
PHYS 772 – The Standard Model of Particle Physics

Problem Set 3 – Solution

Due: Tuesday, February 18 at 12:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. The Dirac matrices γµ = (γ0, γj) in the chiral (Weyl) representation are defined as

γ0 =
(
0 I
I 0

)
, γj =

(
0 σj

−σj 0

)
,

where I is the 2× 2 identity matrix and σj are the Pauli matrices.

(a) With this representation, confirm that {γµ, γν} = 2gµν .

Solution: To clarify some of the manipulations in these problems, we introduce I4 as
the 4 × 4 identity, and let I → I2 be the 2 × 2 identity. Thus, what is to be shown is
{γµ, γν} = 2gµνI4, given the chiral representation

γ0 =
(
0 I2
I2 0

)
, γj =

(
0 σj

−σj 0

)
.

Recall the properties of the Pauli matrices, {σj , σk} = 2δjkI2.

{γ0, γ0} = 2(γ0)2 ,

= 2

(
0 I2
I2 0

)(
0 I2
I2 0

)
,

= 2

(
I2 0
0 I2

)
= 2g00 I4 ,

{γ0, γj} = γ0γj + γjγ0 ,

=

(
0 I2
I2 0

)(
0 σj

−σj 0

)
+

(
0 σj

−σj 0

)(
0 I2
I2 0

)
,

=

(
−σj 0
0 σj

)
+

(
σj 0
0 −σj

)
=

(
0 0
0 0

)
= 2g0j I4 ,
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where we note that g00 = +1 and g0j = gj0 = 0. Continuing,

{γj , γ0} = γjγ0 + γ0γj = {γ0, γj} = 2g0j I4 = 2gj0 I4 ,

{γj , γk} = γjγk + γkγj ,

=

(
0 σj

−σj 0

)(
0 σk

−σk 0

)
+

(
0 σk

−σk 0

)(
0 σj

−σj 0

)
,

=

(
−σjσk 0

0 −σjσk

)
+

(
−σkσj 0

0 −σkσj

)
,

= −
(
σjσk + σkσj 0

0 σjσk + σkσj

)
,

= −
(
2δjkI2 0

0 2δjkI2

)
,

= −2δjk I4 = 2gjk I4

Therefore, we have shown {γµ, γν} = 2gµν I4

(b) Using the result in (a), show that γµγ
µ = 4.

Solution: Contract {γµ, γν} = 2gµν I4 with gµν ,

gµν{γµ, γν} = 2gµνg
µν I4 ,

{γµ, γµ} = 2gµµ I4 ,

2γµγ
µ = 2 · 4 I4 .

So, we conclude γµγ
µ = 4 I4.

(c) Prove that γµγ
νγµ = −2γν without using an explicit matrix representation.

Solution: Using the anticommutator relation, as well as the result from part (b), we find

γµγ
νγµ = γµ(2g

µν I4 − γµγν) ,

= 2γν − γµγ
µγν ,

= 2γν − 4γν ,

= −2γν .

(d) Similarly, prove that γµγ
νγργµ = 4gνρ.
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Solution: Using the anticommutator relation, as well as the result from part (c), we find

γµγ
νγργµ = γµγ

ν(2gρµ I4 − γµγρ) ,

= 2γργν − γµγ
νγµγρ ,

= 2γργν + 2γνγρ ,

= 2{γρ, γν} ,

= 4gνρ I4 .

2. Given γ5 = γ5 = iγ0γ1γ2γ3, prove the following trace identities:

(a) tr (γµγν) = 4gµν ,

Solution: Taking the trace, we use the cyclic properties of the trace and the anticommu-
tation relations, we have

tr (γµγν) =
1

2
tr(γµγν + γµγν) ,

=
1

2

[
tr(γµγν) + tr(γµγν)

]
,

=
1

2
tr(γµγν + γνγµ) ,

=
1

2
tr({γµγν}) ,

=
1

2
· 2gµν tr(I4) ,

= 4gµν ,

where tr(I4) = 4.

