WILLIAM & MARY

CHARTERED 1693

PHYS 772 — The Standard Model of Particle Physics

Problem Set 3 — Solution

Due: Tuesday, February 18 at 12:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. The Dirac matrices v* = (7°,7) in the chiral (Weyl) representation are defined as
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)

where I is the 2 x 2 identity matrix and o7 are the Pauli matrices.

(a) With this representation, confirm that {v*,+"} = 2g*.

{2°,7°F =2(+%)2,
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(7} =% +
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Solution: To clarify some of the manipulations in these problems, we introduce I, as
the 4 x 4 identity, and let I — Iy be the 2 x 2 identity. Thus, what is to be shown is
{y*, 4"} = 2¢g*" 14, given the chiral representation
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Recall the properties of the Pauli matrices, {¢7, 0%} = 267% .
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where we note that ¢°© = +1 and g% = ¢’° = 0. Continuing,
{72 =+ = A =2 L =29 1,

{77, A% = AP+ 4k

_ (—dio* 0 n —okgl 0

o 0 —olok 0 —gkgi )
_ ook + oFgi 0

o 0 glok 4okl )

(26", 0
- 0 26FL,)

= —Z(Sjk I4 = 29jk I4

Therefore, we have shown {~v#*,~"} = 2g*¥ I,

(0 o 0 o " 0 o 0 ol
“\-0? 0)\-0* 0 —a* 0 ) \—0’

(b) Using the result in (a), show that ~,v* = 4.

Solution: Contract {y*,7"} = 2¢"¥ I with g,
guu{'}/ﬂa ’Vu} = ng/gul/ I,
YY"y = 29", 1a,
2y, =2-414.

So, we conclude v, v* = 4 I4.

(c) Prove that ,y"v* = —2y" without using an explicit matrix representation.

V¥ Y = . (29" 1y — A7),

=27 — Y,
=27, — 4",
=—2v,.

Solution: Using the anticommutator relation, as well as the result from part (b), we find

(d) Similarly, prove that v,7"y*y* = 4¢"*.
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Solution: Using the anticommutator relation, as well as the result from part (c), we find
YWY VA =y (297 I — A7),
=29 =AY,
=29 + 299",
=2{+"7"},

= 4gup I4 .

12,3

2. Given v° = 75 = i7%y!42~3, prove the following trace identities:

(a) tr(yHv¥) = 49",

Solution: Taking the trace, we use the cyclic properties of the trace and the anticommu-
tation relations, we have
WAV 1 oAV WAV
tr(v%7") = 5 tr(v*y” +9"97),,
1 AV Ha v
= §[tr(v V) 4 tr(vHy )},
1 BV v H
= 5 tr(y"" +9""),
1 o
= S t({3"}),
1 v
= 529" tr(l4),
2
= 49",
where tr(Iy) = 4.

(b) tr(y"y"Py7) = 4(g"" 9" — g"79"" + g"79""),
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Solution: Here we use the anticommutation relation inside the trace,
tr(y"7yP7) = tr[yy (2977 1s — v7")],
= 2977 tr(4"") — tr(v"9"777")
= 89" 9”7 — tr[y* (29”7 I — 7)1,
=8¢""g"" — 29”7 tr(v"9") + tr(v"7"")
= 8¢""g"7 — 8g"7gM" + tr[2¢"7 Iy — 7)Yy,
= 8g""g"7 —8g"7g"" + 2gM7 tr(v"4”) — tr(v7H "),
= 8¢ g’ — 89”7 g"" +8g"7 g"" — tr(v"v"v"77),

where in the last line we used the cyclic property of the trace. Then, adding this final trace
to the left-hand side, we find

2tr(y"y"yPy7) = 89" g7 — 89”7 g"" + 89" g""

= tr(y"""7) = 4(¢"9" — 9”7 g"" + ¢"79"")

(c) The trace of any odd number of gamma matrices is zero.

Solution: We first prove that tr(y#) = 0, which is obvious in the Weyl basis but is true
in general. Recall that (75)? = 7575 = 41;. Therefore, the trace can be written as

tr(v*) = tr(v" L) = tr(7#9°7%) = — tr(7°1#9°) = — tr(7#4°9%) = —tr(4#),

where in the fourth equality we used the anticommutation relation y#y® = —v°+* and in
the fifth equality results from the cyclic properties of the trace. Therefore, we conclude

tr(v*) =0.

