
PHYS 772 - Standard Model Problem Set 8 Spring 2024

1. Can the following hadrons, in principle, exist within QCD? (a) qq, (b) qqq̄, (c) qqq̄q̄, (d) gg, (e) qqg,
(f) qq̄g, (g) qqqqq̄. Hint: Consider SU(3)c symmetry transformations of observable hadrons. Gluons
transform under the adjoint representation of SU(3)c.

Solution: Hadrons within QCD must be color neutral, that is a hadron h must belong to the
1 representation of SU(3)c. So, all we need to find is if the given combinations of quarks and
gluons admit a singlet representation. Recall that quarks lie in the 3 of SU(3)c, antiquarks lie
in the 3∗ of SU(3)c, and gluons lie in the 8 of SU(3)c.

So, for (a)

qq → 3× 3 = 3∗ + 6 ̸⊃ 1 ,

therefore qq is not a valid hadron.

For (b), we have (recalling that 3× 3∗ = 1+ 8),

qqq̄ → 3× 3× 3∗ = 3× (1× 8) ̸⊃ 1 ,

since the 3× 8 = 3+ 6∗ + 15 which was found in Problem Set 7. Therefore, qqq̄ is not a valid
hadron.

For (c), qqq̄q̄ is

qqq̄q̄ → 3× 3× 3∗ × 3∗ = (3× 3∗)× (3× 3∗) ,

= (1+ 8)× (1+ 8) ⊃ 1 .

So, qqq̄q̄ is a valid hadron. These are tetraquarks, which candidates have been observed in the
heavy quark sector, e.g., the Zc(3900).

For (d), gg, we need the product 8 × 8. From lecture, we worked out this product, and found
it contains a singlet representation. Therefore,

gg → 8× 8 ⊃ 1 ,

and thus is a valid hadron. These are glueballs, bound states of gluons. There is suspicion
that higher mass states in the JPC = 0++ and 2++ sectors contain strong mixing into these
glueball states.

For (e), qqg, we have 3× 3× 8 = 3∗ + 3∗ + 6+ 6+ 15∗ + 15∗ + 24 from Problem Set 7. So,

qqg → 3× 3× 8 ̸⊃ 1 ,

and thus is not a valid hadron.

For (f), qq̄g, we have from Problem Set 7, 3× 3∗ × 8 = 1+ 8+ 8+ 8+ 10+ 10∗ + 27. So,

qq̄g → 3× 3∗ × 8 ⊃ 1 .

Therefore, qq̄g is a valid hadron. These are hybrid mesons, which had a substantial component
from excited glue. The π1(1600) is an observed hybrid candidate.
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2. Consider a non-abelian gauge field Aµ ≡ Aj
µ Tj , where Tj ∈ su(N) are generators satisfying the Lie

algebra [Tj , Tk] = icjklTl with cjkl being structure constants and j, k, l = 1, 2, . . . , N2 − 1. Under a
local gauge transformation, U = exp(iαj(x)Tj) where αj(x) ∈ R for every j, the gauge fields transform
as

Aµ → UAµU
−1 +

i

g
(∂µU) U−1 .

Show that under infinitesimal transformations, αa(x) ≪ 1, the gauge fields transform as

Aj
µ → Aj

µ − 1

g
∂µα

j(x)− cjkl α
kAl

µ +O(α2) .

Solution: Taking αj(x) ≪ 1 for all j = 1, 2, . . . , N2 − 1, w can Taylor expand the exponential

U = exp(iαj(x)Tj) = 1 + iαj(x)Tj +O(α2) .

So, the gauge transformation is

Aj
µTj → UAj

µTjU
−1 +

i

g
(∂µU)U−1 ,

= (1 + iαjTj +O(α2))Ak
µTk(1− iαlTl +O(α2))

+
i

g
∂µ(1 + iαjTj +O(α2))(1 + iαkTk +O(α2)) ,

= Aj
µTj + iαkAl

µ(TkTl − TlTk)−
1

g
∂µα

jTj +O(α2) ,

= Aj
µTj + iαkAl

µ(ickljTj)−
1

g
∂µα

jTj +O(α2) ,

=

(
Aj

µ − cjklα
kAl

µ − 1

g
∂µα

j +O(α2)

)
Tj .

Therefore, the infinitesimal transformation gives

Aj
µ → Aj

µ − 1

g
∂µα

j − cjklα
kAl

µ +O(α2) .