(b) tr (γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ),
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Solution: Here we use the anticommutation relation inside the trace,

tr(γµγνγργσ) = tr[γµγν(2gρσ I4 − γσγρ)] ,

= 2gρσ tr(γµγν)− tr(γµγνγσγρ) ,

= 8gµνgρσ − tr[γµ(2gνσ I4 − γσγν)γρ] ,

= 8gµνgρσ − 2gνσ tr(γµγρ) + tr(γµγσγνγρ) ,

= 8gµνgρσ − 8gνσgµρ + tr[2gµσ I4 − γσγµ)γνγρ] ,

= 8gµνgρσ − 8gνσgµρ + 2gµσ tr(γνγρ)− tr(γσγµγνγρ) ,

= 8gµνgρσ − 8gνσgµρ + 8gµσgνρ − tr(γµγνγργσ) ,

where in the last line we used the cyclic property of the trace. Then, adding this final trace
to the left-hand side, we find

2 tr(γµγνγργσ) = 8gµνgρσ − 8gνσgµρ + 8gµσgνρ

=⇒ tr(γµγνγργσ) = 4 (gµνgρσ − gνσgµρ + gµσgνρ)

(c) The trace of any odd number of gamma matrices is zero.

Solution: We first prove that tr(γµ) = 0, which is obvious in the Weyl basis but is true
in general. Recall that (γ5)

2 = γ5γ
5 = 4I4. Therefore, the trace can be written as

tr(γµ) = tr(γµI4) = tr(γµγ5γ5) = − tr(γ5γµγ5) = − tr(γµγ5γ5) = − tr(γµ) ,

where in the fourth equality we used the anticommutation relation γµγ5 = −γ5γµ and in
the fifth equality results from the cyclic properties of the trace. Therefore, we conclude

tr(γµ) = 0 .

A generic trace over an odd number of gamma matrices can be written as a trace over
2n + 1 gamma matrices where n ∈ N, tr(γµ1γµ2 · · · γµ2nγµ2n+1). So, inserting I4 = (γ5)2

at the end gives,

tr(γµ1γµ2 · · · γµ2nγµ2n+1) = tr(γµ1γµ2 · · · γµ2nγµ2n+1I4) ,

= tr(γµ1γµ2 · · · γµ2nγµ2n+1γ5γ5) ,

= (−1)2n+1 tr(γ5γµ1γµ2 · · · γµ2nγµ2n+1γ5) ,

= − tr(γµ1γµ2 · · · γµ2nγµ2n+1γ5γ5) ,

= − tr(γµ1γµ2 · · · γµ2nγµ2n+1) ,

where the factor (−1)2n+1 = (−1) comes from anticommuting γ5 to the left through all
2n+ 1 gamma matrices. We conclude that tr(γµ1γµ2 · · · γµ2nγµ2n+1) = 0
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(d) tr (γ5) = tr (γ5γµ) = tr (γ5γµγν) = tr (γ5γµγνγρ) = 0,

Solution: We begin by first proving tr(γ5) = 0. By definition, γ5γµ = −γµγ5. Now,
taking the trace, and inserting the identity in the form I4 = (γ0)2,

tr(γ5) = tr(I4γ
5) ,

= tr(γ0γ0γ5) ,

= − tr(γ0γ5γ0) ,

= − tr(γ0γ0γ5) ,

= − tr(γ5) ,

where we anticommuted γ0 to the right going to line 3, and the used the cyclic property
of the trace in line 4. Therefore, we conclude tr(γ5) = 0.

We note that since γ5 is defined as γ5 = iγ0γ1γ2γ3, that tr(γ5γµ) = tr(γ5γµγνγρ) = 0
since this is the trace of an odd number of gamma matrices.