A generic trace over an odd number of gamma matrices can be written as a trace over
2n + 1 gamma matrices where n € N, tr(y#1yk2 ... yH2nyH2n+1) - So inserting Iy = (7°)?
at the end gives,

Er(yH e et t) = gr(yfr e e )
= tr(fy“ly“? .. '7“2"’7”2"*17575) ’
= (—1)2H L gr (APl L yhzn et 5
= —tr(y e . pHen 2155
= (Pt .ty

where the factor (—1)?"*! = (—1) comes from anticommuting v° to the left through all
2n + 1 gamma matrices. We conclude that tr(y#1yH2 ... yH2nyhami) = ()
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(d) tr(7°) = tr (v°9*) = tr (v°7#9¥) = tr (7°y#4"4*) = 0,

Solution: We begin by first proving tr(74°) = 0. By definition, 4°y* = —y#~°. Now,
taking the trace, and inserting the identity in the form I, = (7°)2,

tr(7°) = tr(147°)

=tr(7"*"),

= —tr(7"7%7°),

= —tr(y"7%°),

= —tr(y°),

where we anticommuted 7° to the right going to line 3, and the used the cyclic property
of the trace in line 4. Therefore, we conclude tr(y°) = 0.

We note that since 7° is defined as 7% = iv%y1y243, that tr(y°y*) = tr(y5y#y"9?) = 0
since this is the trace of an odd number of gamma matrices.

Therefore, the remaining identity to show is tr(y°y#4”) = 0. Note that if 4 = v, then
(v*)? = £1, where the ‘+’ is for u = 0, and ‘—’ otherwise. So, if u = v, then tr(y>y#4*) —
+tr(y°14) = 0 by the first identity proved in this solution. What remains is the case where
p # v. We insert an identity of the form I = £(7”)2, where we are free to choose p #
and p # v, so that {v?,v*} = {+*,~+"} = 0. Taking the trace,
tr(y7y"y") = tr(lay’yy"),
= (17" °")

(E1)(=1)3 tr(y* 7 "y +*)
1)’ tr(v*9°7°*")
(1) tr(y°7"y") = = tr(y*9"9") |

= (*1)
= (F1)(
= (=1

where in the third line we anticommuted v” to the right three times, and in the fourth
used the cyclic property of the trace. We conclude that tr(y5y#4*) = 0 for all p, v.

(e) tr (v Hy¥yPy7) = —dietr?.

Solution: Using the anticommutation relation on the last two gamma matrices, we find
tr(y°y" Py 7) = try? 94" (2977 Is = 774")].
= 20" tr(y°7*y") — tr(v° "7
= —tr(v*y"y"7y")
where we used the result from part d that tr(y°y#+") = 0. If p = o, then ()% = £,
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where the ‘4’ is for p = 0 and ‘—’ otherwise. Thus, if p = o, we have tr(y>y*y"v*4%) —
Ftr(y°y#4") = 0. So, we conclude that tr(y>y#y*~P~?) is antisymmetric in p and o. We
can repeat this argument for any pair of indices, ultimately concluding that tr(y5y*y*~P~7)
is completely antisymmetric in all u,v,p,o indices. In 4D spacetime, the only Lorentz
tensor that is completely antisymmetric is the Levi-Civita, therefore we conclude

tr(y°94y" 7)) = AP,
where A is an undetermined constant and €**?° is defined such that €%123 = 41.

To determine the constant, we can take any particular combination of Lorentz indices. Let
us take (p,v,p,0) = (0,1,2,3), so that
tr(’75’YO’Yl’7273) — A60123 —A.

1,2~3

Using the definition v° = 7%y'4243, we evaluate the trace,

tr(y°7°7 1 %y?) = itr (70 20y )

—)%itr(7°y v 23y 2R
—1)*(=1)%i tr(°7* v ' 2P,

(
(

= (—1)*(=1)*(=Di tr(y°" v vy,
(

|
[
<
-+
=
=
=
=

= —i4,

where in the second, third, and fourth lines we anticommutation relations to arrange
identical gamma matrices into pairs, and in the fifth line we used that (7°)? = +1I, while
(747)? = —I4. We conclude that A = —4i, so that

tr(,y5,yu,yu,yp,ya) — _4jetvro

3. The chiral projectors are defined as

1 1 5
PR:5(14+75)7 PL:§(I4*’Y°%
where I is the 4 x 4 identity matrix. Prove the following properties:

(a) VSPL:*PLaandeSPR:PRa
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(d)

Solution: Note that (v°)% = I, thus,

Y P g =

>
ot
_H
=)
[$28
=

(VY F L),

N~ N~ N

1

=F- (I, F1°),

=FPL/R-

(Prjr)* = PR

Solution: Taking the square of the projectors,

(Ppr)? = <%(I4 :F’YS))2 ;

1
= (L F )L F7°),

LiF¥Y" F1°+ (")),

NI = ]

(I4+ F+°) = Pr/r

PpPr = PrPr =0,

Solution: Taking product

1 1
Pr/rPr/1 = 5(1'4 F4°) - 5(1—4 ++°),
1 5. .5 512
=5l F" £ =),
1

Therefore, we conclude Py, Pr = PrP;, = 0.

