WILLIAM & MARY

CHARTERED 1693

PHYS 772 — The Standard Model of Particle Physics
Problem Set 5 — Solution

Due: Tuesday, March 18 at 4:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Derive the classical equations of motion for spinor electrodynamics given the Lagrange density
1.- - 1
L= 51’1/)]])1/) + h.c. — myyp — ZFWFW ,
with D, = 0, +iqA, and F,,, = 0,A, — 0, A,, and the Euler-Lagrange equations

8(55)_55 8(65)_65 a(éﬁ )_(w
"\6@)) 5w M\s@.0)) " M\80.A)) T dA,

Solution: Rewriting the Lagrange density as
i - i - . 1 , _
L= §¢7“(5u¢) - 5(%@7‘% —mypp — ZF;WF# - un¢7”1/h

we can find the classical equations of motion by direct evaluation. Let us first obtains the
equations for the v field, which come from the Euler-Lagrange equations as

oL 1 1
% (fam) =2 (30) ==,

oL )
i %V“(@ﬂ/f) —map — gAY

Combining together, we find the equations
i 1
—57"0u¥ = 57" (0u) — MY — gAY,

= (i —m—qd)p=0.
For the 1) field,

oL - i, -
— 2ot ) =2 i
oL ) - - _
5 —5(6M1p)7“ —my — gAYt
Combining, we find
i, - i

SO = —5(5‘u1/7)v“ —map — qA ",

— G +qh+m) = 0.
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Finally, for the electromagnetic field, we find

oL 1 oF
9= af_ 9t aB
On (é@Au)) 40 <2F 5@&)) ’

1 é
=_Z af T _
28H (F 5(8#/1,,) (8aAlg 85Aa)> 5

= f%aﬂ (Faﬂ (5g5;; - 5;;55)) :

1 v v
:_éau(Fu _FM)’

= —0,F",
where in the fourth line we used F** = —F*”. For the potential term,
oL —
G4, =gy,

from which we arrive at
uFH = qy" 1.

Therefore, the classical equations of motion are

(i —qh—mip=0, GGT+ah+m) =0, O™ = gl

2. An alternative Lagrange density for the classical free electromagnetic field is
L= 18 A, " AY
= 50 Ay .

(a) Under what assumption does £’ yield the free inhomogeneous Maxwell equations?

Solution: The free inhomogeneous Maxwell equations are J,F*” = 0. Since F* =
OFAY — 0¥ A¥, we have

0=0,F" =0,(0"A” — 0" A*),
= 00, A" — 9" (0,A"),
=0*A" - 9"(9,A") =0.
So, the free inhomogeneous Maxwell equations, in terms of A, are 02AY — 0" (0, A*) = 0.

Now, for the Lagrange density £ = —%8,“4,,8“14", we can derive the equations of motion
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through the Euler-Lagrange equations,
(a) 54,
Ay)
= 0 0 76 Agd* AP
" 16(0,4,) b

1, (6(8aAp) a Aﬂ)
— 20 | e 07 AP 4 8“A5
(510

(—;aaAﬁaaAﬂ) ,

-0, (555; 8°‘A5) —0
— 9,0"A = 0.

Therefore, we find that the equations of motion are 9?A” = 0, which differs from 92A" —
0" (0,A") = 0 by a four-divergence 9¥(9,A"). Therefore, the assumption that £’ yields
the free inhomogeneous Maxwell equations is the Lorentz gauge condition, d,A* = 0.

(b) With this assumption, show that £’ differs from £ = fiF w M by a four-divergence.

Solution: Starting from the definition,
1 v
E == _ZFMVF 5

_ _i(aHAV C 9, A,) (M A — 97 AP,

1 14 v
—5(0uA,0" A" = 0, A, A),
1 wAY 1 voAK
= SOAOAY + S0,A,0" AV,

1
= L'+ S0, A0" A"

Note that 0,(A,0"A*) = 0,A,0" A" + A, 0,0"A* = 0,A,0"A* + A, 00, A", where in
the last equality we used the fact that the derivatives are symmetric on the second term.
Moreover, we can rewrite the second term with 9,(4,0,A4") = (9,A")* + A,0"0,A".
Relabeling the summed indices on the second term, p <> v, and combining with the first
relation we obtain

Ou(A”9VAF — A*9,AY) = 0, A, 0" AF — (3uAH)2'
So, substituting this into £ = £’ + %8MA,,8”A“, we have
1 1
L=L+ iau(A"ﬁ”A" — A*0,AY) + 5(3“/1”)2 .

So, £ differs from £’ by a four-divergence so long as we restrict £ to the Lorentz gauge,
O A" = 0.
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3. Consider the Lagrange density for scalar electrodynamics,
1 v
L= (Dup)! (D"p) = m*¢lo — - Fu F™ = V(')
where m is the mass of the scalar field, D, = 0, + iqA, where ¢ is the charge of the scalar field,
F., = 0,A, —0,A,, and V(¢*p) is a U(1) invariant self-interaction term, e.g., V(pT¢) = MpTp)2.