Therefore, the remaining identity to show is tr(γ5γµγν) = 0. Note that if µ = ν, then
(γµ)2 = ±I4 where the ‘+’ is for µ = 0, and ‘−’ otherwise. So, if µ = ν, then tr(γ5γµγν) →
± tr(γ5I4) = 0 by the first identity proved in this solution. What remains is the case where
µ ̸= ν. We insert an identity of the form I4 = ±(γρ)2, where we are free to choose ρ ̸= µ
and ρ ̸= ν, so that {γρ, γµ} = {γρ, γν} = 0. Taking the trace,

tr(γ5γµγν) = tr(I4γ
5γµγν) ,

= ± tr(γργργ5γµγν) ,

= (±1)(−1)3 tr(γργ5γµγνγρ) ,

= (±1)(−1)3 tr(γργργ5γµγν) ,

= (−1)3 tr(γ5γµγν) = − tr(γ5γµγν) ,

where in the third line we anticommuted γρ to the right three times, and in the fourth
used the cyclic property of the trace. We conclude that tr(γ5γµγν) = 0 for all µ, ν.

(e) tr (γ5γµγνγργσ) = −4iϵµνρσ.

Solution: Using the anticommutation relation on the last two gamma matrices, we find

tr(γ5γµγνγργσ) = tr[γ5γµγν(2gρσ I4 − γσγρ)] ,

= 2gρσ tr(γ5γµγν)− tr(γ5γµγνγσγρ) ,

= − tr(γ5γµγνγσγρ) ,

where we used the result from part d that tr(γ5γµγν) = 0. If ρ = σ, then (γρ)2 = ±I4

William & Mary Page 5 of 11 Department of Physics



Problem Set 3 – Solution

PHYS 772 - The Standard Model Spring 2025

where the ‘+’ is for ρ = 0 and ‘−’ otherwise. Thus, if ρ = σ, we have tr(γ5γµγνγργσ) →
∓ tr(γ5γµγν) = 0. So, we conclude that tr(γ5γµγνγργσ) is antisymmetric in ρ and σ. We
can repeat this argument for any pair of indices, ultimately concluding that tr(γ5γµγνγργσ)
is completely antisymmetric in all µ, ν, ρ, σ indices. In 4D spacetime, the only Lorentz
tensor that is completely antisymmetric is the Levi-Civita, therefore we conclude

tr(γ5γµγνγργσ) = Aϵµνρσ ,

where A is an undetermined constant and ϵµνρσ is defined such that ϵ0123 = +1.

To determine the constant, we can take any particular combination of Lorentz indices. Let
us take (µ, ν, ρ, σ) = (0, 1, 2, 3), so that

tr(γ5γ0γ1γ2γ3) = Aϵ0123 = A .

Using the definition γ5 = iγ0γ1γ2γ3, we evaluate the trace,

tr(γ5γ0γ1γ2γ3) = i tr(γ0γ1γ2γ3γ0γ1γ2γ3) ,

= (−)3i tr(γ0γ0γ1γ2γ3γ1γ2γ3) ,

= (−1)3(−1)2i tr(γ0γ0γ1γ1γ2γ3γ2γ3) ,

= (−1)3(−1)2(−1)i tr(γ0γ0γ1γ1γ2γ2γ3γ3) ,

= (−1)3(−1)2(−1)i tr((+I4)(−I4)(−I4)(−I4)) ,

= −i tr(I4) ,

= −i4 ,

where in the second, third, and fourth lines we anticommutation relations to arrange
identical gamma matrices into pairs, and in the fifth line we used that (γ0)2 = +I4 while
(γj)2 = −I4. We conclude that A = −4i, so that

tr(γ5γµγνγργσ) = −4iϵµνρσ

3. The chiral projectors are defined as

PR =
1

2
(I4 + γ5) , PL =

1

2
(I4 − γ5) ,

where I4 is the 4× 4 identity matrix. Prove the following properties:

(a) γ5PL = −PL, and γ
5PR = PR ,
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Solution: Note that (γ5)2 = I4, thus,

γ5PL/R =
1

2
γ5(I4 ∓ γ5) ,

=
1

2
(γ5 ∓ (γ5)2) ,

=
1

2
(γ5 ∓ I4) ,

= ∓1

2
(I4 ∓ γ5) ,

= ∓PL/R .