3. The SU(3)c Yang-Mills Lagrange density for interacting gluon fields is given by LYM = − 1
2 tr (GµνG

µν),
where the field-strength tensor is defined as Gµν = ∂µAν − ∂νAµ + igs[Aµ, Aν ] with Aµ = Aa

µ λa/2 are
the gluon gauge fields and λa are the Gell-Mann matrices. Write the Lagrange density as a free part

L(free)
YM and an interacting part L(int)

YM which depends on the strong coupling gs.
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Solution: Contracting the field strength tensors,

GµνG
µν =

(
∂µAν − ∂νAµ + igs[Aµ, Aν ]

)(
∂µAν − ∂νAµ + igs[A

µ, Aν ]
)
,

= (∂µAν − ∂νAµ) (∂
µAν − ∂νAµ)

+ igs (∂µAν − ∂νAµ) [A
µ, Aν ] + igs[Aµ, Aν ] (∂µAν − ∂νAµ)

− g2s [Aµ, Aν ][A
µ, Aν ] .

Now, we use that Aµ = Aa
µ Ta where Ta = λa/2, so

GµνG
µν =

(
∂µA

a
ν − ∂νA

a
µ

) (
∂µAν b − ∂νAµ b

)
TaTb

+ igs
(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c Ta[Tb, Tc] + igsA

a
µA

b
ν (∂µA

ν c − ∂νA
µ c) [Ta, Tb]Tc

− g2sA
a
µA

b
νA

µ cAν d [Ta, Tb][Tc, Td] .

Furthermore, [Ta, Tb] = ifabcTc, so

GµνG
µν =

(
∂µA

a
ν − ∂νA

a
µ

) (
∂µAν b − ∂νAµ b

)
TaTb

+ igs
(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c Ta(ifbcdTd) + igsA

a
µA

b
ν (∂µA

ν c − ∂νA
µ c) (ifabdTd)Tc

− g2sA
a
µA

b
νA

µ cAν d (ifabeTe)(ifcdfTf ) .

Now, taking the trace, we use tr(TaTb) = tr(λaλb)/4 = δab/2, so the Yang-Mills Lagrange
density is

LYM = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAν a − ∂νAµa)

− 1

4
gsfbca

(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c − 1

4
gsfabcA

a
µA

b
ν (∂µA

ν c − ∂νA
µ c)

+
1

4
g2sfabefcde A

a
µA

b
νA

µ cAν d ,

= −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAν a − ∂νAµa)

− 1

2
gsfabc

(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c +

1

4
g2sfabefcde A

a
µA

b
νA

µ cAν d ,

≡ L(free)
YM + L(int)

YM ,

where we used fbca = fabc from the antisymmetry properties of the structure constants. So, the
free and interacting Lagrange densities are

L(free)
YM = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAν a − ∂νAµa) ,

L(int)
YM = −1

2
gsfabc

(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c +

1

4
g2s fabefcde A

a
µA

b
νA

µ cAν d .
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4. Consider a qq̄ meson within an exact flavor SU(3) quark model, i.e., q = u, d, s. Assume the meson is
flavor neutral. A generic wave function for this meson is given by

|n 2S+1LJ ,mJ⟩qq̄ =
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs(p)q̄s̄(−p)⟩ ,

where n is the radial quantum number, S is the total intrinsic spin, L is the orbital angular momentum,
J is the total angular momentum, mJ is the total angular momentum projection on some fixed z-axis,
mL is the orbital angular momentum projection, mS is the total intrinsic spin projection, φn,L is
the momentum-space radial wave function, and YLmL

are spherical harmonics. The quarks are spin-
1/2 fermions with spin s and s̄ for the q and q̄, respectively. The two-quark state is defined in the
center-of-momentum frame as the usual direct product |qs(p)q̄s̄(−p)⟩ ≡ |qs(p)⟩ ⊗ |q̄s̄(−p)⟩.

(a) Determine the allowed values of S.

Solution: Since we have two spin-1/2 objects, the total spin is either S = 0 or 1. This can
be seen from the Clebsch-Gordan decomposition. If 2 is the fundamental representation of
su(2), then 2× 2 = 1+ 3. Therefore, we have either a singlet (S = 0) or a triplet (S = 1)
state.

(b) Show that under parity P, the qq̄ meson has an eigenvalue

P |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+1 |n 2S+1LJ ,mJ⟩qq̄ .