This theory is invariant under local U(1) gauge transformations. Split the Lagrange density as follows:
L = Lkg + LegMm + Lint., where Lk is the usual free complex Klein-Gordon field theory,

Lia = 0up" o —mPple,
and Ly is the Lagrange density for the free electromagnetic field,
1 "
»CEM = _ZF#VF .

Determine the interacting Lagrange density L. for scalar electrodynamics.

Solution: The boson’s interaction with the electromagnetic field is due to the covariant deriva-
tives,

(D) (D*0) = [0 + iqAu) ] [(0" + igA*)e],
= (Oup! —igALp") (0" p +igA ),
= 0" M0 —iqALpT (0"p) +iq A" (0ue ) + P A A o,
= Oup’ 9 —ig A [T (0up) — (D" ] + AL A" ol
So, the interaction Lagrange density is

Lint. = =V (oT9) —igA" [0 (0,0) — (040 0] + ¢ AuA¥ T

4. Verify that the field strength tensor F),, can be computed through the commutator igF,, = [D,,, D,].

Solution: Evaluating the commutator against some test function ¢,
(D> Dol = [0 + iqAu, 9, +iqAulp,
= [0, 0] +1al0,, Al +ialAy, 0]p — ®[Au, Ale,
= iq[Op, Al + iq[Ay, D],
= iq (0u(Avp) — AvOup + Ay — 0, (Aup))

where in going to the third line we used that 0,0, ¢ = 0,0,¢, and [A,, A,] = 0. Now, 0,(A,p) =
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(9 40)@ + Auyp and 8, (Ayp) = (9,A,)0 + Ay, So,

1D Dl = 0u(A) — Ao + A0 — OlAy).

= (0, A,)p + A0, — ABup + ALdup — (0,A) e — Audup,
= (0,4, — 0, A,)p,
= e,

so we conclude that igF),, = [D,, D,].

5. Show that the radiative transition, e~ — e~ + 7, is forbidden in vacuum.

Solution: Let us defined the following kinematics,

e (p) — e () +(k),

where p = (E,p), p’' = (E',p’), and k = (w, k) are the four-momenta of the incoming electron,
outgoing electron, and outgoing photon, respectively. In vacuum, each of these particles are on
their mass-shell, p? = p'?> = m?2, and k? = 0. The S matrix element is given by

Sle™ = e ) =2n)* W (p—p —k)iM(e” — e r),

where the delta function enforces conservation of four-momentum, p = p’ + k and M is the
amplitude. The leading order amplitude is non-zero, given by iM = —ieu(p)fu(p) + O(e?).

Let us examine conservation of four-momentum, which in terms of its components are £ = E'+w
and p = p’+k. Let us choose to evaluate the amplitude in the rest frame of the initial electron, so
p = 0, and E = m,. Therefore, by conservation of energy and momentum, we have m, = F'+w
and p’ = —k, respectively. Since the particles are on-shell, we further have E' = \/m2 + p’?
and w = |k|. Combining these results, conservation of energy imposes the condition

me = /m2+k2+ k|,

This condition is only true if k = 0, that is there is no photon emitted. We conclude that
conservation of momentum forbids this reaction, giving S(e” — e~ 7y) = 0.

6. Consider the pair production of pions in electron-positron annihilation, e"et — 7~ 7. Assume the
reaction occurs at a center-of-momentum (CM) energy /s > m,, but is comparable to the mass
of the produced pions, /s ~ m,. For simplicity, describe the charged pions by quantum scalar
electrodynamics (for the Feynman rules, see the notes on Feynman Rules - SQED).

(a) Show that the unpolarized differential cross-section to leading order in « is given by

do _ 1a?B
dQ 8 s

(1 —cos?8) + O(a?),

where 6 is the CM frame scattering angle and 3, is the speed of the pion (recall that |pr| = E.fBx).
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Solution: Let us consider the reaction with the following kinematics
¢ (pys) + et (ko) =7 () + 7t (K),

where in the CM frame p = (E.,p), k = (Fe, —p), o' = (Er,p’), and k¥’ = (E,,—p’). For
the electron we have E, = 1/s/2 and |p| = /s — 4m2/2, while for the pions E, = /s/2
and |p’| = v/s — 4m2 /2. The scattering amplitude at leading order is given by

where in the third line we added zero in the form of 0 = p’ — ', then in the fourth
line used ¥’ + p’ = k + p, and finally in the fifth line used the on-shell Dirac conditions
(p — me)us(p) = 0 and 0, (k)(p +me) = 0, which subsequently gives o, (k)(¥ 4 p)us(p) = 0.
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The Spin—averaged amplitude is then

