
PHYS 772 – The Standard Model of Particle Physics

Problem Set 4 – Solution

Due: Tuesday, March 04 at 4:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Show that the Lie algebra structure constants cjkl, defined by the Lie bracket [Xj , Xk] = cjklX
l,

satisfy the relation cjkmcmln + cklmcmjn + cljmcmkn = 0.

Solution: Here we use the Jacobi identity for the elements of the Lie algebra,∑
(j,k,l)

[[Xj , Xk], X l] = 0 ,

where (j, k, l) indicates the cyclic sum. Performing the sum, and using [Xj , Xk] = cjklX
l, we

find ∑
(j,k,l)

[[Xj , Xk], X l] = [[Xj , Xk], X l] + [[Xk, X l], Xj ] + [[X l, Xj ], Xk] ,

= cjkm[Xm, X l] + cklm[Xm, Xj ] + cljm[Xm, Xk] ,

= cjkmcmlnX
n + cklmcmjnX

n + cljmcmknX
n ,

= (cjkmcmln + cklmcmjn + cljmcmkn)X
n ,

= 0 .

Since this must be zero for any Xn, we must have cjkmcmln + cklmcmjn + cljmcmkn = 0, as
desired.

2. Consider a general Lie algebra [Xj , Xk] = cjklX
l, where cjkl = −ckjl. From the structure constants,

we may form matrices M j with matrix elements (M j)lk = cjkl. Note the order of the indices. Show
that these matrices furnish a representation of the algebra, i.e., show that [M j ,Mk] = cjklM

l. This
representation is called the adjoint representation. Hint: The Jacobi identity may be helpful.

Solution: Looking at the matrix elements of the commutator of (M j)lk = cjkl,

([M j ,Mk])ln = (M j)lm(Mk)mn − (Mk)lm(M j)mn ,

= cjmlcknm − ckmlcjnm ,

= cljmcmkn + cklmcmjn ,

where we used the antisymmetry of the structure constants. From the Jacobi identity of the
structure constants, cjkmcmln + cklmcmjn + cljmcmkn = 0, we have cljmcmkn + cklmcmjn =
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−cjkmcmln. So, the commutator is

([M j ,Mk])ln = cljmcmkn + cklmcmjn ,

= −cjkmcmln ,

= cjkmcmnl ,

= cjkm(Mm)ln .

Therefore [M j ,Mk] = cjklM
l, and we conclude that (M j)lk = cjkl is a valid representation of

the Lie algebra.

3. Suppose Xj is a generator for the Lie algebra [Xj , Xk] = cjklX
l. Show that X2 =

∑
j X

jXj commutes

with the group generators, and therefore we may write (X2)ab = C2(r) δab where C2(r) is a constant
called the quadratic Casimir of the representation r.

Solution: We want to show that [X2, Xk] = 0 where X2 =
∑

j X
jXj and [Xj , Xk] = cjklX

l.
So, taking the commutator

[X2, Xk] =
∑
j

[XjXj , Xk] ,

=
∑
j

Xj [Xj , Xk] +
∑
j

[Xj , Xk]Xj ,

where we used [AB,C] = A[B,C] + [A,C]B. Now, we use [Xj , Xk] = cjklX
l, noting l is being

summed over implicitly. So, we find

[X2, Xk] =
∑
j

Xj [Xj , Xk] +
∑
j

[Xj , Xk]Xj ,

=
∑
j,l

Xj(cjklX
l) +

∑
j,l

(cjklX
l)Xj ,

=
∑
j,l

cjklX
jX l +

∑
j,l

cjklX
lXj ,

=
∑
j,l

cjklX
jX l +

∑
j,l

clkjX
jX l ,

=
∑
j,l

cjklX
jX l −

∑
j,l

cjklX
jX l = 0 ,

where in the fourth line we interchanged the summed indices, and in going to the last line we
noted that clkj = −cjkl. Therefore, X

2 commutes with all the generators Xj . Therefore, we can
write (X2)ab = C2(r)δab, where C2(r) is some constant which depends on the representation r,
and a, b span the dimension of the representation, a, b = 1, . . . , r.

