
PHYS 772 – The Standard Model of Particle Physics

Problem Set 2 – Solution

Due: Tuesday, February 11 at 12:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Consider a general binary reaction ab → cd, where each particle has a mass mj and four-momentum
pj , j = a, b, c, d. The Mandelstam invariants are defined to be

s = (pa + pb)
2 , t = (pa − pc)

2 , u = (pa − pd)
2 .

Show that s+ t+ u = m2
a +m2

b +m2
c +m2

d.

Solution: Taking the sum s+ t+ u, we find

s+ t+ u = (pa + pb)
2 + (pa − pc)

2 + (pa − pd)
2 ,

=
∑
j

p2j + 2p2a + 2pa · pb − 2pa · pc − 2pa · pd ,

=
∑
j

m2
j + 2pa · (pa + pb − pc − pd) ,

=
∑
j

m2
j ,

where in the third line we used conservation of four-momentum states pa + pb = pc + pd.

2. Consider the (extremely rare) process pp → ppH, where p is the proton and H the Higgs boson.

(a) Consider the reaction in a fixed target experiment, where one of the initial protons is at rest, while
the other has an energy E. Determine the minimum value of E such that the Higgs production
process can occur. Give your answer symbolically (in terms of mp and mH) as well as numerically.

Solution: For fixed target experiments, we have a proton beam with pa = (E,p), while
the other is at rest, pb = (mp,0). Therefore, the Mandelstam s is s = (pa + pb)

2 =
(E +mp)

2 − |p|2. Since the proton is on-shell, |p|2 = E2 −m2
p, and thus s = E2 +m2

p +
2mpE− (E2−m2

p) = 2m2
p+2mpE. The minimum energy E for Higgs production to occur

must coincide with the threshold energy of the production, that is where s = (2mp+mH)2.
Since s is a Lorentz invariant, we can equate the two expressions and solve,

s = 2m2
p + 2mpEmin = (2mp +mH)2 ,

=⇒ Emin =
(2mp +mH)2

2mp
−mp .

Numerically, we find Emin ≈ 8, 560GeV for a Higgs mass mH ≈ 125GeV and proton mass

William & Mary Page 1 of 7 Department of Physics



Problem Set 2 – Solution

PHYS 772 - The Standard Model Spring 2025

mp ≈ 0.94GeV.

(b) Consider the reaction performed in a collider experiment, where both proton have an energy E.
Repeat the previous exercise for this scenario.

Solution: In a collider experiment, both initial protons are moving at equal but opposite
momentum, pa = (E,p) and pb = (E,−p). Thus, the total s is s = (pa + pb)

2 = 4E2.
Again, the minimum energy coincides with threshold production, s = (2mp+mH)2, there-
fore we can find the minimum energy

s = 4E2
min = (2mp +mH)2 ,

=⇒ Emin = mp +
1

2
mH .

Numerically, Emin ≈ 63GeV.

(c) Comment on the energy “reach” of the fixed target experiment vs. the collider experiment.

Solution: The minimum energy for the fixed target experiment is about 140 times larger
than that of the collider experiment, which is due to having to boost the beam to extremely
large energies.

3. Consider a general two-body decay a → bc, where each particle has a mass mj , j = a, b, c (with
ma > mb +mc for the decay to be kinematically allowed).

(a) Show that in the rest frame of a, the three-momenta of b and c are equal in magnitude and
opposite in direction, pb = −pc. Show that the magnitude is

p⋆ ≡ |pb| = |pc| =
1

2ma

√
[m2

a − (mb +mc)2][m2
a − (mb −mc)2] .

Solution: In the CM frame, ma = Eb + Ec. Take the square of (ma − Eb)
2 = E2

c to find

E2
c = (ma − Eb)

2 ,

= m2
a + E2

b − 2maEb .

Now, the on-shell condition gives E2
b = m2

b + p2
b and E2

c = m2
c + p2

c , with p2
b = p2

c in the
CM frame. So, solving for Eb,

Eb =
m2

a +m2
b −m2

c

2
√
s

.
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To find the momentum, use

|pb|2 = E2
b −m2

b ,

=

(
m2

a +m2
b −m2

c

2ma

)2

−m2
b ,

=
1

4m2
a

(
(m2

a +m2
b −m2

c)
2 − 4m2

am
2
b

)
,

=
1

4m2
a

(
[m2

a − (mb +mc)
2][m2

a − (mb −mc)
2]
)
.