(IM]?) Z|Mee — - rt)2,

2
- % <8W {tr [php'p] —mZex[pyp]} + O
= <7ra> 20" k) (0 -p) — (0 - 9) (k-p) —mZ (0 - P)] + O(a?),

=3 (87;a>2 [4(p" - k) (¢ - p) — m2s] + O(a?)

where in going to the last line we used s = 2m? + 2k - p and p'> = m2. Now, we evaluate
the remaining scalar products as (p' - k) (p' - p) = (E E. + p’ p)(EﬂEe —p' -p) =
(E<E.)? — (p' - p)?, where we used p = —k in the CM frame. Since p’-p = |p ||p\ cosG
and fr = [p'|/Ex and e = [p|/E, then (p' - k) (p' - p) = (ExEe)*(1 — (Bxfe)? cos®0) .

Furthermore, E, = E. = /5/2, s0o (EE.)? = (s/4)? So, the spin-averaged matrlx element

is
2 2 2
4 .
(M =5 (20) 5 (1= 222) - (a2 o0 + 010,
s 4 s
=8r2a?B2 [1— BZcos® 0] + O(a?),
where 8, = |p'|/Ex = /1 — 4m2 /s. The differential cross-section is

do _ L IPT
dQ  6472s |p| ’

1 L—4mi/s 5 5.9 2 2 3
6471_281/1_47”2/8871'aﬂﬂ[lfﬂecos ] + O(a?),

- o B (1—B2cos*0) + O(a®).
8s B
For energies near /s ~ 2m,, . = 1 + O(m?/s), so
do 1 a?p3
Q8 s

(1 —cos®0) + O(a®,m?/s),

William & Mary Page 7 of 22 Department of Physics



Problem Set 5 — Solution
PHYS 772 - The Standard Model Spring 2025

(b) Compute the total cross-section, and compute ratio, o(e"et — 7~ 7)) /o(e”e™ — u~u™) where
ole"et — pu~pt) = 4na?/3s. Compute the theoretical value at /s = 0.40 GeV and .77 GeV, and
compare to the experimental R ratio, R(y/s = 0.40 GeV) = 0.18 + 0.02 and R(y/s = 0.77GeV) =
9.99 + 0.09. Comment on the comparison. Hint: Examining the plots of the R ratio may be
helpful, see Fig. 53.2 of https://pdg.lbl.gov/2022 /reviews/rpp2022-rev-cross-section-plots.pdf.

Solution: The cross-section is

213
ST o i,

and the R ratio for this process is defined as

ole et - nmh)
olemet = ppt)’

R:

Ta?Bd 3s
3 s dra?’

3/2
g3 1 Am? 1
4 4 s s—oo 4

At /s = 0.4GeV, the R ratio is R = 0.18 & 0.02, which our theoretical result, Ry, ~
0.091, which is within a factor of 2 of the experimental result. The significance of the
deviation is 4.50. At /s = 0.770 GeV, the experimental value is R = 9.99 + 0.09, but the
theoretical value is Ry, &~ 0.202, which is a large discrepancy of nearly a factor of 50, which
corresponds to a ~ 1000 deviation. So, the low-energy region is in qualitative agreement,
while the larger energy region categorically disagrees with experiment. Examining the plot
of the R ratio, there is a large resonance around /s ~ 0.770 GeV. This is the isovector
JPC = 17~ p° resonance with a mass m, ~ 0.770 GeV, which gives a large dynamical
enhancement in the e"et — 7~ 7T cross-section. Strongly interacting resonances physics
must be captured non-perturbatively, as divergences in amplitudes can only be found by
summing the entire series, and are not found at any given order. So, perturbation theory
(even more sophisticated theories like chiral effective theory) will always fail to capture the
structure of the cross-sections at energies away from threshold.

7. Consider lepton pair production in electron-positron annihilation within QED, e~e™ — £=¢*, where
£ = p or 7. Assume the reaction occurs at a center-of-momentum (CM) energy /s > m,, but is
comparable to the mass of the produced leptons, /s ~ my.

(a) Show that the unpolarized differential cross-section do/d2, to order o, is given by

do a? 9 2\ . 2 3
dQ_Zsﬂz[1+COS 0+ (1—57)sin 0]—1—(9(04),

where §y is the speed of the produced lepton in the CM frame, and 6 is the scattering angle.

Solution: Let us consider the reaction with the following kinematics

e (p,s)+et(k,r) = (p,s")+ L7 (K "),
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where in the CM frame p = (E,,p), k = (E., —p), p' = (E¢,p’), and k¥’ = (Ey, —p’). Since
the electron mass is negligible, we have E. = |p| = /s/2, while for the leptons Fy = 1/s/2
and |p’| = /s — 4m? /2. The scattering amplitude at leading order is given by

i [t ()" o ()] 5, (k) s ()] + O(a?).