4. Let Xj be a generator for a generic su(N) Lie algebra, [Xj , Xk] = cjklX
l, and U(αj) is an element
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of the corresponding Lie group SU(N), with U(αj) = exp(αjXj) with αj ∈ R. Show that Xj are
traceless, antihermitian N ×N matrices.

Solution: Since U(αj) ∈ SU(N), then we require

U(αj)†U(αj) = U(αj)U(αj)† = IN ,

where IN is the N ×N identity. Furthermore, det(U(αj)) = 1. From the properties of matrix

exponentials, exp(αjXj)
† = exp(αjX†

j ). Let us Taylor expand the product U(αj)†U(αj) about

αj = 0,

IN = U(αj)†U(αj) =
(
IN + αjX†

j +O(α2)
) (

IN + αjXj +O(α2)
)
,

= IN + αjXj + αjX†
j +O(α2) ,

= IN + αj(Xj +X†
j ) +O(α2) ,

Since this must hold order-by-order in α, we have Xj + X†
j = 0, or Xj = −X†

j , proving that

the generators are antihermitian. Next, recall for matrix exponentials det(expA) = exp(tr(A))
where A is an N ×N matrix. Since det(U(αj)) = 1, we have the following

1 = det(U(αj)) = det
(
exp(αjXj)

)
,

= exp
(
tr(αjXj)

)
,

= exp
(
αj tr(Xj)

)
.

Since this must hold for any αj , we conclude that tr(Xj) = 0.

5. Consider the set of all complex 2× 2 matrices M with det(M) = i. Does this set form a group under
the usual matrix multiplication? Explain your reasoning.

Solution: Let G be the set of all 2× 2 matrices with det(M) = i. Let us assume that M ∈ G,
some group where det(M) = i. If M1 and M2 are elements of the group, then the product
M1 · M2 should close under the group multiplication, that is M3 = M1 · M2 ∈ G. Since M3

is in G, then det(M3) = i. But, consider det(M3) = det(M1 · M2) = det(M1) det(M2), from
the properties of determinants. So, det(M3) = det(M1) det(M2) = (i)(i) = −1 ̸= i, which
contradicts our assumption. Therefore, the product of two group elements does not close under
group multiplication, and thus G does not form a group.

Alternatively, assume the existence of an inverse matrix M−1 ∈ G. The determinant of an
inverse matrix is det(M−1) = 1/ det(M) = 1/i = −i ̸= i. Therefore, we conclude that such an
inverse matrix does not exist, and therefore G is not a group.

6. Consider Xj = − 1
2 iσj as a bases element of the su(2) algebra, [Xj , Xk] = ϵjklXl, where σj are the
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Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Verify the following:

(a) [σj , σk] ≡ σjσk − σkσj = 2iϵjklσl .

Solution: We compute the following products,

σ1σ2 =

(
0 1
1 0

)(
0 −i
i 0

)
=

(
i 0
0 −i

)
= iσ3 ,

σ2σ1 =

(
0 −i
i 0

)(
0 1
1 0

)
=

(
−i 0
0 i

)
= −iσ3 ,

σ2σ3 =

(
0 −i
i 0

)(
1 0
0 −1

)
=

(
0 i
i 0

)
= iσ1 ,

σ3σ2 =

(
1 0
0 −1

)(
0 −i
i 0

)
=

(
0 −i
−i 0

)
= −iσ1 ,

σ3σ1 =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
= iσ2 ,

σ1σ3 =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
= −iσ2 ,

as well as the squares of the Pauli matrices

σ2
1 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I2 ,

σ2
2 =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
= I2 ,

σ2
3 =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= I2 .

Therefore, we have σ2
j = I2 and σjσk = −σkσj for j ̸= k. So, the commutator [σj , σj ] = 0,

while [σ1, σ2] = +2iσ3, [σ2, σ3] = +2iσ1, and [σ3, σ1] = +2iσ2. The commutators are
completely antisymmetric, thus we can write it in terms of the Levi-Civita ϵjkl tensor,
[σj , σk] = 2iϵjklσl.

