
PHYS 772 - Standard Model Problem Set 11 Spring 2024

1. Consider the leptonic decay of the negatively charged pion, π− → ℓ−ν̄ℓ where ℓ = e, µ. The electroweak
decay amplitude has the form

M(π− → ℓν̄ℓ) ∝ fπp
µ ūℓγµ(1− γ5)vν̄ℓ

,

where fπ is the pion decay constant. Recall that the decay rate for an a → 1 + 2 reaction in the rest
frame of the decaying particle is

Γ =
|p|

32π2m2
a

∫
dΩ ⟨|M|2⟩ .

(a) Show that π− → τ−ν̄τ is forbidden.

Solution: Since mτ > mπ, then π− → τ−ν̄τ is forbidden.

(b) Compute the ratio

R ≡ Γ(π− → e−ν̄e)

Γ(π− → µ−ν̄µ)
.

Compare the ratio to the measured value in the Review of Particle Physics by the PDG.

Solution: Here we want to take the spin-averaged matrix element, ⟨|M|2⟩. Let p be
the momentum of the pion, k the momentum of the lepton, and q the momentum of the
antineutrino. So,

⟨|M|2⟩ ∝ f2
π ū(k)/p(1− γ5)v(q)v̄(q)(1 + γ5)/pu(k) ,

where we used (γµ(1 − γ5))
† = (1 − γ5)

†(γµ)† = (1 − γ5)γ
0γµγ0 = γ0(1 + γ5)γ

µγ0. Since
p = k + q, then /pu(k) = (/k + /q)u(k) = mℓu(k) and ū(k)/p = ū(k)(/k + /q) = mℓū(k). So,

⟨|M|2⟩ ∝ f2
πm

2
ℓ tr [u(k)ū(k)(1− γ5)v(q)v̄(q)(1 + γ5)] ,

= f2
πm

2
ℓ tr
[
(/k +mℓ)(1− γ5)/q(1 + γ5)

]
,

= 8f2
πm

2
ℓ(k · q) ,

= 8f2
πm

2
ℓmπ

(
1− m2

ℓ

m2
π

)2

,

where in the last line we used the fact that in the rest frame of the pion, k ·q = E|q|+|q|2 =
mπ(1−m2

ℓ/m
2
π)

2 from kinematics. Therefore, the ratio of the partial widths is

R =
m2

e

m2
µ

(
m2

π −m2
e

m2
π −m2

µ

)2

≈ 1.28× 10−4 .

From the RPP, we find that R = 1.230(4)× 10−4, which gives good agreement.

(c) Compute the ratio R for K− → ℓ−ν̄ℓ, and compare to the measured ratio reported in the RPP.
The amplitude is identical to that for the pion with fπ → fK , fK being the kaon decay constant.
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Solution: Since the amplitude is identical in structure, we can write down the ratio for
K− → ℓ−ν̄ℓ decays,

R =
m2

e

m2
µ

(
m2

K −m2
e

m2
K −m2

µ

)2

≈ 2.57× 10−5 .

The RPP gives R ≈ 1.58× 10−5/0.636 ≈ 2.49× 10−5, which generally agrees.

(d) The weak interaction is known as a V-A interaction, or vector-axial vector. An alternative theory
is the pseudoscalar interaction model, where the weak decay amplitude is given by

M ∝ gπūℓγ5vν̄ℓ
,

where gπ is some coupling. Compute the ratio R for π− → ℓ−ν̄ℓ in this theory. Compare the
result to the experimentally measured ratio. What conclusions can you make about this theory?

Solution: For this pseudoscalar model, the spin-averaged matrix element is

⟨|M|2⟩ ∝ g2π [v̄(q)γ5u(k)] [ū(k)γ5v(q)] ,

= g2π tr[/qγ5(/k +mℓ)γ5] ,

= −g2π tr[/q(/k +mℓ)] ,

= −4g2π (q · k) .

In the π rest frame, q · k = mπ(1−m2
ℓ/m

2
π)

2. Therefore, the ratio of e to µ decays is given
by

R =

(
m2

π −m2
e

m2
π −m2

µ

)2

≈ 5.5 .

