1. Can the following hadrons, in principle, exist within QCD ? (a) $q q$, (b) $q q \bar{q}$, (c) $q q \bar{q} \bar{q}$, (d) $g g$, (e) $q q g$, $(\mathbf{f}) q \bar{q} g,(\mathbf{g}) q q q q \bar{q}$. Hint: Consider $\mathrm{SU}(3)_{c}$ symmetry transformations of observable hadrons. Gluons transform under the adjoint representation of $\mathrm{SU}(3)_{c}$.

Solution: Hadrons within QCD must be color neutral, that is a hadron h must belong to the 1 representation of $\mathrm{SU}(3)_{c}$. So, all we need to find is if the given combinations of quarks and gluons admit a singlet representation. Recall that quarks lie in the $\mathbf{3}$ of $\mathrm{SU}(3)_{c}$, antiquarks lie in the 3^{*} of $\mathrm{SU}(3)_{c}$, and gluons lie in the $\mathbf{8}$ of $\mathrm{SU}(3)_{c}$.

So, for (a)

$$
q q \rightarrow \mathbf{3} \times \mathbf{3}=\mathbf{3}^{*}+\mathbf{6} \not \supset \mathbf{1},
$$

therefore $q q$ is not a valid hadron.

For (b), we have (recalling that $\mathbf{3} \times \mathbf{3}^{*}=\mathbf{1}+\mathbf{8}$),

$$
q q \bar{q} \rightarrow \mathbf{3} \times \mathbf{3} \times 3^{*}=\mathbf{3} \times(\mathbf{1} \times 8) \not \supset \mathbf{1},
$$

since the $\mathbf{3} \times \mathbf{8}=\mathbf{3}+\mathbf{6}^{*}+\mathbf{1 5}$ which was found in Problem Set 7 . Therefore, $q q \bar{q}$ is not a valid hadron.

For (c), $q q \bar{q} \bar{q}$ is

$$
\begin{aligned}
q q \bar{q} \bar{q} \rightarrow \mathbf{3} \times \mathbf{3} \times \mathbf{3}^{*} \times \mathbf{3}^{*} & =\left(\mathbf{3} \times \mathbf{3}^{*}\right) \times\left(\mathbf{3} \times \mathbf{3}^{*}\right) \\
& =(\mathbf{1}+\mathbf{8}) \times(\mathbf{1}+\mathbf{8}) \supset \mathbf{1}
\end{aligned}
$$

So, $q q \bar{q} \bar{q}$ is a valid hadron. These are tetraquarks, which candidates have been observed in the heavy quark sector, e.g., the $Z_{c}(3900)$.

For (d), $g g$, we need the product $\mathbf{8} \times \mathbf{8}$. From lecture, we worked out this product, and found it contains a singlet representation. Therefore,

$$
g g \rightarrow \mathbf{8} \times \mathbf{8} \supset \mathbf{1},
$$

and thus is a valid hadron. These are glueballs, bound states of gluons. There is suspicion that higher mass states in the $J^{P C}=0^{+}+$and 2^{++}sectors contain strong mixing into these glueball states.

For (e), $q q g$, we have $\mathbf{3} \times \mathbf{3} \times \mathbf{8}=\mathbf{3}^{*}+\mathbf{3}^{*}+\mathbf{6}+\mathbf{6}+\mathbf{1 5}^{*}+\mathbf{1 5}^{*}+\mathbf{2 4}$ from Problem Set 7 . So,

$$
q q g \rightarrow \mathbf{3} \times \mathbf{3} \times \mathbf{8} \not \supset \mathbf{1}
$$

and thus is not a valid hadron.

For (f), $q \bar{q} g$, we have from Problem Set $7, \mathbf{3} \times \mathbf{3}^{*} \times \mathbf{8}=\mathbf{1}+\mathbf{8}+\mathbf{8}+\mathbf{8}+\mathbf{1 0}+\mathbf{1 0}^{*}+\mathbf{2 7}$. So,

$$
q \bar{q} g \rightarrow \mathbf{3} \times \mathbf{3}^{*} \times \mathbf{8} \supset \mathbf{1}
$$