(b) {σj , σk} ≡ σjσk + σkσj = 2δjkI2.

Solution: From the results of part (a), we find that σjσk+σkσj = 0 for j ̸= k. Therefore,
{σk, σk} = σjσk + σkσj = δjk(2σjσj) = 2δjkI2.

(c) σjσk = δjkI2 + iϵjklσl.
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Solution: Let us add the two results [σj , σk] = 2iϵjklσl and {σj , σk} = 2δjkI2,

[σj , σk] + {σj , σk} = 2σjσk = 2iϵjklσl + 2δjkI2 .

Therefore, we immediately find that σjσk = δjkI2 + iϵjklσl.

(d) Show that a group element U(αj) ∈ SU(2) can be written as

U(αj) = exp

(
−1

2
iαjσj

)
= I2 cos

(
1

2
α

)
− i

αjσj

α
sin

(
1

2
α

)
,

where α2 =
∑

j(αj)
2.

Solution: Let us Taylor expand about αj = 0,

exp

(
−1

2
iαjσj

)
=

∞∑
n=0

1

n!

(
−1

2
iαjσj

)n

,

=

∞∑
n=0

1

(2n)!

(
−1

2
iαjσj

)2n

+

∞∑
n=0

1

(2n+ 1)!

(
−1

2
iαjσj

)2n+1

,

where we split the sum into even and odd terms. Now, (−iαjσj/2)
2n = (−1)n(αjσj/2)

2n,
while (−iαjσj/2)

2n+1 = −i(−1)n(αjσj/2)
2n+1. Now, we evaluate (αjσj)

2,

(αjσj)
2 = (αjσj)(α

kσk) ,

= αjαk (σjσk) ,

= αjαk (δjkI2 + iϵjklσl) ,

= αjαj I2 = α2 I2 .

So, (αjσj)
2n = (α)2n I2, and (αjσj)

2n+1 = (αjσj)
2n(αjσj) = (α)2n(αjσj). So, the expo-

nential expansion is

exp

(
−1

2
iαjσj

)
=

∞∑
n=0

(−1)n

(2n)!

(
1

2
αjσj

)2n

− i

∞∑
n=0

(−1)n

(2n+ 1)!

(
1

2
αjσj

)2n+1

,

= I2

∞∑
n=0

(−1)n

(2n)!

(α
2

)2n
− i

(
αjσj

α

) ∞∑
n=0

(−1)n

(2n+ 1)!

(α
2

)2n+1

,

= I2 cos
(α
2

)
− i

αjσj

α
sin
(α
2

)
.

7. Consider Xj = Lj as a bases element of the so(3) algebra, [Xj , Xk] = ϵjklXl, where Lj are the matrices,

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0

 .
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Verify the following:

(a) [Lj , Lk] = ϵjklLl .

Solution: Notice that (Lj)lk = ϵjkl. So, the commutator is

([Lj , Lk])ln = (Lj)lm(Lk)mn − (Lk)lm(Lj)mn ,

= ϵjmlϵknm − ϵkmlϵjnm .

Recall the Jacobi identity for the structure constants, here the Levi-Civita, ϵjkmϵmln +
ϵklmϵmjn + ϵljmϵmkn = 0. We can use the antisymmetry of ϵjkl to write

−ϵjkmϵmln = ϵklmϵmjn + ϵljmϵmkn ,

= ϵjmlϵknm − ϵkmlϵjnm ,

= (Lj)lm(Lk)mn − (Lk)lm(Lj)mn ,

where we identified the difference in Levi-Civita’s as the commutator of [Lj , Lk]. So, we
find

(Lj)lm(Lk)mn − (Lk)lm(Lj)mn = −ϵjkmϵmln ,

= ϵjkmϵmnl ,

= ϵjkm(Lm)ln .

We conclude that [Lj , Lk] = ϵjklL
l.

(b) {Lj , Lk} ̸= Nδjk for any j, k, and N .