(b) (PL/R)
2 = PL/R ,

Solution: Taking the square of the projectors,

(PL/R)
2 =

(
1

2
(I4 ∓ γ5)

)2

,

=
1

4
(I4 ∓ γ5)(I4 ∓ γ5) ,

=
1

4
(I4 ∓ γ5 ∓ γ5 + (γ5)2) ,

=
1

2
(I4 ∓ γ5) = PL/R

(c) PLPR = PRPL = 0 ,

Solution: Taking product

PL/RPR/L =
1

2
(I4 ∓ γ5) · 1

2
(I4 ± γ5) ,

=
1

2
(I4 ∓ γ5 ± γ5 − (γ5)2) ,

=
1

2
(I4 − I4) = 0 .

Therefore, we conclude PLPR = PRPL = 0.

(d) PL + PR = I4 .
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Solution: Taking PL + PR, we find

PL + PR =
1

2
(I4 − γ5) +

1

2
(I4 + γ5) ,

=
1

2

(
2I4 − γ5 + γ5

)
,

= I4 .

4. Suppose the charge conjugation operator is defined as C = iγ2γ0. Confirm that in the Weyl represen-
tation,

(a) C−1 = C⊤ = C† = −C .

Solution: Given C = iγ2γ0, we first check if the matrix C is unitary, C†C = CC† = I4.
Note the following useful property,

(γµ)2 =
1

2
{γµ, γµ} (no sum on µ) ,

=
1

2
· 2gµµ I4 (no sum on µ) ,

= gµµ I4 (no sum on µ) ,

so (γ0)2 = I4 and (γj)2 = −I4.

C† = (iγ2γ0)† = −i(γ0)†(γ2)† = −iγ0(−γ2) = iγ0γ2 = −iγ2γ0 = −C

So,

C†C = (−iγ2γ0)(iγ2γ0) = γ2γ0γ2γ0 = −γ2γ0γ0γ2 = −γ2γ2 = +I4

Since C is unitary, we conclude that C† = C−1.

C⊤ = (C†)∗ = −C∗ = −(iγ2γ0)∗ = −(−i)(γ2)∗(γ0)∗ .

In the Weyl basis, γ0 is real, so (γ0)∗ = γ0, and (γ2)∗ is

(γ2)∗ =

(
0 (σ2)∗

−(σ2)∗ 0

)
= −

(
0 σ2

−σ2 0

)
= −γ2 ,

where we used the fact that (σ2)∗ = −σ2 since the non-zero entries of σ2 are purely
imaginary. Therefore,

C⊤ = −(−i)(γ2)∗(γ0)∗ = i(−γ2)γ0 = −iγ2γ0 = −C .

We thus conclude that C is a real matrix, C∗ = C, and that

C−1 = C⊤ = C† = −C ,

as desired.
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(b) CγµC−1 = −(γµ)⊤ ,

Solution: To prove this, first recall that (γµ)† = γ0γµγ0. Since γ0 is real in the Weyl
basis, then we conclude (γµ)⊤ = γ0(γµ)∗γ0, where the ∗ denote complex conjugation. Now,
with C = iγ2γ0 = −iγ0γ2, with C−1 = C† = −iγ2γ0 = −C, multiply (γµ)⊤ = γ0(γµ)∗γ0

on the left with C−1 and on the right with C,

C−1(γµ)⊤C = C† (γ0(γµ)∗γ0)C ,
= (−iγ2γ0)

