WILLIAM & MARY

CHARTERED 1693

PHYS 772 — The Standard Model of Particle Physics
Problem Set 4 — Solution

Due: Tuesday, March 04 at 4:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Show that the Lie algebra structure constants c;;, defined by the Lie bracket (X7, Xk = cjlel,
satisfy the relation ¢;imCmin + ChimCmjn + CljmCmin = 0.

Solution: Here we use the Jacobi identity for the elements of the Lie algebra,
> X7, XM, X" =0,
(4:k1)

where (j,k,1) indicates the cyclic sum. Performing the sum, and using [X7, X*] = ¢;i X!, we
find

37X, XM, X = [, XK, XY 4 (08, XY, X9 4 [, X7), XK,
(4,k,1)
= Cikm[X™, XY+ cpim [ X™, XI) + cpjm[X™, X],

n n n
:cjkmcmlnX +Cklmcman +cljmcman )

= (cjkmcmln + CklmCmgn + Cljmcmkn) X" )

=0.
Since this must be zero for any X", we must have c¢jxmCmin + CkimCmjn + ClimCmkn = 0, as
desired.
2. Consider a general Lie algebra [Xj7Xk] = cjlel, where cji; = —cp;. From the structure constants,

we may form matrices M7 with matrix elements (Mj)lk = cjri- Note the order of the indices. Show
that these matrices furnish a representation of the algebra, i.e., show that [M7, M*] = cjklMl. This
representation is called the adjoint representation. Hint: The Jacobi identity may be helpful.

Solution: Looking at the matrix elements of the commutator of (Mj)lk = Cjkl,
([M7, M*])in = (M7 )13 (M*) s = (M* )17 (M )
= CimlCknm — CkmiCinm ,
= CljmCmkn t CklmCmjn

where we used the antisymmetry of the structure constants. From the Jacobi identity of the
structure constants, CjrmCmin + CkimCmjn + CljmCmkn = 0, We have ClimCmkn + CklmCmjn =
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—CjkmCmin- So, the commutator is

([M7, M*])1n

ClimCmkn + CkimCmgn »

—CikmCmin »
= CjkmCmnl »

m
= Cjkm(M )ln .

Therefore [Mj, M’“] = cjklMl, and we conclude that (Mj)”c = cjiy is a valid representation of
the Lie algebra.

3. Suppose X7 is a generator for the Lie algebra [X7, X*] = ¢;; X'. Show that X2 = > X7 X7 commutes
with the group generators, and therefore we may write (X?2)u, = Ca2(r) 45 where Cy(r) is a constant
called the quadratic Casimir of the representation r.

Solution: We want to show that [X?2, X*] = 0 where X2 = > XIX7 and [X7, X*] = ¢ X"
So, taking the commutator

(X%, XH =Y XX, XH),

J
=D XX XM+ IX XX
J J

where we used [AB,C| = A[B,C] + [A,C]B. Now, we use [X7, X*] = ¢;i X!, noting [ is being
summed over implicitly. So, we find
(X2, X% =" X7, XK+ )57, xR X

J J
=3 XX+ (euX")X7,
i I

= ZCjlele + ZCjlelXj s

al Jil

= E CjleJXl + E Clijle7
Jil Jil

= uXIX =Y euX'X =0,
gl gl

where in the fourth line we interchanged the summed indices, and in going to the last line we

noted that ¢;i; = —cjp. Therefore, X 2 commutes with all the generators X7. Therefore, we can
write (X?2)ap = Ca(r)dap, where Ca(r) is some constant which depends on the representation r,
and a, b span the dimension of the representation, a,b=1,...,r.

4. Let X7 be a generator for a generic su(N) Lie algebra, [ X7, X*] = ¢;; X!, and U(a/) is an element
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of the corresponding Lie group SU(N), with U(a?) = exp(a?X;) with o/ € R. Show that X7 are
traceless, antihermitian N x N matrices.

Solution: Since U(a’) € SU(N), then we require
U@)TU(?) =U (U () = Iy,

where Iy is the N x N identity. Furthermore, det(U(a?)) = 1. From the properties of matrix
exponentials, exp(a’ X ;)T = eXp(osz;). Let us Taylor expand the product U(a?)TU(a?) about
al =0,

In =U()U()) = (IN +ol X+ O(az)) (In + & X; +0(a?)) ,
=Iy+ad’X; +osz]T +0(a?),
= Iy + o (X; + X)) + O(a?),

Since this must hold order-by-order in «, we have X; + XJT =0,o0r X; = —XJT, proving that
the generators are antihermitian. Next, recall for matrix exponentials det(exp?) = exp(tr(A))
where A is an N x N matrix. Since det(U(a’)) = 1, we have the following

1= det(U(a?)) = det (exp(a’ X;)) ,

exp (tr(anj)) ,
= exp (o tr(X;)) .