Therefore, $q \bar{q} g$ is a valid hadron. These are hybrid mesons, which had a substantial component from excited glue. The $\pi_{1}(1600)$ is an observed hybrid candidate.
2. Consider a non-abelian gauge field $A_{\mu} \equiv A_{\mu}^{j} T_{j}$, where $T_{j} \in \mathfrak{s u}(N)$ are generators satisfying the Lie algebra $\left[T_{j}, T_{k}\right]=i c_{j k l} T_{l}$ with $c_{j k l}$ being structure constants and $j, k, l=1,2, \ldots, N^{2}-1$. Under a local gauge transformation, $U=\exp \left(i \alpha^{j}(x) T_{j}\right)$ where $\alpha_{j}(x) \in \mathbb{R}$ for every j, the gauge fields transform as

$$
A_{\mu} \rightarrow U A_{\mu} U^{-1}+\frac{i}{g}\left(\partial_{\mu} U\right) U^{-1}
$$

Show that under infinitesimal transformations, $\alpha^{a}(x) \ll 1$, the gauge fields transform as

$$
A_{\mu}^{j} \rightarrow A_{\mu}^{j}-\frac{1}{g} \partial_{\mu} \alpha^{j}(x)-c_{j k l} \alpha^{k} A_{\mu}^{l}+\mathcal{O}\left(\alpha^{2}\right)
$$

Solution: Taking $\alpha^{j}(x) \ll 1$ for all $j=1,2, \ldots, N^{2}-1$, w can Taylor expand the exponential

$$
U=\exp \left(i \alpha^{j}(x) T_{j}\right)=1+i \alpha^{j}(x) T_{j}+\mathcal{O}\left(\alpha^{2}\right)
$$

So, the gauge transformation is

$$
\begin{aligned}
A_{\mu}^{j} T_{j} \rightarrow & U A_{\mu}^{j} T_{j} U^{-1}+\frac{i}{g}\left(\partial_{\mu} U\right) U^{-1} \\
= & \left(1+i \alpha^{j} T_{j}+\mathcal{O}\left(\alpha^{2}\right)\right) A_{\mu}^{k} T_{k}\left(1-i \alpha^{l} T_{l}+\mathcal{O}\left(\alpha^{2}\right)\right) \\
& +\frac{i}{g} \partial_{\mu}\left(1+i \alpha^{j} T_{j}+\mathcal{O}\left(\alpha^{2}\right)\right)\left(1+i \alpha^{k} T_{k}+\mathcal{O}\left(\alpha^{2}\right)\right), \\
= & A_{\mu}^{j} T_{j}+i \alpha^{k} A_{\mu}^{l}\left(T_{k} T_{l}-T_{l} T_{k}\right)-\frac{1}{g} \partial_{\mu} \alpha^{j} T_{j}+\mathcal{O}\left(\alpha^{2}\right) \\
= & A_{\mu}^{j} T_{j}+i \alpha^{k} A_{\mu}^{l}\left(i c_{k l j} T_{j}\right)-\frac{1}{g} \partial_{\mu} \alpha^{j} T_{j}+\mathcal{O}\left(\alpha^{2}\right) \\
= & \left(A_{\mu}^{j}-c_{j k l} \alpha^{k} A_{\mu}^{l}-\frac{1}{g} \partial_{\mu} \alpha^{j}+\mathcal{O}\left(\alpha^{2}\right)\right) T_{j}
\end{aligned}
$$

Therefore, the infinitesimal transformation gives

$$
A_{\mu}^{j} \rightarrow A_{\mu}^{j}-\frac{1}{g} \partial_{\mu} \alpha^{j}-c_{j k l} \alpha^{k} A_{\mu}^{l}+\mathcal{O}\left(\alpha^{2}\right)
$$

3. The $S U(3)_{c}$ Yang-Mills Lagrange density for interacting gluon fields is given by $\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{tr}\left(G_{\mu \nu} G^{\mu \nu}\right)$, where the field-strength tensor is defined as $G_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g_{s}\left[A_{\mu}, A_{\nu}\right]$ with $A_{\mu}=A_{\mu}^{a} \lambda_{a} / 2$ are the gluon gauge fields and λ_{a} are the Gell-Mann matrices. Write the Lagrange density as a free part $\mathcal{L}_{\mathrm{YM}}^{(\text {free })}$ and an interacting part $\mathcal{L}_{\mathrm{YM}}^{(\mathrm{int})}$ which depends on the strong coupling g_{s}.