Clearly this result is ruled out as it is not supported by the experimental data, Rexp. ≈
1.230(4)× 10−4.

2. Consider e−e+ → µ−µ+ within the Electroweak (EW) model of leptons. Assume the reaction occurs
at a center-of-momentum (CM) energy

√
s ≫ me,mµ.

(a) Within the EW model, the leading order diagrams which contribute to the e−e+ → µ−µ+ ampli-
tude involve e−e+ annihilation to virtual γ, Z0, and H0 exchange. Argue why the contribution
from the H0 is negligible compared with the γ and Z0 exchanges.

Solution: Let us consider the reaction with the following kinematics

e−(p, s) + e+(k, r) → µ−(p′, s′) + µ+(k′, r′) ,

where in the CM frame p = (Ee,p), k = (Ee,−p), p′ = (Eµ,p
′), and k′ = (Eµ,−p′).

Since the electron and muon masses are negligible, we have Ee = |p| = Eµ = |p′| =
√
s/2.

William & Mary Page 2 of 10 Department of Physics



PHYS 772 - Standard Model Problem Set 11 Spring 2024

The leading order scattering amplitude is given by three terms,

iM = iMγ + iMZ + iMH ,

where Mγ is the amplitude with photon exchange, MZ is with Z0 boson exchange, and
MH is with Higgs exchange.
Using the Feynman rules in the unitary gauge, the amplitude for γ exchange is

iMγ =

p+ k

γ

p

k

p′

k′

,

= ūs′(p
′)(ieγµ)vr′(k

′)
−igµν
(p+ k)2

v̄r(k)(ieγ
ν)us(p) ,

= i
4πα

s
[ūs′(p

′)γµvr′(k
′)] [v̄r(k)γµus(p)] ,

where α = e2/4π.
The amplitude for Z0-boson exchange is

iMZ =

p+ k

Z0

p

k

p′

k′

,

= ūs′(p
′)

(
−i

g

4 cos θW
γµ(gV − γ5)

)
vr′(k

′)

× −i

(p+ k)2 −m2
Z

(
gµν − (p+ k)µ(p+ k)ν

m2
Z

)

× v̄r(k)

(
−i

g

4 cos θW
γν(gV − γ5)

)
us(p) ,

=
ig2

16 cos2 θW (s−m2
Z)

[
ūs′(p

′)γµ(gV − γ5)vr′(k
′)v̄r(k)γµ(gV − γ5)us(p)

− 1

m2
Z

ūs′(p
′)(/p+ /k)(gV − γ5)vr′(k

′)v̄r(k)(/p+ /k)(gV − γ5)us(p)

]

=
ig2

16 cos2 θW (s−m2
Z)

[ūs′(p
′)γµ(gV − γ5)vr′(k

′)] [v̄r(k)γµ(gV − γ5)us(p)] ,

where in going to the last line we used that /pu(p) = 0 = /kv(k) since we are in the high-

energy limit and the lepton masses are negligible. Here gV = 1− 4 sin2 θW .
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Finally, the amplitude for Higgs exchange is

iMH =

p+ k

H0

p

k

p′

k′

,

= ūs′(p
′)

(
− ig

2

mµ

mW

)
vr′(k

′)
i

(p+ k)2 −m2
H

v̄r(k)

(
− ig

2

me

mW

)
us(p) ,

= −i
g2mµme

4m2
W

[ūs′(p
′)vr′(k

′)] [v̄r(k)us(p)] .

Since we work in the high-energy limit, the Higgs exchange amplitude is negligible. More-
over, recall that e = g sin θW , so α ∼ e2 = g2 sin2 θW . So, while both the γ and Z0

exchange amplitudes are proportional to g2, the Higgs amplitude is also proportional to
the ratio mµme/m

2
W ∼ 10−8. So, the Higgs amplitude is negligible compared to the other

two amplitudes, even in with massive leptons.

(b) Given that the weak mixing angle is sin2 θW ≈ 0.222, and assuming that s ≪ m2
Z , show that the

quantity

R(s) ≡ s

(s−m2
Z) sin

2 2θW
≈ − s

m2
Z sin2 2θW

≪ 1 .