Since this must hold for any a’, we conclude that tr(X;) = 0.

5. Consider the set of all complex 2 x 2 matrices M with det(M) = 4. Does this set form a group under
the usual matrix multiplication? Explain your reasoning.

Solution: Let G be the set of all 2 x 2 matrices with det(M) = 4. Let us assume that M € G,
some group where det(M) = i. If M; and M, are elements of the group, then the product
M - M5 should close under the group multiplication, that is M3 = M; - My € G. Since M3
is in G, then det(M3) = i. But, consider det(Ms) = det(M; - My) = det(M;y) det(My), from
the properties of determinants. So, det(Ms) = det(M;) det(Msz) = (i)(¢) = —1 # 4, which
contradicts our assumption. Therefore, the product of two group elements does not close under
group multiplication, and thus G does not form a group.

Alternatively, assume the existence of an inverse matrix M~! € G. The determinant of an
inverse matrix is det(M ') = 1/det(M) = 1/i = —i # i. Therefore, we conclude that such an
inverse matrix does not exist, and therefore G is not a group.

6. Consider X; = —1io; as a bases element of the su(2) algebra, [X;, X}] = €, X;, where o; are the
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1=1\1 o)~

(a) [oj,0h] = ojo) — oRo; = 2i€jp07 .

Pauli matrices,

Verify the following:

Spring 2025

_ (0
0102 = 1
(0

0901 — .
0203 = (
0309 — (

~

. O

O =

—_

g30

-~
Mg:(

o

o

1

[O'j,(fk] = Q’iﬁjkldl.

Solution: We compute the following products,

o) (;

N 7 N
O = = O

o
)

O =

~_

N\

S =
— O

as well as the squares of the Pauli matrices

> (0 1\ /0 1\ (1 0\ _

”1_<10 1 0)=\o 1)

o (0 —i\ (0 —i\ (1 0\ _

02_(1’ o)li 0o)=lo 1)=%

s (1 0 1 0\ (1 0\

03_(0 1)lo —1)=\o 1) =%
Therefore, we have 0J2- = I, and o0, = —oy0; for j # k. So, the commutator [0}, 0] =0,
while [01,02] = +2i03, [02,03] = +2i01, and [03,01] = +2i0s. The commutators are

completely antisymmetric, thus we can write it in terms of the Levi-Civita €;y; tensor,

(i 0\ .
—\o —i =103,
(- 0y _
- O Z - 0—37
_ (0 @) _,
—\i o)
(0 =i\ _
- —i 0 - 01,
(0 1\ .
“\-1 0) T2
(0 -1\
- 1 0 = —102,

{0j,01} = 0jo) + 0o = 20511,

Solution: From the results of part (a), we find that o0, +oro; = 0 for j # k. Therefore,
{ok, o1} = 0o + o0 = 0;(2050;) = 201 1>.

(C) 00 = 5jk12 + iejklal.
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Solution: Let us add the two results [0}, 0] = 2i€ 07 and {0}, 0, } = 20,112,
(0,08 +{0j,0k} = 2001, = 2iejpo; + 20,112 .

Therefore, we immediately find that oo, = d;xl2 + i€ r107.

(d) Show that a group element U(a?) € SU(2) can be written as

i 1. . 1 Jo. 1
U(a?) =exp <—2ia30j> =I5 cos (2a> — Z'O‘aUJ sin (2a) 7

where o® = 37 (a;)?.

Solution: Let us Taylor expand about o/ = 0,

1. . — 1/ 1 . \"
exp (—Qioﬂaj) = Z ] (—22'(1]@) ,

Il
[~
/S‘
S|
/T\
|
S
jo)
<
k)‘Q
~_
[V}
3
+
3
HM8
Y
3
_|_ —_
=
7N
)
S
jo)
~
k)Q
~_
[V}
3
+
=

where we split the sum into even and odd terms. Now, (—iaf0;/2)?" = (—1)"(af0;/2
while (—iado;/2)?" 1 = —i(—1)"(a?0;/2)*" 1. Now, we evaluate (a’c;)?,

(a¥0))* = (aloy)(a*oy),
= ook (ojor),
= ada¥ (811 +i€jn0)
=l I, =d%I,.