Solution: Contracting the field strength tensors,

$$
\begin{aligned}
G_{\mu \nu} G^{\mu \nu}= & \left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g_{s}\left[A_{\mu}, A_{\nu}\right]\right)\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}+i g_{s}\left[A^{\mu}, A^{\nu}\right]\right), \\
=(& \left.\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \\
& +i g_{s}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left[A^{\mu}, A^{\nu}\right]+i g_{s}\left[A_{\mu}, A_{\nu}\right]\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \\
& -g_{s}^{2}\left[A_{\mu}, A_{\nu}\right]\left[A^{\mu}, A^{\nu}\right] .
\end{aligned}
$$

Now, we use that $A_{\mu}=A_{\mu}^{a} T_{a}$ where $T_{a}=\lambda_{a} / 2$, so

$$
\begin{aligned}
G_{\mu \nu} G^{\mu \nu}= & \left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)\left(\partial^{\mu} A^{\nu b}-\partial^{\nu} A^{\mu b}\right) T_{a} T_{b} \\
& +i g_{s}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) A^{\mu b} A^{\nu c} T_{a}\left[T_{b}, T_{c}\right]+i g_{s} A_{\mu}^{a} A_{\nu}^{b}\left(\partial_{\mu} A^{\nu c}-\partial_{\nu} A^{\mu c}\right)\left[T_{a}, T_{b}\right] T_{c} \\
& -g_{s}^{2} A_{\mu}^{a} A_{\nu}^{b} A^{\mu c} A^{\nu d}\left[T_{a}, T_{b}\right]\left[T_{c}, T_{d}\right] .
\end{aligned}
$$

Furthermore, $\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}$, so

$$
\begin{aligned}
G_{\mu \nu} G^{\mu \nu}=(& \left.\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)\left(\partial^{\mu} A^{\nu b}-\partial^{\nu} A^{\mu b}\right) T_{a} T_{b} \\
& +i g_{s}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) A^{\mu b} A^{\nu c} T_{a}\left(i f_{b c d} T_{d}\right)+i g_{s} A_{\mu}^{a} A_{\nu}^{b}\left(\partial_{\mu} A^{\nu c}-\partial_{\nu} A^{\mu c}\right)\left(i f_{a b d} T_{d}\right) T_{c} \\
& -g_{s}^{2} A_{\mu}^{a} A_{\nu}^{b} A^{\mu c} A^{\nu d}\left(i f_{a b e} T_{e}\right)\left(i f_{c d f} T_{f}\right) .
\end{aligned}
$$

Now, taking the trace, we use $\operatorname{tr}\left(T_{a} T_{b}\right)=\operatorname{tr}\left(\lambda_{a} \lambda_{b}\right) / 4=\delta_{a b} / 2$, so the Yang-Mills Lagrange density is

$$
\begin{aligned}
\mathcal{L}_{\mathrm{YM}}=- & \frac{1}{4}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)\left(\partial^{\mu} A^{\nu a}-\partial^{\nu} A^{\mu a}\right) \\
& -\frac{1}{4} g_{s} f_{b c a}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) A^{\mu b} A^{\nu c}-\frac{1}{4} g_{s} f_{a b c} A_{\mu}^{a} A_{\nu}^{b}\left(\partial_{\mu} A^{\nu c}-\partial_{\nu} A^{\mu c}\right) \\
& +\frac{1}{4} g_{s}^{2} f_{a b e} f_{c d e} A_{\mu}^{a} A_{\nu}^{b} A^{\mu c} A^{\nu d}, \\
=- & \frac{1}{4}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)\left(\partial^{\mu} A^{\nu a}-\partial^{\nu} A^{\mu a}\right) \\
& -\frac{1}{2} g_{s} f_{a b c}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) A^{\mu b} A^{\nu c}+\frac{1}{4} g_{s}^{2} f_{a b e} f_{c d e} A_{\mu}^{a} A_{\nu}^{b} A^{\mu c} A^{\nu d}, \\
\equiv & \mathcal{L}_{\mathrm{YM}}^{\text {(free) }}+\mathcal{L}_{\mathrm{YM}}^{\text {(int) }},
\end{aligned}
$$

where we used $f_{b c a}=f_{a b c}$ from the antisymmetry properties of the structure constants. So, the free and interacting Lagrange densities are

$$
\begin{aligned}
\mathcal{L}_{\mathrm{YM}}^{(\mathrm{free})} & =-\frac{1}{4}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)\left(\partial^{\mu} A^{\nu a}-\partial^{\nu} A^{\mu a}\right), \\
\mathcal{L}_{\mathrm{YM}}^{(\text {int })} & =-\frac{1}{2} g_{s} f_{a b c}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) A^{\mu b} A^{\nu c}+\frac{1}{4} g_{s}^{2} f_{a b e} f_{c d e} A_{\mu}^{a} A_{\nu}^{b} A^{\mu c} A^{\nu d} .
\end{aligned}
$$

