ,

=

(
4πα

s

)2

[ūs(p)γ
µvr(k)][v̄r′(k

′)γµus′(p
′)][v̄r(k)γ

νus(p)][ūs′(p
′)γνvr′(k

′)] ,

where we used (ξ̄γµζ)† = ζ̄γµξ using (γµ)† = γ0γµγ0 for ξ and ζ being either a u or v
spinor. Summing over spins,∑
s,s′

∑
r,r′

|Ms|2 ∝
∑
s,s′

∑
r,r′

[ūs(p)γ
µvr(k)][v̄r′(k

′)γµus′(p
′)][v̄r(k)γ

νus(p)][ūs′(p
′)γνvr′(k

′)] ,

=
∑
s,r

[ūs(p)γ
µvr(k)v̄r(k)γ

νus(p)]
∑
s′,r′

[v̄r′(k
′)γµus′(p

′)ūs′(p
′)γνvr′(k

′)] ,

=
∑
s,r

tr[ūs(p)γ
µvr(k)v̄r(k)γ

νus(p)]
∑
s′,r′

tr[v̄r′(k
′)γµus′(p

′)ūs′(p
′)γνvr′(k

′)] ,

=
∑
s,r

tr[γµvr(k)v̄r(k)γ
νus(p)ūs(p)]

∑
s′,r′

tr[γµus′(p
′)ūs′(p

′)γνvr′(k
′)v̄r′(k

′)] ,

= tr[γµ/kγν/p] tr[γµ/p
′γν/k

′
]

where we used the completeness of the spinors in the high-energy limit,∑
s

us(p)ūs(p) = /p =
∑
r

vr(p)v̄r(p) .

Evaluating the traces, using tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ), we find

tr[γµ/kγν/p] = 4 (pνkµ + pµkν − gµνp · k) ,

tr[γµ/p
′γν/k

′
] = 4

(
p′νk

′
µ + p′µk

′
ν − gµνp′ · k′

)
.

Contracting these traces,

tr[γµ/kγν/p] tr[γ
µ
/p
′γν/k

′
] = 16 (pνkµ + pµkν − gµνp · k)

(
p′νk

′
µ + p′µk

′
ν − gµνp′ · k′

)
,

= 32 (p · p′ k · k′ + p · k′ k · p′) ,

= 8
(
t2 + u2

)
,

where we used s = 2p · k = 2p′ · k′, t = 2p · p′ = 2k · k′, and u = 2p · k′ = 2k · p′. So, we
have for the annihilation term

1

4

∑
s,s′

∑
r,r′

|Ms|2 = 32π2α2

(
t2 + u2

s2

)
.
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Next look at the exchange term |Mt|2,

|Mt|2 =

(
4πα

t

)2

[v̄r(k)γ
νvr′(k

′)]∗[ūs′(p
′)γνus(p)]

∗[v̄r(k)γ
µvr′(k

′)][ūs′(p
′)γµus(p)] ,

=

(
4πα

t

)2

[v̄r′(k
′)γνvr(k)][ūs(p)γµus′(p

′)][v̄r(k)γ
νvr′(k

′)][ūs′(p
′)γµus(p)] ,

so that the spin sums are∑
s,s′

∑
r,r′

|Mt|2 ∝
∑
s,s′

∑
r,r′

[v̄r′(k
′)γνvr(k)][ūs(p)γνus′(p

′)][v̄r(k)γ
µvr′(k

′)][ūs′(p
′)γµus(p)] ,

=
∑
s,s′

[ūs(p)γνus′(p
′)ūs′(p

′)γµus(p)]
∑
r,r′

[v̄r′(k
′)γνvr(k)v̄r(k)γ

µvr′(k
′)] ,

=
∑
s,s′

tr[γνus′(p
′)ūs′(p

′)γµus(p)ūs(p)]
∑
r,r′

tr[γνvr(k)v̄r(k)γ
µvr′(k

′)v̄r′(k
′)] ,

= tr[γν/p
′γµ/p] tr[γ

ν/kγµ/k
′
] .

We now contract the traces,

tr[γν/p
′γµ/p] tr[γ

ν/kγµ/k
′
] = 16 (pνp′µ + pµp′ν − gµνp · p′)

(
kνk

′
µ + kµk

′
ν − gµνk · k′

)
,

= 32 (p′ · k′ p · k + p · k′ k · p′) ,

= 8
(
s2 + u2

)
.

So, the exchange term yields

1

4

∑
s,s′

∑
r,r′

|Mt|2 = 32π2α2

(
s2 + u2

t2

)
.

Finally, we evaluate the interference term

Re (M∗
sMt) =

(4πα)
2

st
[v̄r(k)γ

µus(p)]
∗[ūs′(p

′)γµvr′(k
′)]∗[v̄r(k)γ

νvr′(k
′)][ūs′(p

′)γνus(p)] ,

=
(4πα)

2

st
[ūs(p)γ

µvr(k)][v̄r′(k
′)γµus′(p

′)][v̄r(k)γ
νvr′(k

′)][ūs′(p
′)γνus(p)] ,

=
(4πα)

2

st
[ūs(p)γ

µvr(k)v̄r(k)γ
νvr′(k

′)v̄r′(k
′)γµus′(p

′)ūs′(p
′)γνus(p)] ,

=
(4πα)

2

st
tr[ūs(p)γ

µvr(k)v̄r(k)γ
νvr′(k

′)v̄r′(k
′)γµus′(p

′)ūs′(p
′)γνus(p)] ,

=
(4πα)

2

st
tr[γµvr(k)v̄r(k)γ

νvr′(k
′)v̄r′(k

′)γµus′(p
′)ūs′(p

′)γνus(p)ūs(p)] .
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Evaluating the spin sums,∑
s,s′

∑
r,r′

Re (M∗
sMt) ∝

∑
s,s′

∑
r,r′

tr[γµvr(k)v̄r(k)γ
νvr′(k

′)v̄r′(k
′)γµus′(p

′)ūs′(p
′)γνus(p)ūs(p)] ,

= tr(γµ/kγν/k
′
γµ/p

′γν/p) .