For the unpolarized differential cross section, we require the spin-averaged matrix element,

(IMP) == ZZMTM

s,r s’ r!

4o

= 4 («9) ;[ﬁr(k)W”Us(p)]T [0r (k)" us(p)]

X Z[ﬁs’(p/)'yuvr’(k/)r [ﬁs/ (p/)’yyv,«/(k/)] + O(a3) )

s’ r!

= i <47TQ> Ztr [@s ()y v (k)T (k)Y us (p))

S

x> e[ (Kt (0 s (0o (K)] + O(a?),

s'r!

- i <47TQ> tr [p’yﬂk’yy] tr [(%/ - mZ)”Y,u(ﬁl + mg)’yl, + O(ag) ,

S

where we used ) us(p)us(p) = >, vs(p)vs(p) = p for the electron and positron, and
Yo us(pus(p’) = p' +myg and Y vs(p')vs(p') = P — my for the lepton and anti-lepton,
respectively. Now, tr [p'y“kzv | = 4(p"k” + p kH — g"'p - k) = A(p"kY + pk* — g"V's/2)
where we used s = (p + k)? = 2p - k since m?/s — 0 in the high-energy limit. Also,

tr [(kl - ml)%»(lﬁ/ + mé)%/] =tr |:‘%/7up/7u:| - m? tr [’VM'YV] s
= A[k,p,, + kP, = g (@' - K +m7)],
[kupy kypﬂ gp.lls/2] bl

where we used s = (p/ + k')? = 2m3 +2p' - k.
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Contracting the traces, we find

tr [pr k] o [(F = mo) v+ ma)|
= 16(p"k” + p"k" — g"'s/2)(k,p,, + kD), — 9uvs/2) ,
=16(2p-K'k-p+2p-pk-K—sp-k+p -k)+5%),
=32((p-¥)’ +(p-p')° +smi/2) ,
where we used the following relations for the Mandelstam variables, s = (p+k)? = 2p -k =
P +EZ=2mi+20 K, t=@p-p)=m—2p -p=(k—FK)>=mi—2k-F,
u=(p—K)>=m?—-2p-k = (k—p)? =m?—2k-p. Therefore, the spin-averaged

amplitude is

4o

S

2
Sy

I e I (R R R )

2
Sy

dra\ 2
=38 < 7;&> <E62E§(1 + Becos0)? + E2EF (1 — Bycos6)* + 2> +0(a?),

2
= (47)? (1 + 2 cos? 0 + 4?) + 0(a®)

where in the second line we used (p- k') = E.FE¢ + |p||p’| cos§ = E.E¢(1 + B¢ cosf) and
(p-p') = E.E¢— |p||lp’|cos = E.E¢(1 — Becosh), with E, = |p| and |p’| = F¢f,. Further
in the third line, we used Ey = E. = \/s/2. Recall that 3, = |p|/E; = 1 — 4m? /s, so we
simplify the spin-averaged amplitude as
(IM[?) = (4ma)” (14 B7 cos® 0 4+ 1 = B7) + O(a”)
= (4ma)*(cos? O + sin® O + BZ(1 —sin? ) + 1 — 52) + O(a®),
= (47a)*(1 +cos? 0 + (1 — B7)sin? 0) + O(a?) .

Finally, the unpolarized differential cross section is

do _ L IPT ey
dQ  6472s |p| ’
1

= mﬁg(4ﬁa)2[1 +cos? 0 + (1 — f7)sin? 0] + O(a?),

2
- Z—sﬁg [1+ cos? + (1 — B2)sin? 0] + O(a?).

(b) Show that the total e”et — £~ T cross-section at leading order is

4 2 4 2 2 2
e § L <1 + ml) +0(a?).
3s S s
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Solution: Directly integrating the unpolarized differential cross-section,

do ! do
o / a9 i /7 ) cost oo
where we integrated over ¢ since the system has an azimuthal symmetry. Therefore, we
have

2 1
o= %B@/ dcosf [1+cos®0+ (1— B})sin® 6] + O(c?),
1

2 gl 1
= %ﬁg / dcosH(lJrcoszH)Jr(lfB?)/ dcosd (1COS29)] +0(a?),
8 L/ -1 -1

2 | 39\ ! 39\ !
:Bﬁ@ cos + <2 f +(1-57) cos — & o +0(a?),
2s 3 -1 3 1

=T, :<2+ §> +(1-87) (2— 3)} +0(a?),

Since 87 =1 —4m?/s, we find 1 — 82 = +4m?/s. So, we conclude

4dra’ 4m? 2m?2
PRy S L (1+ m£>+(’)(a3).
3s S s

(c) Take the ultrarelativistic limit of the results of (a) and (b), that is m?/s — 0, to recover the

following high-energy results,

d 2 4o’
d—gzj—s(l—i—COSQG)—i—(’)(as), and o= gj

+0(a?).

