
PHYS 772 - Standard Model Problem Set 7 Spring 2024

1. Given the generators Xj for a Lie algebra [Xj , Xk] = cjklX
l, normalized such that tr(XjXk) = µrδjk,

show that the structure constants can be computed with

cjkl =
1

µr
tr([Xj , Xk]X l) .

Show that cjkl are antisymmetric under interchange of any two indices.

Solution: Multiply the Lie bracket on the right by Xn, [Xj , Xk]Xn = cjklX
lXn. Next, take

the trace

tr
(
[Xj , Xk]Xn

)
= cjkl tr

(
X lXn

)
= cjkl µrδln = µrcjkn .

Isolating cjkn, we find the desired relation,

cjkl =
1

µr
tr([Xj , Xk]X l) .

Note that from the cyclic properties of the trace, we find

tr([Xj , Xk]X l) = tr(XjXkX l −XkXjX l) ,

= tr(XjXkX l −XjX lXk) ,

= tr(Xj [Xk, X l]) = tr([Xk, X l]Xj) ,

where the cyclic property was used on the second term of the second line, and

tr([Xj , Xk]X l) = tr(XjXkX l −XkXjX l) ,

= tr(XkX lXj −XkXjX l) ,

= tr(Xk[X l, Xj ]) = tr([X l, Xj ]Xk) ,

where again the cyclic property was used on the first term of the second line. Thus, the structure
constants are given by

cjkl =
1

µr
tr([Xj , Xk]X l) =

1

µr
tr([Xk, X l]Xj) =

1

µr
tr([X l, Xj ]Xk) .

Since the Lie bracket is antisymmetric, [Xj , Xk] = −[Xk, Xj ], we see that cjkl is antisymmetric
under the interchange of any pair of indices (j, k), (k, l), and (l, j). Thus,

cjkl = −cjlk, cjkl = −ckjl, cjkl = −clkj .
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2. Compute the non-zero structure constants fabc for the su(3) algebra [λa, λb] = 2ifabcλc, where λa are
the Gell-Mann matrices. Hint: It is convenient to use a symbolic algebra software like Mathematica.

Solution: The normalization of the Gell-Mann matrices are tr(λaλb) = 2δab. So, from Problem
1, we have

fabc =
1

4i
tr ([λa, λb]λc) .

Using Mathematica, we can write fabc for each a = 1, . . . , 8 as a matrix in bc,

f1bc =



0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1

2
0

0 0 0 0 0 − 1
2

0 0

0 0 0 0 1
2

0 0 0

0 0 0 − 1
2

0 0 0 0
0 0 0 0 0 0 0 0


, f2bc =



0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1

2
0 0

0 0 0 0 0 0 1
2

0

0 0 0 − 1
2

0 0 0 0

0 0 0 0 − 1
2

0 0 0
0 0 0 0 0 0 0 0


,

f3bc =



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1

2
0 0 0

0 0 0 − 1
2

0 0 0 0

0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 1
2

0 0
0 0 0 0 0 0 0 0


, f4bc =



0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 − 1
2

0 0

0 0 0 0 − 1
2

0 0 0
0 0 0 0 0 0 0 0

0 0 1
2

0 0 0 0
√
3

2
0 1

2
0 0 0 0 0 0

1
2

0 0 0 0 0 0 0

0 0 0 0 −
√
3

2
0 0 0


,

f5bc =



0 0 0 0 0 1
2

0 0

0 0 0 0 0 0 − 1
2

0

0 0 0 1
2

0 0 0 0

0 0 − 1
2

0 0 0 0 −
√
3

2
0 0 0 0 0 0 0 0

− 1
2

0 0 0 0 0 0 0

0 1
2

0 0 0 0 0 0

0 0 0
√

3
2

0 0 0 0


, f6bc =



0 0 0 0 − 1
2

0 0 0

0 0 0 1
2

0 0 0 0

0 0 0 0 0 0 1
2

0

0 − 1
2

0 0 0 0 0 0
1
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 − 1
2

0 0 0 0
√
3

2

0 0 0 0 0 0 −
√
3

2
0


,

f7bc =



0 0 0 1
2

0 0 0 0

0 0 0 0 1
2

0 0 0

0 0 0 0 0 − 1
2

0 0

− 1
2

0 0 0 0 0 0 0

0 − 1
2

0 0 0 0 0 0

0 0 1
2

0 0 0 0 −
√
3

2
0 0 0 0 0 0 0 0

0 0 0 0 0
√
3

2
0 0


, f8bc =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0
√
3
2

0 0 0

0 0 0 −
√
3

2
0 0 0 0

0 0 0 0 0 0
√
3

2
0

0 0 0 0 0 −
√
3

2
0 0

0 0 0 0 0 0 0 0


,
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Therefore, the following entries are non-zero:

f123 = 1 ,

f147 = f165 = f246 = f257 = f345 = f376 = 1/2 ,

f458 = f678 =

√
3

2
,

where other non-zero entries are given by the interchange of any pair of indices.

3. The Gell-Mann matrices also satisfy the relation

{λa, λb} =
4

3
δabI3 + 2dabcλc ,

where dabc are symmetric under the interchange of any two indices. Compute the non-zero values of
dabc. Hint: It is convenient to use a symbolic algebra software like Mathematica.

Solution: To isolate dabc, multiply the anticommutator on the right by λe and take the trace,

tr ({λa, λb}λe) =
4

3
δab tr(λe) + 2dabc tr (λcλe) ,

= 4dabe ,

where we used that tr(λa) = 0 and tr(λaλb) = 2δab. Thus,

dabc =
1

4
tr ({λa, λb}λc) .

Using Mathematica, we can write dabc for each a = 1, . . . , 8 as a matrix in bc,
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d1bc =



0 0 0 0 0 0 0 1√
3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1

2
0 0

0 0 0 0 0 0 1
2

0

0 0 0 1
2

0 0 0 0

0 0 0 0 1
2

0 0 0
1√
3

0 0 0 0 0 0 0


, d2bc =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1√

3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2
0

0 0 0 0 0 1
2

0 0

0 0 0 0 1
2

0 0 0

0 0 0 − 1
2

0 0 0 0

0 1√
3

0 0 0 0 0 0


,

d3bc =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1√

3

0 0 0 1
2

0 0 0 0

0 0 0 0 1
2

0 0 0

0 0 0 0 0 − 1
2

0 0

0 0 0 0 0 0 − 1
2

0

0 0 1√
3

0 0 0 0 0


, d4bc =



0 0 0 0 0 1
2

0 0

0 0 0 0 0 0 − 1
2

0

0 0 0 1
2

0 0 0 0

0 0 1
2

0 0 0 0 − 1
2
√
3

0 0 0 0 0 0 0 0
1
2

0 0 0 0 0 0 0

0 − 1
2

0 0 0 0 0 0

0 0 0 − 1
2
√
3

0 0 0 0


,

d5bc =



0 0 0 0 0 0 1
2

0

0 0 0 0 0 1
2

0 0

0 0 0 0 1
2

0 0 0
0 0 0 0 0 0 0 0
0 0 1

2
0 0 0 0 − 1

2
√
3

0 1
2

0 0 0 0 0 0
1
2

0 0 0 0 0 0 0

0 0 0 0 − 1
2
√
3

0 0 0


, d6bc =



0 0 0 1
2

0 0 0 0

0 0 0 0 1
2

0 0 0

0 0 0 0 0 − 1
2

0 0
1
2

0 0 0 0 0 0 0

0 1
2

0 0 0 0 0 0

0 0 − 1
2

0 0 0 0 − 1
2
√
3

0 0 0 0 0 0 0 0
0 0 0 0 0 − 1

2
√
3

0 0


,

d7bc =



0 0 0 0 1
2

0 0 0

0 0 0 − 1
2

0 0 0 0

0 0 0 0 0 0 − 1
2

0

0 − 1
2

0 0 0 0 0 0
1
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 1

2
0 0 0 0 − 1

2
√
3

0 0 0 0 0 0 − 1
2
√
3

0


,

d8bc =



1√
3

0 0 0 0 0 0 0

0 1√
3

0 0 0 0 0 0

0 0 1√
3

0 0 0 0 0

0 0 0 − 1
2
√
3

0 0 0 0

0 0 0 0 − 1
2
√
3

0 0 0

0 0 0 0 0 − 1
2
√
3

0 0

0 0 0 0 0 0 − 1
2
√
3

0

0 0 0 0 0 0 0 − 1√
3


.
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Therefore, the non-zero values of dabc are

d118 = d228 = d338 = −d888 =
1√
3
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
,

d448 = d558 = d668 = d778 = − 1

2
√
3
,

where other non-zero entries are given by the interchange of any pair of indices.