Note the identities γµγνγργσγµ = −2γσγργν , γµγνγργµ = 4gνρ I4, and tr(γµγν) = 4gµν

can be used to simplify the traces,

tr(γµ/kγν/k
′
γµ/p

′γν/p) = −2 tr(γµ/k/p′γµ/k
′
/p) ,

= −8k · p′ tr(/k′/p) ,

= −32 k · p′ k′ · p ,

= −8u2 .

So, the interference term yields

1

4

∑
s,s′

∑
r,r′

2Re (M∗
sMt) = −32π2α2

(
2u2

st

)
.

Combining these terms, we find for the spin-averaged amplitude

⟨|M|2⟩ = 32π2α2

(
t2 + u2

s2
+
s2 + u2

t2
+

2u2

st

)
+O(α3) ,

which gives for the unpolarized differential cross-section

dσ

dΩ
=

1

64π2s
⟨|M|2⟩ ,

=
α2

2s

(
t2 + u2

s2
+
s2 + u2

t2
+

2u2

st

)
+O(α3) ,

=
α2

2s

((
t

s

)2

+

(
s

t

)2

+ u2
(
1

s
+

1

t

)2
)

+O(α3) .

Since s+ t+ u = 0, then u2 = (s+ t)2, so we write the cross-section in terms of s and t as

dσ

dΩ
=
α2

2s

((
t

s

)2

+

(
s

t

)2

+

(
1 +

s

t

)2(
1 +

t

s

)2
)

+O(α3) .

(c) Make a Semi-log plot of the O(α2) theoretical dσ/dΩ vs. cos θ ∈ [−.8, .8] for each CM en-
ergy

√
s/GeV = {14, 22, 34.8, 38.3, 43.6}. Plot the cross-section in nb, and restrict the y-axis

to (dσ/dΩ)/nb ∈ [0.001, 10.000]. Plot the experimental data, measured from the TASSO ex-
periment at PETRA, for each of the CM energies over the theoretical curves. Compare and
comment on the quality of the theoretical description of the experimental data. Note: The
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data file presents the cross-section as s · dσ/dΩ. The data file was obtained from HEPData at
https://www.hepdata.net/record/ins249557. The article by the TASSO collaboration may be
helpful, https://link.springer.com/article/10.1007/BF01579904.

Solution: To compare the cross-section to data, we note that t = −s(1− cos θ)/2, so the
ratio t/s = −(1− cos θ)/2. So, we have

dσ

dΩ
=
α2

2s

((
t

s

)2

+

(
s

t

)2

+

(
1 +

s

t

)2(
1 +

t

s

)2
)

+O(α3) ,

=
α2

2s

(
1

4
(1− cos θ)

2
+

4

(1− cos θ)
2 +

1

4

(
1 + cos θ

1− cos θ

)2

(1 + cos θ)
2

)
+O(α3) ,

=
α2

8s

(
16 + (1− cos θ)

4
+ (1 + cos θ)

4

(1− cos θ)
2

)
+O(α3) ,

=
α2

8s

(
16 + 2(cos4 θ + 6 cos2 θ + 1)

(1− cos θ)
2

)
+O(α3) ,

=
α2

4s

(
3 + cos2 θ

1− cos θ

)2

+O(α3) ,

where we used (1±z)4 = z4±4z3+6z2±4z+1 to obtain (1−z)4+(1+z)2 = 2(z4+6z2+1)
in the fourth line.

We can now plot dσ/dΩ as a function of cos θ for each s. Since the TASSO data are for√
s ≥ 14.0GeV, we find (me/

√
s)2 = (5.11 × 10−4/14.0)2 ≈ 1 × 10−9, so we expect the

ultrarelativistic approximation to hold with respect to the precision of the experimental
data. Figure 1 shows the cross-section dσ/dΩ at

√
s/GeV = {14, 22, 34.8, 38.3, 43.6}, as

well as s · dσ/dΩ in the second plot. Note that to obtain the physical cross-section in nb,
we multiply the theoretical cross section by (ℏc)2. Overall the quality of the description is
ver well.
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Figure 1: The unpolarized differential cross-section (left) and s · dσ/dΩ (right) for
each energy compared with the TASSO data.

(d) Make a plot of the ratio of the experimentally measured differential cross-section to the lead-
ing order QED prediction as a function of cos θ ∈ [−.8, .8] for each CM energy

√
s/GeV =

{14, 22, 34.8, 38.3, 43.6}. Restrict the y axis between 0.5 and 1.5. Compare and comment on the
quality of the theoretical description of the experimental data. Hint: Plot each energy on a
separate plot to see if you notice any subtle trends.

Solution: Here we normalize the experimental cross-section by the leading order theory.
Figure 2 shows the ratios for each energy. Here we see some discrepency with the leading
order QED theory near the backward direction (cos θ ∼ −1). We will see a greater dis-
crepancy for e−e+ → µ−µ+ and e−e+ → τ−τ+ in the subsequent problem set, which is
due to the presence of Z0 boson intermediate states.
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Figure 2: The ratios of the experimental TASSO data with respect to leading order
QED theory at each energy.
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