Solution: Trivially, as m?/s — oo, then B, = 1+ O(m3/s). So, for the differential
cross-section,

do 042 2 2\ 1.2 3

=T B [1+cos? 0+ (1 57) sin? 0] + O(a?),
052

= E (1 +COS2 0) + O(a37m3/8)7

while for the total cross-section
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(d) Plot the O(a?) theoretical s - do/dQ vs. cosf € [—1,1] at a CM energy /s = 35GeV for both
e"et — pu~pt and e"et — 7777 (make a separate plot for each reaction). Plot the y-axis in
nb - GeV?, restricted to (s-do/dQ)/ (nb- GeV?) € [0.0,12.0]. Plot the experimental data for each
reaction, measured from the JADE experiment at PETRA, over the theoretical curves. Compare
and comment on the quality of the theoretical description of the experimental data. Note: The
data file presents the cross-section as s - do/d). The data files were obtained from the article by
the JADE collaboration, https://link.springer.com/article/10.1007/BF01560255.

Solution: Plotting the cross-sections, remembering to multiply by (hc)? = 1 and
1b/ 100fm? = 1, we find the following results in 1. Noticeably, there is a discrepancy
in between the theoretical and experimental values. The theoretical cross-section is sym-
metric in cosf, however the data is clearly asymmetric. In the next part, we examine
the ratio of the experimental value to QED theory to show more clearly how large the
asymmetry is.

-1

8512 e~et = ppt B 12 - e~et -7t

s 10 s 3/ GeV =35 s 10 V3/ GeV =35

> >

Q Q

O 8L O 8L

2 6 g 6

~ 4 QED O(a?) ~ 4 QED O(a?)

g 2t g 2f

~ ~

__8 0 | | | | _8 0 | | | |

. —lo —0.5 0.0 0.5 1.0 . —Lo —0.5 0.0 0.5 1.0
cos 6 cos 6

Figure 1: Plots of s-do/dQ2 vs. cosf for /s = 35 GeV compared with the JADE data
for the reactions e~e™ — pu~p™ (left) and e~e™ — 77 77T (right).

(e) Make a plot of the ratio of the experimentally measured differential cross-section to the leading
order QED prediction for each reaction as a function of cosf € [—1,.1] for the CM energy /s =
35GeV. Restrict the y axis between 0.5 and 1.5. Compare and comment on the quality of the
theoretical description of the experimental data.

Solution: Figure 2 shows the plots of the ratios of the experimental differential cross-
section for both eet — p~pt and e“et — 7777. The asymmetry is clearly visible,
which has a max of about ~ 40 discrepancy near |cos 6| = 1.
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o 150 - e~et - u—pt A 150 - e"et » 7=t

g 5/ GeV = 35 g V5 / GeV =35

g L2 -y ’cg 1.25 -

S § § b b,

Z 1.00 - Z 1.00 $— 3

- bee - y

o 075 - o 075

o o

~ ~

"8 050 | | | | "g 050 | | | |
—-1.0 —0.5 0.0 0.5 1.0 —1.0 —0.5 0.0 0.5 1.0

cos 6§ cos @

Figure 2: Plots of ratio of JADE experimental s - do/dQ) to the QED theory result at
O(a?) vs. cosf at /s = 35GeV for the reactions e~et — p~put (left) and e~et —
7771 (right).

This clearly indicates that the leading QED form is not sufficient to describe the data.
Since @ < 1, we do not naively expect that radiative corrections will drastically change
the result. Further, since QED is parity invariant, and this is a direct annihilation reaction
(meaning no t-channel contributions), this asymmetry in cos f is an indication that there is
some parity violating contribution coming from some other interactions (here it is the weak
interactions). We can gain some understanding of the magnitudes of other virtual particle
contributions by adding an additional term, linear in cos 8, to the differential cross-section,

do a?

8
— = 2 = 2
0" 1 (1+cos 9+3Acos€> + O(a”),

where A is the forward-backward asymmetry. In general A can depend on the energy,
A = A(s). The factor of 8/3 arises from the general definition

1 0
do do
AdCOSQm-[ldCOSQE
i .
do
/;1dCOS9@

The linear term vanishes when integrating over the entire domain of 6, but is the only
contribution to the different of the forward and backward distributions.