PL+Pr=1,.
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Solution: Taking P;, + Pg, we find

1
PL+Pr=—-(Is—7")+ §(I4+75)7

N | =

1
=5 (2L-7"+7"),

=1,.

4. Suppose the charge conjugation operator is defined as C' = iy2~y

tation,

0. Confirm that in the Weyl represen-

(a) C-l=CT =Ct=—-C.

Solution: Given C' = iy2¢°, we first check if the matrix C' is unitary, CtC = CCT = I,.
Note the following useful property,

1

(v)? = 5{7“,7"} (no sum on ),
1

=3 2g"* Iy (no sum on ),

= g"* Iy (no sum on ),

C1C = (=iv*1°)(iv*7°) = v1%7*1° = =*1°%9% = —*9* = +14

Since C is unitary, we conclude that CT = C~1.

CT = (CN)" = —C" = —(ir™")" = ~(=)(+*)* (")

In the Weyl basis, 7° is real, so (7°)* =~°, and (7?)* is

=y ) (2 )

where we used the fact that (02)* = —o? since the non-zero entries of o2 are purely
imaginary. Therefore,

CT = (=) () =i’ = —in*y’ = —C.
We thus conclude that C'is a real matrix, C* = C, and that
071 :OT :OT = *Ca

as desired.
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(b) Cy#Ct=—(v")T,

Solution: To prove this, first recall that (v#)T = 74%v#4". Since 7 is real in the Weyl

basis, then we conclude ()T = 7°(v#)*4°, where the * denote complex conjugation. Now,
with O = iv29° = —i7%92, with C7' = CT = —i724° = —C, multiply (v#)T = ~A%(y*)*+°
on the left with C~! and on the right with C,
Cl ) To =0t (")) C

= (=ir*7%) (0 (1")*°) (=ir°7?),

=7 (v")"?,
where in the last line we used (7°)? = I,. For pu = 0,1,3, then (y#)* = v* since they
are real in the Weyl basis. Then, y#4% = —24# for u # 2. Since (y?)? = —1I , we
find C~Y(y")TC = —42(—29*) = (=1)%(=y*) = —* for p # 2. When p = 2, then

(v®)* = =% So, O~ Y(y")TC = —42(—?)y?> = —~+2. Therefore, we conclude for all u,
C~1(y*)TC = —*. Now, multiply on the left by C, and on the right by C~1,

CCT' () TCCT = —CytCT = OO = ()T,

which was to be proved.

CyP et =0T,

Solution: Here, let us take the commutator of C' and ~°,
[C.7°] = Cy* —7°C,
= i727%y% —in°y?°,
= i727%y% —in*y%°,
=0

since {7°,7#} = 0. Thus, Cy°C~! = 4°. Note that (7°) = 4°, and in the Weyl basis
7% = (7)*. Thus, we conclude Cy>C~1 = (v°) .

5. A Dirac spinor 1 is called a Majorana spinor if it satisfies the condition 1 = C4 T, and is called a
Weyl spinor if it satisfies either v = Prv or ¢ = Pp1. Determine whether or not a spinor can be both
Majorana and Weyl.

Solution: Let us define ¢ = Ct ", 1)1, = Ppp, and 1hr = Prtp. We take the charge conjugation
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of a chiral fermion. For example, let us take (¢,)¢ =

(Yr)° =Cyy ,

)T
(Pra)ty
i PLA°

) (P

QQQQ

(@}
(
(
(

where we used that T

1
(I — AP
2(4 v

1

(P)"

=C7'pP.C,

where we used C~17°C = (7°) 7

(Yr)" =

O)chl = —v

where we used C(vy

Finally, we use again C~17°C =

= PrC(y"

= PR¢C )
(V)R-

= (p7)* and P} = Py, since (v°)T = 4. Now, we note that

)T
= 5(14 - (WS)T) ’
= 3= 0,

—ct -7 c.

and C~'C = I4. So,
c()TC POyt
- POy
0. Recall that y9~% =
(Y1) = —"PLOyp*,
—Ppy0C*
—(")T = FC=-Cc(Hy")T

(¥1)¢ = —Ppy°Cy*,

= PrC(yTy%) "

:PRC1Z_)T7

C] . Since 1 = 114°, we have

0)
)’
L) YT,

)

we have

)

—794%, s0 Y P, = Pry®. Thus, we have

, so that

)'Y",
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We find that (¢r)¢ = (¢°)r. Similar arguments show that (¥r)° = (¥°)r. We conclude
under charge conjugation the chirality flips for a Weyl fermion. So, if we consider a four-
component spinor, ¥ = (¢,1%r)", then charge conjugation flips the chirality, but the spinor
is simply a rotated version. The two-component spinors themselves are not eigenstates of both
the Majorana and Weyl equation.

William & Mary Page 11 of 11 Department of Physics