For
√
s = 35GeV, verify this relation numerically.

Solution: Since s ≪ m2
Z , then s−m2

Z ≈ −m2
Z , so simply

R(s) ≡ s

(s−m2
Z) sin

2 2θW
≈ − s

m2
Z sin2 2θW

.

Since sin2 θW ≈ 0.222, then θW ≈ 28.11◦, therefore sin2 2θW ≈ 0.691. Also, mZ ≈
91.2GeV, so m2

Z sin2 2θW ≈ 5 733GeV2, and since s ≪ m2
Z , then we conclude R(s) ≪ 1.

Explicitly, for
√
s = 35GeV, then R(s = (35GeV)2) ≈ 0.214, which is small compared to

1, but still ∼ 20% of the value.

(c) Neglecting the H0 contribution, and assuming that s ≪ m2
Z , show that the spin-averaged matrix

element for this process is

⟨|M|2⟩ = 1

4

∑
s,s′

∑
r,r′

|Mγ +MZ |2 ≈ 8e4

s2

[
1 +

1

2
(g2V + 1)R(s)

]
(p′ · k)(p · k′)

+
8e4

s2

[
1 +

1

2
(g2V − 1)R(s)

]
(p′ · p)(k′ · k) ,

where p and k are the initial electron and positron momenta, respectively, and p′ and k′ are the
final muon and anti-muon momenta, respectively, and we have neglected terms R(s)2. Here we
have introduced gV = 1− 4 sin2 θW for convenience.
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Solution: The modulus squared of the amplitude is |Mγ + MZ |2 = |Mγ |2 + |MZ |2 +
2Re(M∗

γMZ). Therefore the spin-averaged matrix element is

⟨|M|2⟩ = 1

4

∑
s,s′

∑
r,r′

|Mγ +MZ |2 ,

=
1

4

∑
s,s′

∑
r,r′

|Mγ |2 +
1

4

∑
s,s′

∑
r,r′

|MZ |2 +
1

2

∑
s,s′

∑
r,r′

Re(M∗
γMZ) .

From Problem Set 6, we already have the spin-averaged matrix element,

⟨|Mγ |2⟩ =
1

4

∑
s,s′

∑
r,r′

|Mγ |2 =

(
8e4

s2

)(
(p · k′)2 + (p · p′)2

)
.

Note that k′ · p = p′ · k and p′ · p = k′ · k due to momentum conservation, thus

⟨|Mγ |2⟩ =
1

4

∑
s,s′

∑
r,r′

|Mγ |2 =

(
8e4

s2

)(
(k′ · p)(p′ · k) + (p′ · p)(k′ · k)

)
.

We now evaluate the Z-boson exchange spin-averaged matrix element

⟨|MZ |2⟩ =
g4

256 cos4 θW (s−m2
Z)

2

× 1

4

∑
s,s′

∑
r,r′

[v̄r′(k
′)γµ(gV − γ5)us′(p

′)] [ūs(p)γµ(gV − γ5)vr(k)]

× [ūs′(p
′)γν(gV − γ5)vr′(k

′)] [v̄r(k)γν(gV − γ5)us(p)] ,

=
g4

256 cos4 θW (s−m2
Z)

2

× 1

4

∑
s′,r′

[v̄r′(k
′)γµ(gV − γ5)us′(p

′)][ūs′(p
′)γν(gV − γ5)vr′(k

′)]

×
∑
s,r

[ūs(p)γµ(gV − γ5)vr(k)] [v̄r(k)γν(gV − γ5)us(p)] ,

=
g4

256 cos4 θW (s−m2
Z)

2

× 1

4
tr[/k

′
γµ(gV − γ5)/p

′γν(gV − γ5)] tr[/pγµ(gV − γ5)/kγν(gV − γ5)] ,

=
g4

32 cos4 θW (s−m2
Z)

2

[
(g2V − 1)2(k′ · k)(p′ · p) + (g4V + 6g2V + 1)(k′ · p)(p′ · k)

]
.
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But, note that e = g sin θW , so g4 = e4 sin4 θW , and 2 sin θW cos θW = sin 2θW . So,

⟨|MZ |2⟩ =
e4

2 sin4 2θW (s−m2
Z)

2

[
(g2V − 1)2(k′ · k)(p′ · p) + (g4V + 6g2V + 1)(k′ · p)(p′ · k)

]
,

=
e4

2s
R(s)2

[
(g2V − 1)2(k′ · k)(p′ · p) + (g4V + 6g2V + 1)(k′ · p)(p′ · k)

]
.