A=

A simple fit with this new model against the JADE data for eet — p~put (with
Ndof. = 10 — 1 = 9 gives A(\/s = 35GeV) = —0.11 & 0.01 with a x?/nq..t. = 0.07. See
the fit output below.

iter chisq delta/lim lambda A

5.5031142187e+02 0.00e+00 6.69e+00 1.000000e+00
5.2027323982e+00 -1.05e+07 6.69e-01  -6.970939e-03
6.6016451945e-01 -6.88e+05 6.69e-02 -1.075674e-01
6.6015998595e-01 -6.87e-01 6.69e-03 -1.076680e-01

w N = O
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iter chisq delta/lim lambda A

After 3 iterations the fit converged.
final sum of squares of residuals : 0.66016
rel. change during last iteration : -6.86728e-06

degrees of freedom (FIT_NDF) : 9
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.270834
0.

variance of residuals (reduced chisquare) = WSSR/ndf 0733511
Final set of parameters Asymptotic Standard Error
A = -0.107668 +/- 0.0128 (11.88%)

Similarly, for e7et — 7777 (nqor. = 8 —1 = 7), we find A = —0.08 + 0.02 with a
X% /Nd.o.r. = 0.07. See the fit output below.

iter chisq delta/lim lambda A
0 3.3441186905e+02  0.00e+00 5.96e+00 1.000000e+00
1 4.6561732670e+00 -7.08e+06 5.96e-01 3.663427e-02
2 5.3423349422e-01 -7.72e+05 5.96e-02 -8.363611e-02
3 5.3422706976e-01 -1.20e+00 5.96e-03 -8.378645e-02
4 5.3422706976e-01 -2.08e-10 5.96e-04 -8.378645e-02
iter chisq delta/lim lambda A

After 4 iterations the fit converged.
final sum of squares of residuals : 0.534227
rel. change during last iteration : -2.07819e-15

degrees of freedom (FIT_NDF) 7
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.276257
0.

variance of residuals (reduced chisquare) = WSSR/ndf 0763182
Final set of parameters Asymptotic Standard Error
A = -0.0837865 +/- 0.01639 (19.56%)

The two asymmetries are consistent with each other, indicating that the dominant contri-
bution is independent of the lepton mass. Figure 3 shows the QED result, JADE data,
and the fit result. Later in the course, we will see that the cause of this asymmetry is due
to annihilation into a Z° boson.
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Figure 3: Plots of s -do/dQ vs. cosf for \/s = 35GeV for the model cross-section
including the asymmetry term A cos 6, compared with the JADE data for the reactions
e"et — u~pt (left) and emet — 7771 (right).

8. In supersymmetry (SUSY), each fermion has a scalar partner, and each gauge boson has a fermionic
partner. For example, the supersymmetric partner of the muon is the spin-0 smuon (ji), and the partner
of the photon is the spin-1/2 photino (7). These particles have yet to be discovered in nature, yet we
can place bounds on some of their properties by performing precision experiments such as measuring
the anomalous magnetic moment of the muon, a, = (g, — 2)/2. In this problem, we will estimate
bounds on the masses of these hypothetical particles.

Let us consider a simple supersymmetric extension of the Standard Model which includes the smuon
and the photino. The Lagrange density for this model is given by

7
Lsusy = Lam + 55((?)( +h.c. —msyxx

+ (D) (D" ) — m,%tpTap — gy + hee.,

where D, = 9, +1iqA,, A, is the photon field, ¢ is the muon field, ¢ is the smuon field with mass term
my, and x is the photino field with mass term ms. The coupling ¢ is the electric charge of the fields,

e.g., ¢ = —e for the muon where e is the fundamental charge which is related to the fine-structure
constant via o = e?/4m ~ 1/137. The smuon has the same electric charge as its Standard Model
counterpart.

(a) Determine the Feynman rules for the SUSY model. That is, draw a diagram an associated factor
for the smuon propagator, the photino propagator, and any interaction vertices with these two
particles. Hint: You do not need to derive these using generating functionals, use your knowledge
of other well-known field theories to determine the various quantities.

Solution: Using the Feynman rules for QED, Scalar QED, and Yukawa theory, we find
the following rules. For the smuon propagator,

__4___ /L'
< = -7
P p? —m? 4 i€’
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for the photino propagator
PPN _ Z(p + m’?) ’
Iz p? —m2 +ie
the iy vertex
p v
i
/J’\MM(\ Z—lq(p-l-p'),
‘\
p
and for the yjifi vertex is
B
----- = —iqdap;
o

(b) Draw the leading order contribution of this SUSY model to the puy vertex function, —igl'*,
and write down the mathematical expression using the Feynman rules derived in part (a). Do
Not evaluate any integrals. Label all momenta and Lorentz indices. For the momenta, let p be
the initial muon momentum, p’ the final muon momentum, and ¢ be the momentum transfer by
the EM field, ¢ = p’ — p. The muon is on-mass shell, p?> = p'2. Hint: There is only a single
contributing diagram.