4. Show that the 3∗ of su(3) is inequivalent to the 3 of su(3). Hint: Show that (−λ∗
a) cannot be

transformed to λa by a unitary transformation for every a = 1, 2, . . . , 8.

Solution: Recall that a unitary transformation preserves the spectrum of a matrix. Suppose

there exists a unitary matrix U such that U−1λaU = Λa, where Λa = diag(λ
(1)
a , λ

(2)
a , λ

(3)
a ),

where λ
(j)
a with j = 1, 2, 3 are the eigenvalues of λa. If there exists another unitary matrix

V such that V −1(−λ∗
a)V = λa, then the spectrum of (−λ∗

a) must be identical to λa for each
a = 1, . . . , 8. Consider λ8,

λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

which since it is diagonal the eigenvalues are {1/
√
3, 1/

√
3,−2/

√
3}. Now, consider (−λ∗

8),

−λ∗
8 = − 1√

3

1 0 0
0 1 0
0 0 −2

 ,

from which we see the eigenvalues are {−1/
√
3,−1/

√
3, 2/

√
3}. We see that the eigenvalues of

(−λ∗
8) are not the same as λ8. Thus, there is no such unitary transformation V , and we conclude

that the 3∗ is inequivalent to the 3 of su(3).

5. Perform the Clebsch-Gordan decomposition for the following su(3) products using Young Tableau,
labeling the dimension of each representation: (a) 3× 3× 8, and (b) 3× 3∗ × 8.
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Solution: For (a), we first, let us look at 3× 8,

3× 8 = × ,

= + + ,

= + + ,

= 6∗ + 15+ 3 ,

where for the last diagram we used that

= • = 1 ,

and found the dimension of the tableaux by using the dimension formula

N(a1, a2) =
1

2
(a1 + 1)(a2 + 1)(a1 + a2 + 2) ,

where

a1 = the number of boxes the first row exceeds the second row ,

a2 = the number of boxes in the second row .
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Using this result, we can now take the product 3× 3× 8,

3× 3× 8 = × × ,

= ×

(
×

)
,

= ×

(
+ +

)
,

=

(
×

)
+

(
×

)
+
(

×
)
,

=

 +

+

 + +


+

(
+

)
.

We now use the fact that

= • = 1 ,

so that

3× 3× 8 =

(
+

)
+

(
+ +

)

+

(
+

)
,

= (3∗ + 15∗) + (6+ 15∗ + 24) + (3∗ + 6) .

So, the Clebsch-Gordan decomposition is 3× 3× 8 = 3∗ + 3∗ + 6+ 6+ 15∗ + 15∗ + 24.
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For (b), we first, let us look at 3∗ × 8,

3∗ × 8 = × ,

= + + ,

= 3∗ + 6+ 15∗ ,

where we used the Language and shape rules to eliminate invalid diagrams. Taking the product
3× 3∗ × 8, we have

3× 3∗ × 8 = × × ,

= ×

(
×

)
,

= ×

(
+ +

)
,

=

(
×

)
+
(

×
)
+

(
×

)
,

=

 +

+

(
+

)

+

 + +

 ,

=

(
•+

)
+

(
+

)

+

(
+ +

)
,

= (1+ 8) + (8+ 10) + (8+ 10∗ + 27) .

So, the Clebsch-Gordan decomposition is 3× 3∗ × 8 = 1+ 8+ 8+ 8+ 10+ 10∗ + 27.
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6. Using the current Review of Particle Physics particle listings or the summary tables (Particle Data
Group, https://pdg.lbl.gov), complete Table 1 for some typical light and strange mesons. For hadrons
without an explicit charge index, label all possible charges in the multiplet. For hadrons with multiple
decay modes, we list principle ones as those with branching ratios greater than 1%.