4. Consider a $q \bar{q}$ meson within an exact flavor $\mathrm{SU}(3)$ quark model, i.e., $q=u, d, s$. Assume the meson is flavor neutral. A generic wave function for this meson is given by

$$
\begin{aligned}
\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}=\sum_{m_{L}, m_{S}} & \left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}})\left|q_{s}(\mathbf{p}) \bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle
\end{aligned}
$$

where n is the radial quantum number, S is the total intrinsic spin, L is the orbital angular momentum, J is the total angular momentum, m_{J} is the total angular momentum projection on some fixed z-axis, m_{L} is the orbital angular momentum projection, m_{S} is the total intrinsic spin projection, $\varphi_{n, L}$ is the momentum-space radial wave function, and $Y_{L m_{L}}$ are spherical harmonics. The quarks are spin$1 / 2$ fermions with spin s and \bar{s} for the q and \bar{q}, respectively. The two-quark state is defined in the center-of-momentum frame as the usual direct product $\left|q_{s}(\mathbf{p}) \bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle \equiv\left|q_{s}(\mathbf{p})\right\rangle \otimes\left|\bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle$.
(a) Determine the allowed values of S.

Solution: Since we have two spin- $1 / 2$ objects, the total spin is either $S=0$ or 1 . This can be seen from the Clebsch-Gordan decomposition. If $\mathbf{2}$ is the fundamental representation of $\mathfrak{s u}(2)$, then $\mathbf{2} \times \mathbf{2}=\mathbf{1}+\mathbf{3}$. Therefore, we have either a singlet $(S=0)$ or a $\operatorname{triplet}(S=1)$ state.
(b) Show that under parity \mathcal{P}, the $q \bar{q}$ meson has an eigenvalue

$$
\mathcal{P}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}=(-1)^{L+1}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}
$$

Hint: Recall that $\mathcal{P}\left|q_{s}(\mathbf{p})\right\rangle=\eta_{q}\left|q_{s}(-\mathbf{p})\right\rangle$ and $\eta_{\bar{q}} \equiv-\eta_{q}$.

Solution: By direct evaluation,

$$
\begin{aligned}
& \mathcal{P}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}=\sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}}) \mathcal{P}\left|q_{s}(\mathbf{p}) \bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle, \\
& =\sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}}) \eta_{q} \eta_{\bar{q}}\left|q_{s}(-\mathbf{p}) \bar{q}_{\bar{s}}(\mathbf{p})\right\rangle, \\
& =\eta_{q} \eta_{\bar{q}} \sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(-\hat{\mathbf{p}})\left|q_{s}(\mathbf{p}) \bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle, \\
& =\eta_{q} \eta_{\bar{q}}(-1)^{L} \sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}})\left|q_{s}(\mathbf{p}) \bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle, \\
& =\eta_{q} \eta_{\bar{q}}(-1)^{L}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}},
\end{aligned}
$$

where in the third line we let $\mathbf{p} \rightarrow-\mathbf{p}$ in the integrand, and then in the fourth line we used $Y_{L m_{L}}(-\hat{\mathbf{p}})=(-1)^{L} Y_{L m_{L}}(\hat{\mathbf{p}})$. Therefore, since $\eta_{\bar{q}}=-\eta_{q}$, the parity of the quark model hadron is

$$
\mathcal{P}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}=(-1)^{L+1}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}
$$

since $\eta_{q}^{2}=1$.
(c) Show that under charge conjugation \mathcal{C}, the $q \bar{q}$ meson has an eigenvalue

$$
\mathcal{C}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}=(-1)^{L+S}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}
$$

Hint: Recall that $\mathcal{C}\left|q_{s}(\mathbf{p})\right\rangle=\left|\bar{q}_{s}(\mathbf{p})\right\rangle$, and under interchange $\mathrm{P}_{12}\left|q_{1} q_{2}\right\rangle=-\left|q_{2} q_{1}\right\rangle$.