Solution: Here we want the contribution to I'* from the SUSY theory, which we define
as 6I'*. From the Feynman rules, we have

quﬂ—p

o -k '~k
—igu() o pulp) = T NN
,l \\ ,

TN
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where at leading order in a, the amplitude is

4L ms 7 7
o) = iof [ S G g O
1 (0" +p —2k)"(F +my)
o /d m2)[( — )2 — m2][(p— k) —m2]’

where we assume an implicit +ie prescription in the denominators.

(c) Let’s assume that mj ~ msy ~ Agusy, where Agusy is a typical scale of SUSY interactions. One
can show, assuming that m, < Agysy, that the SUSY contribution to the muon anomaly «,, is
given by

5aSUSY — a my,
U 47 Asusy

where C is a constant of O(1). Constrain the SUSY scale Agysy using the experimental and
theoretical values of a,. Currently, the best experimental estimate for a, was recently measured

to be a&ex') = 116 592059(22) x 10~ by The Muon g — 2 Collaboration (see D. P. Aguillard et
al., Phys. Rev. Lett. 131, 161802). Within the Standard Model, the best theoretical estimate
for the anomaly is a{™ = 116591810(43) x 10~ from The Muon g — 2 Theory Initiative (see
Physics Reports 887 (2020) 1-166). Comment on why is the assumption m, < Agsusy justifiable,
and whether or not SUSY particles (within this model) can be detectable at the Large Hadron
Collider.

Solution: To bound the SUSY scale, we note that the difference between the experimental
and theoretical values is

da, = a/(fx') — aLth‘) ,

=2.49(48) x 1077 .

We assume that C = 1, and estimate Agygy be requiring that (5a§USY < day,

am#

m
da, > ——+— = A .
47T Asusy sUSY 2 4 5au

Since o = 1/137, and m,, ~ 105.7MeV, we find

ozm#

Agusy > 30
u

> 2.47 x 10” MeV .

so, Asusy > 25 TeV.

Since m,, ~ 100 MeV, and we have not discovered SUSY particles up through scales 14 TeV
(LHC energies), then the assumption that m, < Agusy is valid since we expect Agusy >
14 TeV > my,. Finding Asysy > 25TeV, the LHC today does not have the capabilities to
discover particles within this SUSY theory.
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(d) Challenge (Optional): Determine the constant C in 5aEUSY by evaluating the Feynman ampli-
tude. To do this, perform the following steps

« Let P be the total momentum, P = p+p/, such that P-q = 0. In the ¢ — 0 limit P? = 4mi.
Substitute p = (P — ¢)/2 and p’ = (P + ¢)/2 in the Feynman integral. The vertex can then
be written as a function T'*(p’, p) = T* (P, q).

« Use the projection formula

1 3 L omu (P P v
da, = 12mi tr [(mi’yy —-PpP- 2mMPl,> VY + TH (2 + mu> [Yos Yp) (2 + mu> sV P ] ;

where V¥ = V¥(P) =T"(P,0) and

_orr
0q,

SVPY = §VPY(P)

q=0

Show that 6V *¥ = 0 for this amplitude, and evaluate the remaining trace.

« Use the Feynman parameterization to combine the denominators of the Feynman integral.
The relevant formula is

! _2/1d o
225 ), “w(A-B)+ B}

« Perform the convergent Feynman integrals using the following formulae

(k2 +2P &k — M2]? 2 P24 M2

/d4k i B
[k2+2P-k— M23 2 P24 M2’

/d4k k? — (k-p)?/m?  6Gir®m?a?
(k2 +2P k— M2 P2+ M2’

where P = ap with « being some factor independent of k.
. Simplify the expression by setting m5 = mj = Asusy, and assuming m, < Agsusy. The
remaining Feynman parameter integral over z can then be analytically evaluated.

Below I outline my approach. Recall the matrix element is

VIR | 4 (p +p — 2k)"(k +m5)
‘”<pm”‘0@4/dkua_n@mn—kﬁ—n%Mp—m2—mﬁ'

Now, P =p'+p, ¢=p' —p, so that p= (P — ¢)/2 and p’ = (P + q)/2, so

i? (P — 2k)"(k + ms)

(2m)t /d g m3)[((P+q)/2 = k)* =mZ][(P = q)/2 = k)* —m]

T (P, q) =
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William & Mary

Now, V# is
VH(P) = o6TH(P,0),

i [ (P—2k)(F+ms)
@m4/dkwtw@MPm—kP—maw

and the V", u term is

sveup) = S|
q=0
i [, (P20t my)
- (2n)4 /d K (k2 —mZ]
0 1

* 0q, ((P+a)/2= B2 = m2][(P = )/2— )2 = m2] o

207

which can be seen by using the product rule on the denominator, and recognizing that
the second term is equivalent to the first except for and overall sign, thus they cancel.