Solution: See table below. For hadrons with widths reported in the Review of Particle Physics,
we use τ = ℏ/Γ to estimate lifetimes, with ℏ ≈ 5.58 × 10−22 MeV · s. For multiplet states, we
average the widths between all charge states. For hadrons with multiple decay modes, we list
principle ones as those with branching ratios greater than 1%. For the neutral kaons K0, K̄0

are mass eigenstates, and flavor oscillations mean that these hadrons decay via KS ,KL, which
are not eigenstates.

7. Using the current Review of Particle Physics particle listings or the summary tables (Particle Data
Group, https://pdg.lbl.gov), complete Table 2 for some typical light and strange baryons. Note that
for some listings, the decay width is reported as Γ = −2 Im (pole position). For hadrons without an
explicit charge index, label all possible charges in the multiplet.

Solution: See table below. For hadrons with widths reported in the Review of Particle Physics,
we use τ = ℏ/Γ to estimate lifetimes. For multiplet states, we average the widths between all
charge states.

8. Classify the following observed reactions into strong, electromagnetic, and weak processes:

(a) π− → π0 + e− + ν̄e,

Solution: The presence of the leptons in the final state indicates a non-strong process.
Looking at isospin I3 conservation,

π− → π0 + e− + ν̄e ,

I3 : −1 → 0 + 0 + 0 ,

we see that since ∆I3 = 0− (−1) ̸= 0, the interaction must be weak process.

(b) γ + p → π+ + n,

Solution: The photo-production of a a pion on a nuclear target is not a pure strong
process. Again, isospin I3 conservation again gives

γ + p → π+ + n ,

I3 : 0 +
1

2
→ 1 +

(
−1

2

)
.

We see that ∆I3 = 0, and we conclude that this is an electromagnetic process.

(c) p+ p̄ → π+ + π− + π0,
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Solution: Without the presence of leptons, we suspect that this is a strong processes. As
before, isospin I3 conservation. yields

p+ p̄ → π+ + π− + π0 ,

I3 :
1

2
+

(
−1

2

)
→ 1 + (−1) + 0 ,

and we see that ∆I3 = 0. Moreover, the total I is conserved as p+ p̄ gives either I = 0 or
1, and three pions can have I = 0, 1, 2, 3. Therefore, this reaction can occur through either
I = 0 or 1 modes. We conclude that this reaction is a strong process.

(d) D− → K+ + 2π−,

Solution: Checking if isospin I3 is conserved,

D−1 → K+ + π− + π− ,

I3 :

(
−1

2

)
→ 1

2
+ (−1) + (−1) ,

we see that ∆I3 = −3/2− 1/2 ̸= 0, therefore this decay must be a weak process. Another
indication that this is a weak process is to look at ∆C and ∆S, which are both non-zero
in this reaction, indicating flavor changing which is mediated by the weak interaction.

(e) Λ0 + p → K− + 2p,

Solution: With no leptons in the reactants or products, and isospin I3 being conserved
∆I3 = 0,

Λ0 + p → K− + p+ p ,

I3 : 0 +
1

2
→
(
−1

2

)
+

1

2
+

1

2
,

as well as strangeness being conserved ∆S = 0, we find that this process is flavor preserving,
and conclude that this reaction is a strong process.

(f) π− + p → n+ e+ + e−.

Solution: Total isospin must be violated due to the production of leptons. Checking if
isospin I3 is conserved,

π− + p → n+ e+ + e− ,

I3 : (−1) + 1/2 → (−1/2) + 0 + 0 ,

we see that indeed ∆I3 = 0, so this reaction is not mediated by the weak interaction.
Therefore this reaction is an electromagnetic process.
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9. Both the ρ0 meson and the ω meson are vector mesons, JPC = 1−−. However, the ρ0 is observed to
strongly decay predominately into 2π, while the ω is observed to decay into 3π. Why this is so?

Solution: While both hadrons are vector mesons with JPC = 1−−, note that the ρ0 is an
isovector IG = 1+ while the ω0 is an isoscalar IG = 0−, which can be seen from the Review of
Particle Physics. The G-parity of an n-pion state is Gnπ = (−1)n since Gπ = −. So, if isospin
is exact, ω0 → 3π is only allowed since Gω = −, while ρ0 → 2π is allowed since Gρ = +. Since
isospin is broken, but mildly, this means that these decay modes are dominant.

