

PHYS 772 – The Standard Model of Particle Physics

Problem Set 2

Due: Tuesday, February 11 at 12:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Consider a general binary reaction $ab \to cd$, where each particle has a mass m_j and four-momentum p_j , j = a, b, c, d. The Mandelstam invariants are defined to be

$$s = (p_a + p_b)^2$$
, $t = (p_a - p_c)^2$, $u = (p_a - p_d)^2$.

Show that $s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$.

- 2. Consider the (extremely rare) process $pp \rightarrow ppH$, where p is the proton and H the Higgs boson.
 - (a) Consider the reaction in a *fixed target experiment*, where one of the initial protons is at rest, while the other has an energy E. Determine the *minimum* value of E such that the Higgs production process can occur. Give your answer symbolically (in terms of m_p and m_H) as well as numerically.
 - (b) Consider the reaction performed in a *collider experiment*, where both proton have an energy E. Repeat the previous exercise for this scenario.
 - (c) Comment on the energy "reach" of the fixed target experiment vs. the collider experiment.
- **3**. Consider a general two-body decay $a \to bc$, where each particle has a mass m_j , j = a, b, c (with $m_a > m_b + m_c$ for the decay to be kinematically allowed).
 - (a) Show that in the rest frame of a, the three-momenta of b and c are equal in magnitude and opposite in direction, $\mathbf{p}_b = -\mathbf{p}_c$. Show that the magnitude is

$$p^{\star} \equiv |\mathbf{p}_b| = |\mathbf{p}_c| = \frac{1}{2m_a} \sqrt{[m_a^2 - (m_b + m_c)^2][m_a^2 - (m_b - m_c)^2]}.$$

- (b) Use the previous result to numerically determine p^* for the process $\Delta^+ \to p + \pi^0$, taking the delta baryon mass to be $m_{\Delta^+} = 1232$ MeV.
- 4. The invariant *flux factor* of colliding particles *a* and *b* is defined as $\mathcal{F} = 4\sqrt{(p_a \cdot p_b)^2 m_a^2 m_b^2}$.
 - (a) Show that $\mathcal{F} = 4E_aE_b(v_a + v_b)$ if the particles move towards each other with speeds v_a and v_b .
 - (b) Consider a Lorentz frame where $\mathbf{p}_a = -\mathbf{p}_b$, called the *center-of-momentum frame*. Show that $\mathcal{F} = 4p^*\sqrt{s}$ in this frame, where p^* is the magnitude of the three momentum of both particles in this frame.
 - (c) Consider a Lorentz frame where particle b is at rest, called the *fixed-target frame* or *laboratory* frame. Show that $\mathcal{F} = 4m_b |\mathbf{p}_a|$ in this frame.

5. The two-body differential Lorentz invariant phase space for some initial total momentum P is defined as

$$d\Phi_2(P \to p_1 + p_2) = (2\pi)^4 \delta^{(4)}(P - p_1 - p_2) \frac{1}{\mathcal{S}} \frac{d^3 \mathbf{p}_1}{(2\pi)^3 2E_1} \frac{d^3 \mathbf{p}_2}{(2\pi)^3 2E_2}$$

where \mathcal{S} is a symmetry factor.

(a) Perform partial integrations in the center-of-momentum frame, where $P = (\sqrt{s}, \mathbf{0})$, to show that the differential phase space can be evaluated to

$$\mathrm{d}\Phi_2(P \to p_1 + p_2) = \frac{1}{\mathcal{S}} \frac{p^\star}{16\pi^2 \sqrt{s}} \,\mathrm{d}\Omega^\star \;,$$

where $d\Omega^{\star} = d\cos\theta^{\star} d\varphi^{\star}$ is the differential solid angle of particle 1 and p^{\star} is the magnitude of momentum of the particles.

(b) Perform partial integrations in the laboratory frame, where $P = (E, \mathbf{P})$, to show that the differential phase space can be evaluated to

$$\mathrm{d}\Phi_2(P \to p_1 + p_2) = \frac{1}{\mathcal{S}} \frac{p_f^2}{16\pi^2 |p_f E - p_i E_1 \cos \theta|} \,\mathrm{d}\Omega\,,$$

where p_f is the magnitude of particle 1, p_i is the magnitude of the initial momentum, and $d\Omega = d\cos\theta d\varphi$ is the differential solid angle of particle 1 with respect to the initial momentum.

6. The unpolarized differential decay rate for a two-body decay $a \rightarrow bc$ is defined by

$$\mathrm{d}\Gamma = \frac{1}{2E_a} \left\langle |\mathcal{M}|^2 \right\rangle \mathrm{d}\Phi_2$$

Show that in the rest frame of a, the decay rate can be written as

$$\Gamma = \frac{1}{32\pi^2} \frac{p^{\star}}{m_a^2} \frac{1}{\mathcal{S}} \int \mathrm{d}\Omega^{\star} \left\langle |\mathcal{M}|^2 \right\rangle \,,$$

where p^* is the magnitude of the momentum of the decay products and $d\Omega^* = d\cos\theta^* d\varphi^*$ is the differential solid angle of particle b.

7. The unpolarized differential cross-section for a general binary reaction $ab \rightarrow cd$ is defined by

$$\mathrm{d}\sigma = \frac{1}{\mathcal{F}} \left\langle |\mathcal{M}|^2 \right\rangle \mathrm{d}\Phi_2 \,,$$

where $\langle |\mathcal{M}|^2 \rangle$ is the spin-averaged matrix element.

(a) Show that the total cross section in the center-of-momentum (CM) frame is

$$\sigma_{\rm CM} = \frac{1}{64\pi^2 s} \frac{p_f^{\star}}{p_i^{\star}} \frac{1}{S} \int \mathrm{d}\Omega^{\star} \left\langle |\mathcal{M}|^2 \right\rangle,$$

where p_i^{\star} and p_f^{\star} are the initial and final state momenta.

(b) Show that the total cross section in the laboratory frame is

$$\sigma_{\rm lab} = \frac{1}{64\pi^2 m_b |\mathbf{p}_a|} \frac{1}{\mathcal{S}} \int \mathrm{d}\Omega \, \frac{|\mathbf{p}_c|^2}{||\mathbf{p}_c|(E_a + m_b) - |\mathbf{p}_a|E_c\cos\theta|} \, \langle |\mathcal{M}|^2 \rangle \,.$$