

PHYS 772 – The Standard Model of Particle Physics

Problem Set 3

Due: Tuesday, February 18 at 12:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. The Dirac matrices $\gamma^{\mu} = (\gamma^0, \gamma^j)$ in the chiral (Weyl) representation are defined as

$$\gamma^0 = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix}, \qquad \gamma^j = \begin{pmatrix} 0 & \sigma^j \\ -\sigma^j & 0 \end{pmatrix},$$

where I_2 is the 2 × 2 identity matrix and σ^j are the Pauli matrices.

- (a) With this representation, confirm that $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} I_4$, where I_4 is the 4×4 identity matrix.
- (b) Using the result in (a), show that $\gamma_{\mu}\gamma^{\mu} = 4 I_4$.
- (c) Prove that $\gamma_{\mu}\gamma^{\nu}\gamma^{\mu} = -2\gamma^{\nu}$ without using an explicit matrix representation.
- (d) Similarly, prove that $\gamma_{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\mu} = 4g^{\nu\rho} I_4$.
- 2. Given $\gamma^5 = \gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, prove the following trace identities:
 - (a) $\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu}$,
 - $(\mathbf{b}) \ \mathrm{tr} \left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \right) = 4 (g^{\mu\nu} g^{\rho\sigma} g^{\mu\rho} g^{\nu\sigma} + g^{\mu\sigma} g^{\nu\rho}),$
 - (c) The trace of any odd number of gamma matrices is zero.
 - $(\mathbf{d}) \ \operatorname{tr}\left(\gamma^5\right) = \operatorname{tr}\left(\gamma^5\gamma^{\mu}\right) = \operatorname{tr}\left(\gamma^5\gamma^{\mu}\gamma^{\nu}\right) = \operatorname{tr}\left(\gamma^5\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right) = 0,$
 - (e) tr $(\gamma^5 \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}) = -4i\epsilon^{\mu\nu\rho\sigma}$.
- 3. The chiral projectors are defined as

$$P_R = \frac{1}{2}(I_4 + \gamma^5), \qquad P_L = \frac{1}{2}(I_4 - \gamma^5),$$

where I_4 is the 4×4 identity matrix. Prove the following properties:

- (a) $\gamma^5 P_L = -P_L$, and $\gamma^5 P_R = P_R$,
- (**b**) $(P_{L/R})^2 = P_{L/R}$,
- (c) $P_L P_R = P_R P_L = 0$,
- (d) $P_L + P_R = I_4$.
- 4. Suppose the charge conjugation operator is defined as $C = i\gamma^2\gamma^0$. Confirm that in the Weyl representation,
 - (a) $C^{-1} = C^{\top} = C^{\dagger} = -C$.
 - (b) $C\gamma^{\mu}C^{-1} = -(\gamma^{\mu})^{\top}$,
 - (c) $C\gamma^5 C^{-1} = (\gamma^5)^\top$,
- 5. A Dirac spinor ψ is called a Majorana spinor if it satisfies the condition $\psi = C\bar{\psi}^{\top}$, and is called a Weyl spinor if it satisfies either $\psi = P_R \psi$ or $\psi = P_L \psi$. Determine whether or not a spinor can be both Majorana and Weyl.