Hint: Recall that P |qs(p)⟩ = ηq |qs(−p)⟩ and ηq̄ ≡ −ηq.
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Solution: By direct evaluation,

P |n 2S+1LJ ,mJ⟩qq̄ =
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂)P |qs(p)q̄s̄(−p)⟩ ,

=
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂)ηqηq̄ |qs(−p)q̄s̄(p)⟩ ,

= ηqηq̄
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(−p̂) |qs(p)q̄s̄(−p)⟩ ,

= ηqηq̄(−1)L
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs(p)q̄s̄(−p)⟩ ,

= ηqηq̄(−1)L |n 2S+1LJ ,mJ⟩qq̄ ,

where in the third line we let p → −p in the integrand, and then in the fourth line we used
YLmL

(−p̂) = (−1)LYLmL
(p̂). Therefore, since ηq̄ = −ηq, the parity of the quark model

hadron is

P |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+1 |n 2S+1LJ ,mJ⟩qq̄ ,

since η2q = 1.

(c) Show that under charge conjugation C, the qq̄ meson has an eigenvalue

C |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+S |n 2S+1LJ ,mJ⟩qq̄ .

Hint: Recall that C |qs(p)⟩ = |q̄s(p)⟩, and under interchange P12 |q1q2⟩ = − |q2q1⟩.
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Solution: By direct evaluation,

C |n 2S+1LJ ,mJ⟩qq̄ =
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂)C |qs(p)q̄s̄(−p)⟩ ,

=
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂) |q̄s(p)qs̄(−p)⟩ ,

= −
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs̄(−p)q̄s(p)⟩ ,

= −
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

(−1)S+1
〈1
2
s̄;

1

2
s|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(−p̂) |qs̄(p)q̄s(−p)⟩ ,

= −(−1)S+1(−1)L
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs(p)q̄s̄(−p)⟩ ,

= (−1)L+S |n 2S+1LJ ,mJ⟩qq̄ ,

where in the third line we used the antisymmetry properties of fermions, in the fourth line
used ⟨j1m1; j2m2|jm⟩ = (−1)j1+j2−s⟨j2m2; j1m1|jm⟩ and the fact that j is integer, and in
the fifth line we let p → −p in the integrand, and then used YLmL

(−p̂) = (−1)LYLmL
(p̂).

Therefore, the C-parity of the quark model hadron is

C |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+S |n 2S+1LJ ,mJ⟩qq̄ .

(d) Determine all allowed JPC quantum numbers for of the meson for L ≤ 3. List all JPC that are
forbidden for J ≤ 3 (observed mesons with these quantum numbers are called exotic, as they are
not allowed in the quark model).

Solution: The angular momentum quantum numbers of the qq̄ state are S = 0 or 1,
L = 0, 1, 2, 3, . . ., and |L − S| ≤ J ≤ L + S. The parity of a given state is P = (−1)L+1,
and the C-parity is C = (−1)L+S . So, we can make a table of the allowed JPC for all
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L ≤ 3.

Orbital Angular Momentum Spin JPC

L = 0 (S)
S = 0 0−+

S = 1 1−−

L = 1 (P )
S = 0 1+−

S = 1 (0, 1, 2)++

L = 2 (D)
S = 0 2−+

S = 1 (1, 2, 3)−−

L = 3 (F )
S = 0 3+−

S = 1 (2, 3, 4)++

So, the allowed quantum numbers for a qq̄ state in the quark model are

JPC = (0, 2, . . .)−+, (1, 3, . . .)+−, (1, 2, 3, . . .)−−, (0, 1, 2, . . .)++ .

Notice that there is a set of states not allowed within this model, called exotic, are

JPC
exotic = 0−−, (1, 3, . . .)−+, (0, 2, . . .)+− .

(e) List one example (if one exist) of an observed unflavored meson for each JPC supermultiplet by
searching the Particle Data Group database (https://pdglive.lbl.gov) for light unflavored mesons.
Are there any examples of observed mesons with exotic quantum numbers?

Solution: The following hadrons correspond to the multiplets found in the previous part,

JPC hadron

(0, 2)−+ (π0, π2(1880))

(1, 3)+− (b1(1235), ???)

(1, 2, 3)−− (ρ(770), ???, ρ3(1690))

(0, 1, 2, 3, 4)++ (f0(500), a1(1260), f2(1270), ???, a4(1970))

where the “???” indicate that no unflavored neutral hadron has been observed with these
quantum numbers.

There has been some observations of exotic quantum numbers, one example being the
π1(1600) which has JPC = 1−+.
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