Finally, for the interference term,

1

2

∑
s,s′

∑
r,r′

Re(M∗
γMZ) =

e2g2

16 cos2 θW s(s−m2
Z)

× 1

2

∑
s,s′

∑
r,r′

Re

(
[v̄r′(k

′)γµus′(p
′)] [ūs(p)γµvr(k)]

× [ūs′(p
′)γν(gV − γ5)vr′(k

′)] [v̄r(k)γν(gV − γ5)us(p)]

)
,

=
e2g2

16 cos2 θW s(s−m2
Z)

× 1

2
Re

(∑
s′,r′

[v̄r′(k
′)γµus′(p

′)] [ūs′(p
′)γν(gV − γ5)vr′(k

′)]

×
∑
s,r

[ūs(p)γµvr(k)] [v̄r(k)γν(gV − γ5)us(p)]

)
,

=
e2g2

16 cos2 θW s(s−m2
Z)

× 1

2
Re

(
tr[/k

′
γµ

/p
′γν(gV − γ5)] tr[/pγµ/kγν(gV − γ5)]

)
,

=
e2g2

cos2 θW s(s−m2
Z)

[
(g2V − 1)(k′ · k)(p′ · p) + (g2V + 1)(k′ · p)(p′ · k)

]
.

Using e = g sin θW , we find

1

2

∑
s,s′

∑
r,r′

Re(M∗
γMZ) =

4e4

sin2 2θW s(s−m2
Z)

[
(g2V − 1)(k′ · k)(p′ · p) + (g2V + 1)(k′ · p)(p′ · k)

]
,

=
4e4

s2
R(s)

[
(g2V − 1)(k′ · k)(p′ · p) + (g2V + 1)(k′ · p)(p′ · k)

]
.

We ignore terms R(s)2, which means we eliminate the contribution from |MZ |2 as it is
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proportional to R(s)2. Therefore, the spin-averaged matrix element is

⟨|M|2⟩ ≈ 8e4

s2

[
1 +

1

2
(g2V + 1)R(s)

]
(p′ · k)(p · k′)

+
8e4

s2

[
1 +

1

2
(g2V − 1)R(s)

]
(p′ · p)(k′ · k) ,

as desired.

(d) From the amplitude in part (c), show that the unpolarized differential cross-section dσ/dΩ is
given by

dσ

dΩ
≈ α2

4s

[ (
1− g2V s

2m2
Z sin2 2θW

)
(1 + cos2 θ)− s

m2
Z sin2 2θW

cos θ

]
,

where gV = 1− 4 sin2 θW ≪ 1, and θ is the scattering angle in the CM frame.

Solution: In the CM frame, we have p′ · k = k′ · p = s(1 + cos θ)/4, and p′ · p = k′ · k =
s(1− cos θ)/4. Using e2 = 4πα, the spin-averaged matrix element is

⟨|M|2⟩ ≈ (4πα)2

2

[
1 +

1

2
(g2V + 1)R(s)

]
(1 + cos θ)2

+
(4πα)2

2

[
1 +

1

2
(g2V − 1)R(s)

]
(1− cos θ)2 .

Now, (1± cos θ)2 = 1± 2 cos θ + cos2 θ. Simplifying, we find

⟨|M|2⟩ ≈ (4πα)2
[(

1 +
1

2
g2V R(s)

)
(1 + cos2 θ) +R(s) cos θ

]
.

The differential cross-section in the CM frame is

dσ

dΩ
=

1

64π2s
⟨|M|2⟩ ,

≈ α2

4s

[(
1 +

1

2
g2V R(s)

)
(1 + cos2 θ) +R(s) cos θ

]
.