In the CM frame, |pb| = |pc| = p⋆, therefore

p⋆ = |pb| = |pc| =
1

2m2
a

√
[m2

a − (mb +mc)2][m2
a − (mb −mc)2] .

(b) Use the previous result to numerically determine p⋆ for the process ∆+ → p+π0, taking the delta
baryon mass to be m∆+ = 1232 MeV.

Solution: Substituting the mass values, we find p⋆ ≈ 230 MeV.

4. The invariant flux factor of colliding particles a and b is defined as F = 4
√
(pa · pb)2 −m2

am
2
b .

(a) Show that F = 4EaEb(va + vb) if the particles move towards each other with speeds va and vb.

Solution: Take the system along the z direction, with pa = (Ea, 0, 0, Eava) and pb =
(Eb, 0, 0,−Ebvb). So,

F = 4
√
(pa · pb)2 −m2

am
2
b ,

= 4
√
(EaEb + EaEbvavb)2 − E2

aE
2
b (1− v2a)(1− v2b ) ,

= 4EaEb

√
(1 + vavb)2 − (1− v2a)(1− v2b ) ,

= 4EaEb(va + vb) .

(b) Consider a Lorentz frame where pa = −pb, called the center-of-momentum frame. Show that
F = 4p⋆

√
s in this frame, where p⋆ is the magnitude of the three momentum of both particles in

this frame.

Solution: Note that s = (pa+pb)
2 = m2

a+m2
b +2pa ·pb. So, (pa ·pb)2 = (s−m2

a−m2
b)

2/4,
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therefore

F = 4
√
(pa · pb)2 −m2

am
2
b ,

= 4

√
(s−m2

a −m2
b)

2

4
−m2

am
2
b ,

= 4
√
sp⋆ ,

where we have used the result from problem 3.

(c) Consider a Lorentz frame where particle b is at rest, called the fixed-target frame or laboratory
frame. Show that F = 4mb|pa| in this frame.

Solution: In the lab frame, pb = (mb,0), therefore,

F = 4
√
(pa · pb)2 −m2

am
2
b ,

= 4
√
E2

am
2
b −m2

am
2
b = 4mb

√
E2

a −m2
a ,

= 4mb|pa| .

5. The two-body differential Lorentz invariant phase space for some initial total momentum P is defined
as

dΦ2(P → p1 + p2) = (2π)4δ(4)(P − p1 − p2)
1

S
d3p1

(2π)3 2E1

d3p2

(2π)3 2E2
,

where S is a symmetry factor.

(a) Perform partial integrations in the center-of-momentum frame, where P = (
√
s,0), to show that

the differential phase space can be evaluated to

dΦ2(P → p1 + p2) =
1

S
p⋆

16π2
√
s
dΩ⋆ ,

where dΩ⋆ = d cos θ⋆ dφ⋆ is the differential solid angle of particle 1 and p⋆ is the magnitude of
momentum of the particles.

Assume we are integrating against a test function f(p1,p2). Since the phase space is
Lorentz invariant, we can evaluate in any reference frame. We choose the CM frame. The
four-dimensional Dirac delta can be written as

δ(4)(P − p1 − p2) = δ(4)(E − E1 − E2) δ
(3)(p1 + p2) ,

where we used P = 0.
So, we can integrate over the measure d3p2, eliminating the spatial momentum Dirac delta
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functions,

dΦ2(P → p1 + p2) =
1

(4π)2
1

S
d3p1

E1E2
δ(E − E1 − E2) .

Note that since p1 = −p2, E1 =
√
m2

1 + p2
1 and E2 =

√
m2

2 + p2
1. The remaining delta

function can be evaluated by a change of variables to |p1|,

δ(E − E1 − E2) =

∣∣∣∣∂(E − E1 − E2)

∂|p1|

∣∣∣∣−1

δ(|p1| − |p⋆
1|) ,

=
E1E2

|p1|
√
s
δ(|p1| − |p⋆

1|)

where |p⋆
1| is the solution to E − E1 − E2 = 0. So, converting the measure to spherical

coordinates, we find

dΦ2(P → p1 + p2) =
1

(4π)2
1

S
d3p1

E1E2

E1E2

|p1|
√
s
δ(|p1| − |p⋆

1|) ,

=
1

(4π)2
1

S
dΩd|p1| |p1|2

E1E2

E1E2

|p1|
√
s
δ(|p1| − |p⋆

1|) ,

=
1

S
p⋆

4π
√
s

dΩ⋆

4π
,

where p⋆ = |p⋆
1|.