10. Consider πN scattering at the ∆(1232) resonance, i.e., at center-of-momentum energies
√
s ∼ 1232MeV.

For this reaction, πN → ∆(1232) → πN , focus on the following three processes:

(a) π+p → π+p elastic scattering via the ∆++ resonance,

(b) π−p → π−p elastic scattering via the ∆0 resonance,

(c) π−p → π0n charge exchange via the ∆0 resonance.

Estimate the relative cross sections σa : σb : σc.

Solution: Since mπ± ≈ mπ0 mp ≈ mn, and m∆++ ≈ m∆0 , the approximate isospin symmetry
can be considered a good symmetry for this reaction. Let us therefore assume mπ as the mass
of the I = 1 pion multiplet, mN as the mass of the I = 1/2 nucleon doublet, and m∆ as the
mass of the I = 3/2 delta multiplet.

The cross-section in the ∆-region has the structure

σ∆ ∝ |⟨f |T∆ |i⟩|2 × (kinematic factors) ,

where T∆ is the T matrix with ∆ quantum numbers, and |i⟩ and |f⟩ are the initial and final
states of the processes of interest. Since a particular state can be expressed in terms of the
isospin states |II3⟩, where I = I3 = 3/2 for the ∆++ channel and I = 3/2, I3 = −1/2 for the
∆0 channel, then the ratio of the cross sections will involve only ratios of the isospin Clebsch-
Gordan coefficients associated with overlaps of either |∆(3/2, 3/2)⟩ or |∆(3/2,−1/2)⟩. In terms
of πN isospin states, the processes are given by

|π+p⟩ = |π(1,+1)⟩ ⊗ |N(1/2,+1/2)⟩ = |πN(3/2,+3/2)⟩ ,

|π−p⟩ = |π(1,−1)⟩ ⊗ |N(1/2,+1/2)⟩ =
√

1

3
|πN(3/2,−1/2)⟩ −

√
2

3
|πN(1/2,−1/2)⟩ ,

|π0n⟩ = |π(1, 0)⟩ ⊗ |N(1/2,−1/2)⟩ =
√

2

3
|πN(3/2,−1/2)⟩+

√
1

3
|πN(1/2,−1/2)⟩ .

Therefore, the ratios of the cross-sections are

σa : σb : σc =
∣∣∣1 · 1∣∣∣2 :

∣∣∣∣∣
√

1

3
·
√

1

3

∣∣∣∣∣
2

:

∣∣∣∣∣
√

1

3
·
√

2

3

∣∣∣∣∣
2

,

= 1 :
1

9
:
2

9
,

= 9 : 1 : 2 ,
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in qualitative agreement with experiment.

11. Given the plot of the πN total cross-sections shown in Fig. 1, identify potential resonances and estimate
their mass and decay widths, as well as their charge, strange, and baryon quantum numbers. Further,
identity their potential spin and isospin quantum numbers. Referring to the Review of Particle Physics,
can you identify candidates for these unstable states?

Solution:
From the total cross-section alone, it is difficult to rigorously identify resonances, one needs to
do a partial wave analysis on differential cross sections and other angular observables to get
a more complete spectroscopic picture. Indeed, in this energy region, for this system, there
are about 14 observed resonances in the πN spectrum between threshold and

√
s ∼ 1.8MeV,

about 5 excited ∆ states and 9 N states.

However, a rough estimate may get us some idea of the what the spectral content is of some
reaction. Here, we identify four ‘strong’ bumps, one in π+p, and three in π−p. The bump in
π+p peaks around

√
s ∼ 1.23GeV, and the bumps in π−p peak at

√
s ∼ 1.23GeV, 1.52GeV, and

1.68GeV. It is reasonable to assume that the two bumps at
√
s ∼ 1.23MeV are different isospin

states of the same resonance. Therefore, we can “easily” identify three resonances, which we call
R1 (m1 ∼ 1.23GeV), R2 (m2 ∼ 1.52GeV), and R3 (m3 ∼ 1.68GeV). Assuming a Breit-Wigner
form for each resonance,

σR ∝ 1

(s−m2
R)

2 +m2
RΓ

2
R

,

where mR is the mass of the resonance and ΓR is the width of the resonance, we that the full-
width at half-maximum for the first peak is ΓR1 ∼ (1.28−1.18)GeV = 0.10GeV, the second peak
is ΓR2

∼ (1.55−1.47)GeV = 0.08GeV, and the third peak is ΓR3
∼ (1.72−1.64)GeV = 0.08GeV.