Since

R(s) =
s

(s−m2
Z) sin

2 2θW
≈ − s

m2
Z sin2 2θW

,

we find the desired result

dσ

dΩ
≈ α2

4s

[ (
1− g2V s

2m2
Z sin2 2θW

)
(1 + cos2 θ)− s

m2
Z sin2 2θW

cos θ

]
.
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(e) The forward-backward asymmetry AFB is defined as

AFB =

∫ 1

0

d cos θ
dσ

dΩ
−
∫ 0

−1

d cos θ
dσ

dΩ∫ 1

−1

d cos θ
dσ

dΩ

.

Determine AFB given the leading order result in part (d).

Solution: The integral over (1 + cos2 θ) and cos θ is∫ b

a

dz (1 + z2) =

(
z +

z3

3

) ∣∣∣∣∣
b

a

= (b− a) +
1

3
(b3 − a3) ,

∫ b

a

dz z =
z2

2

∣∣∣∣∣
b

a

=
1

2
(b2 − a2)

For the denominator, b = −a = 1, so the term linear in cos θ is identically zero, leaving
the integral over 1 + cos2 θ which gives a factor of 8/3,∫ 1

−1

d cos θ
dσ

dΩ
=

2α2

3s

(
1− g2V s

2m2
Z sin2 2θW

)
.

The numerator involves the difference of b = 1, a = 0 and b = 0, a = −1. Since the integral
over 1 + cos2 θ is 4/3 for both of these limits, the difference cancels. For the integral over
cos θ, the first term is +1/2 while the second is −1/2. This gives∫ 1

0

d cos θ
dσ

dΩ
−
∫ 0

−1

d cos θ
dσ

dΩ
= − α2

4m2
Z sin2 2θW

.

Therefore, the forward-backward asymmetry is

AFB = − α2

4m2
Z sin2 2θW

· 3s

2α2

(
1− g2V s

2m2
Z sin2 2θW

)−1

,

= − 3s

8m2
Z sin2 2θW

(
1− g2V s

2m2
Z sin2 2θW

)−1

.

Since g2V ≪ 1, and R(s) ≪ 1, then(
1− g2V s

2m2
Z sin2 2θW

)−1

≈ 1 +
g2V s

2m2
Z sin2 2θW

,

So the forward-backward asymmetry is approximately

AFB ≈ − 3s

8m2
Z sin2 2θW

.

The numerical value for AFB at
√
s = 35GeV is AFB ≈ −0.0801, which agrees with the fit

from Problem Set 6, A
(fit)
FB = −0.11(1).
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(f) Plot the theoretical s · dσ/dΩ vs. cos θ ∈ [−1, 1] at a CM energy
√
s = 35GeV for e−e+ →

µ−µ+. Plot the y-axis in nb · GeV2, restricted to (s · dσ/dΩ)/ (nb · GeV2) ∈ [0.0, 12.0]. Plot the
experimental data for each reaction, measured from the JADE experiment at PETRA, over the
theoretical curves. Compare and comment on the quality of the theoretical description of the
experimental data, and compare with the leading order QED result from Problem Set 6. Note:
The data file presents the cross-section as s ·dσ/dΩ. The data files were obtained from the article
by the JADE collaboration, https://link.springer.com/article/10.1007/BF01560255.

Solution: Plotting the cross-sections, we find the result shown in Fig. 1.
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Figure 1: Plot of s · dσ/dΩ vs. cos θ for
√
s = 35GeV compared with the JADE data

for the reaction e−e+ → µ−µ+.

(g) Make a plot of the ratio of the EW theoretical differential cross-section to the leading order QED
prediction from Problem Set 6 as a function of cos θ ∈ [−1, 1] for the CM energy

√
s = 35GeV.

Also, plot the experimentally measured differential cross-section to compare with the theoretical
ratio. Restrict the y axis between 0.5 and 1.5. Compare and comment on the quality of the
theoretical description of the experimental data.

Solution: Plotting the ratios, we find the result shown in Fig. 2.
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Figure 2: Plot of ratio of JADE experimental s · dσ/dΩ to the QED theory result at
O(α2) vs. cos θ at

√
s = 35GeV for the reaction e−e+ → µ−µ+.
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