So, (af0;)?" = (a)*" I, and (af0;)*" ™! = (a0;)?"(al0;) = (a)*"(al0;). So, the expo-
nential expansion is

oxp (~bioie, ) = 3> OO (L))" S (Looe) "

n=0
03 G () () S e ()

7. Consider X; = L; as a bases element of the so(3) algebra, [X;, X}] = €1 X;, where L; are the matrices,

00 O 0 01 0 -1 0
Liy=(0 0 —-1], Ly={(0 0 0], Ly=|1 0 O
01 0 -1 0 O 0 0 O
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Verify the following;:
(a) [Lj, Li] = €l .

Solution: Notice that (L7);; = ;5. So, the commutator is
([Ljv Lk])ln = (Lj)lm(Lk)mn - (Lk)lm(Lj)mnv
= €imi€knm — €kmi€jnm -

Recall the Jacobi identity for the structure constants, here the Levi-Civita, €jrm€min +
€klmEmjn T €jmEmkn = 0. We can use the antisymmetry of € to write

—€jkmEmin = €klmEmin T €EljmEmkn
= €imi€knm — €kmi€inm »

where we identified the difference in Levi-Civita’s as the commutator of [L7, L*]. So, we
find

(Lj)lm(Lk)mn - (Lk)lm(L])mn = —€jkm€min ,
= €jkm€mnl ,
= ijm(Lm)ln .

We conclude that [L7, L*] = €5, L.

(b) {Lj,Ly} # Ndji for any j, k, and N.

Solution: The anticommutator {L;, Ly} = L;Ly + LiL;. Since (L7)y, = €jx1, we have
(Lj)lm(Lk)mn + (Lk)lm(Lj)mn = €imi€knm + €kmli€inm »
= —€jim€knm — €kim€jinm ,

where in the last line we used the antisymmetry properties of the permutation tensor.
Now, we use the property €;im€xnm = k0 — 0jnlii. So, we have

(Lj)lm<Lk)mn + (Lk)lm<LJ)mn = —€jilm€knm — €klm€jinm »
—(0jk01n — 9jndr1) — (Okj0in — Okndij)
= —20101n + 0jndki + Oknly; -

Thus, we see that {L;, L} # N for any j, k, and N.
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(c) Show that a group element O(a’) € SO(3) can be written as
Oéj Lj

2
. , ir,.
O(a])zexp(a]Lj):I3—|—aa] sinoz—|—( ) (1 —cosa),

where a? = Zj(aj)2.

Solution: Taylor expanding about o/ = 0, we find

exp (aij) = Z ni (oﬂL )
n=0
:Zw (a7 L;) +Z Lj)2 o

0

3
|

where we split the sum into even and odd terms. Let us evaluate (o’ Lj)z,
[(@7 L)) = [(a? L) (@®Lyo)in
= a7 a® (L;)im(Li)mn
=alak €jmi€knm
=—ala* €5lmEknm 5
=~/ (6;10m — 0;n0k1) »
—(a?61, — anay),

where in the fourth line we used €;,,; = —€;im, and in the fifth line we used the property
€j1m€knm = 0;k0im — 8;n0ki. Next, we evaluate (o’ L;)3,

(07 L)) = (o7 L) (" Li) (" L)1y
= ok a” (L;)im (L) mn (L )np »
= —(a®0im — ") (L )y ,
= —a?a" (L) + ool a" (Ly )y ,

=—a“a" (L),

_QQ(aij)lp )

where we used that o"a"(L,)np = a™a"€p, = 0 since we have a symmetric sum over
a completely antisymmetric object. So, we find that (a/L;)® = —a?(a’L;). Finally, we
evaluate (a/L;)*

(@ L) = (o’ L;)*(a’ Ly),

= 70[2(akLk)(aij) = —az(oszj)Q )
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terms can be written in terms of (a’/L;). Specifically,
, 2

oL

J) S n>0
o

ol L;

) "
!

Substituting these expressions into the series expansion,

+Z

@, = (i

(aij)2n+1 _ (_1)na2n+1 (
)2n+1

aJL

)

(—1)"

Therefore, the sum over even terms can be expressed in terms of (o Lj)2, while the odd

< (2n+1)!

(=D"

2n+1

)

2n+1

J‘),i(

| )
— (2n+1)!
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