For the higher resonance, we measure with respect to the background cross-section.

Since these states are resonances in Nπ, the strangeness for every resonance is S = 0 and
the baryon number is Bn = 1. Since the N is an isospinor, and π is an isovector, the Nπ
state can be either I = 1/2 or 3/2. Moreover, since the N is a spin-1/2 object, and the π is
spinless, the total spin of the Nπ system is s = 1/2. So, the total angular moment J must be
|ℓ−1/2| ≤ J ≤ ℓ+1/2, where ℓ = 0, 1, 2, . . . is the orbital angular momentum of the Nπ system.

The isospin quantum numbers for π+p must be I = I3 = 3/2. Since the first resonance
in π+p must have charge Q = +2, we identify this as the ∆++, R1 → ∆++, which has a
mass m∆++ ≈ 1.21GeV and width Γ∆++ ≈ 0.1GeV, which agrees with are rough estimate.
Since JP = 3/2+, and the total spin of Nπ is s = 1/2, we conclude that the orbital angular
momentum of the state is ℓ = 1, or a P -wave resonance, since the parity of the Nπ state is
always P = (−1)ℓ+1.

For the π−p cross-section, we can have either I = 1/2 or I = 3/2, which means R2 and R3 are
either an excited N or ∆ state. The charge of R2 and R3 is Q = 0. Looking at the RPP, we find
the following candidates for R2: ∆(1600) (with JP = 3/2+, m = 1.52GeV, and Γ = 0.28GeV),
N(1520) (with JP = 3/2−, m = 1.51GeV, and Γ = 0.11GeV), and N(1535) (with JP = 1/2−,
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m = 1.51GeV, and Γ = 0.11GeV). Given the estimated width is ΓR2
≈ 0.08GeV, we postulate

that R2 is either N(1520) with JP = 3/2− or the N(1535) with JP = 1/2−. This means that
the isospin of R2 is I = 1/2. Since ℓ = J ± 1/2, and P = −1 = (−1)ℓ+1, then for the J = 1/2
case we have an S wave state (ℓ = 0), while for the J = 3/2 state it is a D wave reaction (ℓ = 2).

For the R3 resonance, the possible states are N(1650) (with JP = 1/2−, m = 1.67GeV, and
Γ = 0.14GeV), N(1675) (with JP = 5/2−, m = 1.66GeV, and Γ = 0.14GeV), N(1680) (with
JP = 5/2+, m = 1.67GeV, and Γ = 0.12GeV), and ∆(1700) (with JP = 3/2−, m = 1.66GeV,
and Γ = 0.25GeV). Since the estimated width is ΓR3 ∼ 0.08GeV, we postulate that R3 is
either N(1650) with JP = 1/2−, N(1675) with JP = 5/2−, or N(1680) with JP = 5/2+.
Again, the isospin of R3 is I = 1/2. For the JP = 1/2− state, the partial wave is ℓ = 0, for the
JP = 5/2− state it is ℓ = 2, and for JP = 5/2+ it is ℓ = 3.

To distinguish these states further, one needs to do an angular analysis to determine the spin-
parity quantum numbers.
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Figure 1: Total πN cross-sections as a function of center-of-momentum frame energy
√
s. Data taken

from the Review of Particle Physics by the Particle Data Group.
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ū
s

0
−

1/
2

±
1

4
9
3
.6
8

1.
2
4
×

1
0−

8
µ
+
ν µ

,
π
+
π
0

K
0
,K̄

0
d
s̄,

d̄
s

0
−

1/
2

0
4
9
7
.6
1

—
—

K
S

d
s̄,

d̄
s

0
−

1/
2

0
—

8
.9
5
×
1
0
−
1
1

π
0
π
0
,
π
+
π
−

K
L

d
s̄,

d̄
s

0
−

1/
2

0
—

5.
1
1
×

1
0−

8
3
π
0
,
π
+
π
−
π
0
,

π
±
e∓

ν e
,
π
±
µ
∓
ν µ

η
u
ū
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ū
−

d
d̄
,

d
ū
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