Given this, we find that the muon anomaly is

P —2k)Y
&ZiUSY = Zq 2 /d4k 2 2 ( ) 2 272
(2m)* 12m2 (k2 —m2][(P/2 — k)? — mZ]

X tr [(mi% - PP - gmupu) (k+ m%)} :
We evaluate the trace,
tr {(mi% —-PpP- gmuPy) (F+ m@)} = mi tr(y, k) — P, tr(PF) — gmumgPy tr(ly),
= 4mik,, —4P,P -k — 6m,myP, ,
and then contract with (P — 2k)Y,
(=20 e | (miz — B = S ) k4 )|
= (P —2k)" [4m_k, — 4P, P - k — 6m,m5P,] ,
= [4m2 (k- P — 2k*) — 4(P? — 2k - P)P - k — 6m,ms (P> — 2k - P)] ,

= [4m> (k- P — 2k*) — 4(4m? — 2k - P)P - k — 6m,m5(4m, — 2k - P)| ,

= —Smik:2 +8(P- k) —12(P- k‘)(mi —mums) — 24mimq )
2 P k)? ;
:—12mi[<k2—( 2))+<1—W>(P-k)+2mumg
3 my, my
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So, we have for 5aEUSY

GSUsYy _ _ Y 4 1
oa 2t Jd b mZl(P2 = R = w2

) ()

m

Next, we combine the denominators via the Feynman parameterization,

! _2/1d e
2B~ "), V" w(A-B)+ B}’

where A = (P/2 —k)> —=m? = k* = P-k+m;, —m3 and B = k* — m2. So,

i 2l
_ 2 2 2
AfofP'kerHer;Yfmﬂ. Then,

1 T
[(P/2 — k)2 — mZ2[k2 Q/d“” Pkt m2tm2—m2)+ k2 —mIP’

:2/d Ax =
0 [k2 4+ 2P -k — M?]3

wherge we have defined P = —zP/2 and M? = m2 —x(mg, +m2 —m2) =m(1—-x)—

z(m;, —m2). So, the muon anomaly becomes

c 9 el
5afLUSY = - 2iq < / dz z /d4k - 1 -
(2m)* Jo [k2 4 2P -k — M2)3
2( o (P-k)? my

m
2iq? /1
= — dxz
(2m)* Jo

AN
§I(P,M2;P7mu)

+ ( - m) PYT,(P, M?) + 2m,msZ(P, M?)| ,
where we have defined
I(P,M?) = / _ i 1
k2+2P k— M2 2 P2y 2’
PM2 E/ y, :_Z.TF?.’EAP#A
[k2 4 2P -k — M2]3 4 p2 4 p2’

2.2 2 2,2
(k- P)*/m2 ) 6ir*mja 3 im*mlx

k2+2Pk NP Pryoarz 2P24 a2

I(P,M? P,m,) E/
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where in the second equalities we used the formulae given in the prompt and P =

aP = —(x/2)P. Substituting these evaluations in §aEUSY, we find
"y 1
5aSUSY — —LQQ(ME) / de |m222 - (1- my fpz —myms| = . >
g (2m)* Jo " m, ) 4 P2 4 Np2

2 1 - -
qui/dx[aﬂ(lm’y)xm'y]ﬂ,
81 0 my my | P24+ M?2

where we used P? = 4mi. The denominator is written as

P24 M2 = 2’ P? /4 4+ ms2(1 — 2) —x(mi

() a1 ()]

= mi(az2 + e,%(l —z)—x(1 - 6%1)) )

—’I'I’Lﬁz)7

02
=my,

where we have defined the mass ratios ¢; = mj/m, and e5 = msy/m,. Thus, the
contribution to a,, is

1
5a(SUSY) _ @ / 2? — (1 = e5)a” — €52
w
0

2wy Pt E(l—a) —a(l- )

where we used ¢? = 2 and o = €2 /4.

We assume that m; = ms = Agusy, so that €; = €; = ex = Asusy/m,. So,

5a5UsY) _ @ /1 2® — (1 —en)2® —exw
"
0

27 me—l—e?\(l—m)—x(l—ei)'

Next, it is reasonable to assume that Asusy /mu = ep > 1. Therefore, since z is
bounded in the integrand 0 < x < 1, we approximate the integral as

B 2T €p

1
_al (a¥ a?
T 2mepn \ 3 2 0’

_al 11
T 2men \3 2/

(0% my

1 1
aSUsY) = & 2 / dea(z—1),
0

127 Asusy
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So, we conclude that the constant C = —1/3. Let us revisit the bound on Agysy,
a m
A > — £
SUSY = o da,’

> 8.22 x 10° MeV,

or Asusy > 8 TeV. Since the LHC operates at energies ~ 14 TeV, these particles should
in principle be detectable. However, to date no SUSY particles have been discovered,
pushing the bound to Agygy > 14 TeV.

William & Mary Page 22 of 22 Department of Physics