(b) Perform partial integrations in the laboratory frame, where P = (E,P), to show that the differ-
ential phase space can be evaluated to

dΦ2(P → p1 + p2) =
1

S
p2f

16π2|pfE − piE1 cos θ|
dΩ ,

where pf is the magnitude of particle 1, pi is the magnitude of the initial momentum, and dΩ =
d cos θ dφ is the differential solid angle of particle 1 with respect to the initial momentum.

Solution: For the lab frame, we again first integrate p2 against δ(3)(P− p1 − p2) to fix
p2 = P− p1,

dΦ2(P → p1 + p2) =
1

(4π)2
1

S
d3p1

E1E2
δ(E −

√
m1 + p2

1 −
√

m2
2 + (P− p1)2) ,

where E1 =
√
m1 + p2

1 and E2 =
√
m2

2 + (P− p1)2. Now, (P − p1)
2 = P2 + p2

1 −
2|p1||P| cos θ, and we define |P| = pi. So, we evaluate the remaining integrals in spherical
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coordinates

dΦ2(P → p1 + p2) =
1

(4π)2
1

S
d3p1

E1E2
δ(E −

√
m1 + p2

1 −
√
m2

2 + p2i + p2
1 − 2pi|p1| cos θ) ,

=
1

(4π)2
1

S
d|p1|p2

1 dΩ

E1E2

(∣∣∣∣ |p1|
E1

+
|p1|+ pi cos θ

E2

∣∣∣∣)−1

δ(|p1| − pf ) ,

=
1

16π2

1

S
p2f

|pf (E1 + E2) + piE1 cos θ|
dΩ .

With E = E1 + E2, we find the desired result.

6. The unpolarized differential decay rate for a two-body decay a → bc is defined by

dΓ =
1

2Ea
⟨|M|2⟩dΦ2 .

Show that in the rest frame of a, the decay rate can be written as

Γ =
1

32π2

p⋆

m2
a

1

S

∫
dΩ⋆ ⟨|M|2⟩ ,

where p⋆ is the magnitude of the momentum of the decay products and dΩ⋆ = d cos θ⋆ dφ⋆ is the
differential solid angle of particle b.

Solution: For the particle at rest, Ea = ma. Using the result from problem 5(a) with the
invariant mass

√
s = ma, we find

dΓ =
1

2ma
⟨|M|2⟩ 1

S
p⋆

4πma

dΩ⋆

4π
,

so

Γ =
1

32π2

p⋆

m2
a

1

S

∫
dΩ⋆ ⟨|M|2⟩ .

7. The unpolarized differential cross-section for a general binary reaction ab → cd is defined by

dσ =
1

F
⟨|M|2⟩dΦ2 ,

where ⟨|M|2⟩ is the spin-averaged matrix element.

(a) Show that the total cross section in the center-of-momentum (CM) frame is

σCM =
1

64π2s

p⋆f
p⋆i

1

S

∫
dΩ⋆ ⟨|M|2⟩ ,

where p⋆i and p⋆f are the initial and final state momenta.
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Solution: Using the previous results from Problem 4 and 5, we find

σ =
1

F

∫
⟨|M|2⟩dΦ2 ,

=
1

4
√
sp⋆i

∫
⟨|M|2⟩ 1

S
p⋆f

16π2
√
s
dΩ⋆ ,

=
1

64π2s

p⋆f
p⋆i

1

S

∫
dΩ⋆ ⟨|M|2⟩ .

(b) Show that the total cross section in the laboratory frame is

σlab =
1

64π2mb|pa|
1

S

∫
dΩ

|pc|2

||pc|(Ea +mb)− |pa|Ec cos θ|
⟨|M|2⟩ .

Solution: Using the previous results from Problem 4 and 5, with s = (Ea +mb), we find

σ =
1

F

∫
⟨|M|2⟩dΦ2 ,

=
1

4mb|pa|

∫
⟨|M|2⟩ 1

16π2

1

S
|pc|2

||pc|(Ea +mb) + |pa|Ec cos θ|
dΩ ,

=
1

64π2mb|pa|
1

S

∫
dΩ

|pc|2

||pc|(Ea +mb) + |pa|Ec cos θ|
⟨|M|2⟩
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