Solution: The anticommutator {Lj , Lk} = LjLk + LkLj . Since (Lj)lk = ϵjkl, we have

(Lj)lm(Lk)mn + (Lk)lm(Lj)mn = ϵjmlϵknm + ϵkmlϵjnm ,

= −ϵjlmϵknm − ϵklmϵjnm ,

where in the last line we used the antisymmetry properties of the permutation tensor.
Now, we use the property ϵjlmϵknm = δjkδln − δjnδkl. So, we have

(Lj)lm(Lk)mn + (Lk)lm(Lj)mn = −ϵjlmϵknm − ϵklmϵjnm ,

= −(δjkδln − δjnδkl)− (δkjδln − δknδlj) ,

= −2δjkδln + δjnδkl + δknδlj .

Thus, we see that {Lj , Lk} ̸= Nδjk for any j, k, and N .
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(c) Show that a group element O(αj) ∈ SO(3) can be written as

O(αj) = exp
(
αjLj

)
= I3 +

αjLj

α
sinα+

(
αjLj

α

)2

(1− cosα) ,

where α2 =
∑

j(αj)
2.

Solution: Taylor expanding about αj = 0, we find

exp
(
αjLj

)
=

∞∑
n=0

1

n!

(
αjLj

)n
,

=

∞∑
n=0

1

(2n)!

(
αjLj

)2n
+

∞∑
n=0

1

(2n+ 1)!

(
αjLj

)2n+1
,

where we split the sum into even and odd terms. Let us evaluate (αjLj)
2,

[(αjLj)
2]ln = [(αjLj)(α

kLk)]ln ,

= αjαk (Lj)lm(Lk)mn ,

= αjαk ϵjmlϵknm ,

= −αjαk ϵjlmϵknm ,

= −αjαk (δjkδln − δjnδkl) ,

= −(α2δln − αnαl) ,

where in the fourth line we used ϵjml = −ϵjlm, and in the fifth line we used the property
ϵjlmϵknm = δjkδln − δjnδkl. Next, we evaluate (αjLj)

3,

[(αjLj)
3]lp = [(αjLj)(α

kLk)(α
rLr)]lp ,

= αjαkαr (Lj)lm(Lk)mn(Lr)np ,

= −(α2δln − αnαl)αr(Lr)np ,

= −α2αr(Lr)lp + αnαlαr(Lr)np ,

= −α2αr(Lr)lp ,

= −α2(αjLj)lp ,

where we used that αnαr(Lr)np = αnαrϵrpn = 0 since we have a symmetric sum over
a completely antisymmetric object. So, we find that (αjLj)

3 = −α2(αjLj). Finally, we
evaluate (αjLj)

4 as

(αjLj)
4 = (αjLj)

3(αjLj) ,

= −α2(αkLk)(α
jLj) = −α2(αjLj)

2 .
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Therefore, the sum over even terms can be expressed in terms of (αjLj)
2, while the odd

terms can be written in terms of (αjLj). Specifically,

(αjLj)
2n = (−1)n+1α2n

(
αjLj

α

)2

, n > 0

(αjLj)
2n+1 = (−1)nα2n+1

(
αjLj

α

)
, n ≥ 0 .

Substituting these expressions into the series expansion,

exp
(
αjLj

)
= I3 +

∞∑
n=1

1

(2n)!

(
αjLj

)2n
+

∞∑
n=0

1

(2n+ 1)!

(
αjLj

)2n+1
,

= I3 −
(
αjLj

α

)2 ∞∑
n=1

(−1)n

(2n)!
α2n +

(
αjLj

α

) ∞∑
n=0

(−1)n

(2n+ 1)!
α2n+1 ,

= I3 +

(
αjLj

α

)2
(
1−

∞∑
n=0

(−1)n

(2n)!
α2n

)
+

(
αjLj

α

) ∞∑
n=0

(−1)n

(2n+ 1)!
α2n+1 ,

= I3 +

(
αjLj

α

)2

(1− cosα) +

(
αjLj

α

)
sinα .
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