(
γ0(γµ)∗γ0

)
(−iγ0γ2) ,

= −γ2(γµ)∗γ2 ,

where in the last line we used (γ0)2 = I4. For µ = 0, 1, 3, then (γµ)∗ = γµ since they
are real in the Weyl basis. Then, γµγ2 = −γ2γµ for µ ̸= 2. Since (γ2)2 = −I4, we
find C−1(γµ)⊤C = −γ2(−γ2γµ) = (−1)2(−γµ) = −γµ for µ ̸= 2. When µ = 2, then
(γ2)∗ = −γ2. So, C−1(γµ)⊤C = −γ2(−γ2)γ2 = −γ2. Therefore, we conclude for all µ,
C−1(γµ)⊤C = −γµ. Now, multiply on the left by C, and on the right by C−1,

CC−1(γµ)⊤CC−1 = −CγµC−1 , =⇒ CγµC−1 = −(γµ)⊤ ,

which was to be proved.

(c) Cγ5C−1 = (γ5)⊤ ,

Solution: Here, let us take the commutator of C and γ5,

[C, γ5] = Cγ5 − γ5C ,

= iγ2γ0γ5 − iγ5γ2γ0 ,

= iγ2γ0γ5 − iγ2γ0γ5 ,

= 0

since {γ5, γµ} = 0. Thus, Cγ5C−1 = γ5. Note that (γ5)† = γ5, and in the Weyl basis
γ5 = (γ)∗. Thus, we conclude Cγ5C−1 = (γ5)⊤.

5. A Dirac spinor ψ is called a Majorana spinor if it satisfies the condition ψ = Cψ̄⊤, and is called a
Weyl spinor if it satisfies either ψ = PRψ or ψ = PLψ. Determine whether or not a spinor can be both
Majorana and Weyl.

Solution: Let us define ψc ≡ Cψ̄⊤, ψL ≡ PLψ, and ψR ≡ PRψ. We take the charge conjugation
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of a chiral fermion. For example, let us take (ψL)
c = Cψ̄⊤

L . Since ψ̄ = ψ†γ0, we have

(ψL)
c = Cψ̄⊤

L ,

= C(ψ†
Lγ

0)⊤ ,

= C((PLψ)
†γ0)⊤ ,

= C(ψ†PLγ
0)⊤ ,

= C(γ0)⊤(PL)
⊤ψ∗ ,

where we used that ψ† = (ψ⊤)∗ and P †
L = PL since (γ5)† = γ5. Now, we note that

(PL)
⊤ =

1

2
(I4 − γ5)⊤ ,

=
1

2
(I4 − (γ5)⊤) ,

=
1

2
(I4 − C−1γ5C) ,

= C−1

[
1

2
(I4 − γ5)

]
C ,

= C−1PLC ,

where we used C−1γ5C = (γ5)⊤ and C−1C = I4. So, we have

(ψL)
c = C(γ0)⊤C−1PLCψ

∗ ,

= −γ0PLCψ
∗ ,

where we used C(γ0)⊤C−1 = −γ0. Recall that γ0γ5 = −γ5γ0, so γ0PL = PRγ
0. Thus, we have

(ψL)
c = −γ0PLCψ

∗ ,

= −PRγ
0Cψ∗ .

Finally, we use again C−1γ0C = −(γ0)⊤ =⇒ γ0C = −C(γ0)⊤, so that

(ψL)
c = −PRγ

0Cψ∗ ,

= PRC(γ
0)⊤ψ∗ ,

= PRC(ψ
†γ0)⊤ ,

= PRCψ̄
⊤ ,

= PRψ
c ,

= (ψc)R .
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We find that (ψL)
c = (ψc)R. Similar arguments show that (ψR)

c = (ψc)L. We conclude
under charge conjugation the chirality flips for a Weyl fermion. So, if we consider a four-
component spinor, ψ = (ψL, ψR)

⊤, then charge conjugation flips the chirality, but the spinor
is simply a rotated version. The two-component spinors themselves are not eigenstates of both
the Majorana and Weyl equation.
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