Solution: By direct evaluation,

$$
\begin{aligned}
& \mathcal{C}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}= \sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}}) \mathcal{C}\left|q_{s}(\mathbf{p}) \bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle, \\
&= \sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}})\left|\bar{q}_{s}(\mathbf{p}) q_{\bar{s}}(-\mathbf{p})\right\rangle, \\
&=- \sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}})\left|q_{\bar{s}}(-\mathbf{p}) \bar{q}_{s}(\mathbf{p})\right\rangle, \\
&=- \sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}(-1)^{S+1}\left\langle\frac{1}{2} \overline{2} ; \left.\frac{1}{2} s \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(-\hat{\mathbf{p}})\left|q_{\bar{s}}(\mathbf{p}) \bar{q}_{s}(-\mathbf{p})\right\rangle, \\
&=-(-1)^{S+1}(-1)^{L} \sum_{m_{L}, m_{S}}\left\langle L m_{L} ; S m_{S} \mid J m_{J}\right\rangle \sum_{s, \bar{s}}\left\langle\frac{1}{2} s ; \left.\frac{1}{2} \bar{s} \right\rvert\, S m_{S}\right\rangle \\
& \times \int \frac{\mathrm{d}^{3} \mathbf{p}}{(2 \pi)^{3}} \varphi_{n, L}(p) Y_{L m_{L}}(\hat{\mathbf{p}})\left|q_{s}(\mathbf{p}) \bar{q}_{\bar{s}}(-\mathbf{p})\right\rangle, \\
&=(-1)^{L+S}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}},
\end{aligned}
$$

where in the third line we used the antisymmetry properties of fermions, in the fourth line used $\left\langle j_{1} m_{1} ; j_{2} m_{2} \mid j m\right\rangle=(-1)^{j_{1}+j_{2}-s}\left\langle j_{2} m_{2} ; j_{1} m_{1} \mid j m\right\rangle$ and the fact that j is integer, and in the fifth line we let $\mathbf{p} \rightarrow-\mathbf{p}$ in the integrand, and then used $Y_{L m_{L}}(-\hat{\mathbf{p}})=(-1)^{L} Y_{L m_{L}}(\hat{\mathbf{p}})$. Therefore, the C-parity of the quark model hadron is

$$
\mathcal{C}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}}=(-1)^{L+S}\left|n^{2 S+1} L_{J}, m_{J}\right\rangle_{q \bar{q}} .
$$

(d) Determine all allowed $J^{P C}$ quantum numbers for of the meson for $L \leq 3$. List all $J^{P C}$ that are forbidden for $J \leq 3$ (observed mesons with these quantum numbers are called exotic, as they are not allowed in the quark model).

Solution: The angular momentum quantum numbers of the $q \bar{q}$ state are $S=0$ or 1 , $L=0,1,2,3, \ldots$, and $|L-S| \leq J \leq L+S$. The parity of a given state is $P=(-1)^{L+1}$, and the C-parity is $C=(-1)^{L+S}$. So, we can make a table of the allowed $J^{P C}$ for all
$L \leq 3$.

Orbital Angular Momentum	Spin	$J^{P C}$
$L=0(S)$	$S=0$	0^{-+}
	$S=1$	1^{--}
$L=1(P)$	$S=0$	1^{+-}
	$S=1$	$(0,1,2)^{++}$
$L=2(D)$	$S=0$	2^{-+}
	$S=1$	$(1,2,3)^{--}$
$L=3(F)$	$S=0$	3^{+-}
	$S=1$	$(2,3,4)^{++}$

So, the allowed quantum numbers for a $q \bar{q}$ state in the quark model are

$$
J^{P C}=(0,2, \ldots)^{-+},(1,3, \ldots)^{+-},(1,2,3, \ldots)^{--},(0,1,2, \ldots)^{++}
$$

Notice that there is a set of states not allowed within this model, called exotic, are

$$
J_{\text {exotic }}^{P C}=0^{--},(1,3, \ldots)^{-+},(0,2, \ldots)^{+-}
$$

(e) List one example (if one exist) of an observed unflavored meson for each $J^{P C}$ supermultiplet by searching the Particle Data Group database (https://pdglive.lbl.gov) for light unflavored mesons. Are there any examples of observed mesons with exotic quantum numbers?

Solution: The following hadrons correspond to the multiplets found in the previous part,

$J^{P C}$	hadron
$(0,2)^{-+}$	$\left(\pi^{0}, \pi_{2}(1880)\right)$
$(1,3)^{+-}$	$\left(b_{1}(1235), ? ? ?\right)$
$(1,2,3)^{--}$	$\left(\rho(770), ? ? ?, \rho_{3}(1690)\right)$
$(0,1,2,3,4)^{++}$	$\left(f_{0}(500), a_{1}(1260), f_{2}(1270), ? ? ?, a_{4}(1970)\right)$

where the "???" indicate that no unflavored neutral hadron has been observed with these quantum numbers.

There has been some observations of exotic quantum numbers, one example being the $\pi_{1}(1600)$ which has $J^{P C}=1^{-+}$.

