
PHYS 772 – The Standard Model of Particle Physics

Problem Set 5 – Solution

Due: Tuesday, March 18 at 4:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Derive the classical equations of motion for spinor electrodynamics given the Lagrange density

L =
1

2
iψ̄ /Dψ + h.c.−mψ̄ψ − 1

4
FµνF

µν ,

with Dµ = ∂µ + iqAµ and Fµν = ∂µAν − ∂νAµ, and the Euler-Lagrange equations

∂µ

(
δL

δ(∂µψ)

)
=
δL
δψ

, ∂µ

(
δL

δ(∂µψ̄)

)
=
δL
δψ̄

, ∂µ

(
δL

δ(∂µAν)

)
=

δL
δAν

.

Solution: Rewriting the Lagrange density as

L =
i

2
ψ̄γµ(∂µψ)−

i

2
(∂µψ̄)γ

µψ −mψ̄ψ − 1

4
FµνF

µν − qAµψ̄γ
µψ ,

we can find the classical equations of motion by direct evaluation. Let us first obtains the
equations for the ψ field, which come from the Euler-Lagrange equations as

∂µ

(
δL

δ(∂µψ̄)

)
= ∂µ

(
− i
2
γµψ

)
= − i

2
γµ∂µψ ,

δL
δψ̄

=
i

2
γµ(∂µψ)−mψ − qAµγ

µψ .

Combining together, we find the equations

− i
2
γµ∂µψ =

i

2
γµ(∂µψ)−mψ − qAµγ

µψ ,

=⇒ (i/∂ −m− q /A)ψ = 0 .

For the ψ̄ field,

∂µ

(
δL

δ(∂µψ)

)
= ∂µ

(
i

2
ψ̄γµ

)
=
i

2
∂µψ̄γ

µ ,

δL
δψ

= − i
2
(∂µψ̄)γ

µ −mψ̄ − qAµψ̄γ
µ .

Combining, we find

i

2
∂µψ̄γ

µ = − i
2
(∂µψ̄)γ

µ −mψ̄ − qAµψ̄γ
µ ,

=⇒ ψ̄(i
←−
/∂ + q /A+m) = 0 .
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Finally, for the electromagnetic field, we find

∂µ

(
δL

δ(∂µAν)

)
= −1

4
∂µ

(
2Fαβ δFαβ

δ(∂µAν)

)
,

= −1

2
∂µ

(
Fαβ δ

δ(∂µAν)
(∂αAβ − ∂βAα)

)
,

= −1

2
∂µ

(
Fαβ

(
δµαδ

ν
β − δ

µ
βδ

ν
α

))
,

= −1

2
∂µ (F

µν − F νµ) ,

= −∂µFµν ,

where in the fourth line we used F νµ = −Fµν . For the potential term,

δL
δAν

= −qψ̄γνψ ,

from which we arrive at

∂µF
µν = qψ̄γνψ .

Therefore, the classical equations of motion are

(i/∂ − q /A−m)ψ = 0 , ψ̄(i
←−
/∂ + q /A+m) = 0 , ∂µF

µν = qψ̄γµψ .

2. An alternative Lagrange density for the classical free electromagnetic field is

L′ = −1

2
∂µAν ∂

µAν .

(a) Under what assumption does L′ yield the free inhomogeneous Maxwell equations?

Solution: The free inhomogeneous Maxwell equations are ∂µF
µν = 0. Since Fµν =

∂µAν − ∂νAµ, we have

0 = ∂µF
µν = ∂µ(∂

µAν − ∂νAµ) ,

= ∂µ∂µA
ν − ∂ν(∂µAµ) ,

= ∂2Aν − ∂ν(∂µAµ) = 0 .

So, the free inhomogeneous Maxwell equations, in terms of Aµ, are ∂
2Aν − ∂ν(∂µAµ) = 0.

Now, for the Lagrange density L′ = − 1
2∂µAν∂

µAν , we can derive the equations of motion
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through the Euler-Lagrange equations,

∂µ

(
δL′

δ(∂µAν)

)
=

δL′

δAν

=⇒ ∂µ

[
δ

δ(∂µAν)

(
−1

2
∂αAβ∂

αAβ

)]
=

δ

δAν

(
−1

2
∂αAβ∂

αAβ

)
,

−1

2
∂µ

(
δ(∂αAβ)

δ(∂µAν)
∂αAβ + ∂αAβ δ(∂αAβ)

δ(∂µAν)

)
= 0 ,

−∂µ
(
δµαδ

ν
β ∂

αAβ
)
= 0 ,

=⇒ ∂µ∂
µAν = 0 .

Therefore, we find that the equations of motion are ∂2Aν = 0, which differs from ∂2Aν −
∂ν(∂µA

µ) = 0 by a four-divergence ∂ν(∂µA
µ). Therefore, the assumption that L′ yields

the free inhomogeneous Maxwell equations is the Lorentz gauge condition, ∂µA
µ = 0.

(b) With this assumption, show that L′ differs from L = − 1
4FµνF

µν by a four-divergence.

Solution: Starting from the definition,

L = −1

4
FµνF

µν ,

= −1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ) ,

= −1

2
(∂µAν∂

µAν − ∂νAµ∂
µAν) ,

= −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ ,

= L′ +
1

2
∂µAν∂

νAµ .

Note that ∂µ(Aν∂
νAµ) = ∂µAν∂

νAµ + Aν∂µ∂
νAµ = ∂µAν∂

νAµ + Aν∂
ν∂µA

µ, where in
the last equality we used the fact that the derivatives are symmetric on the second term.
Moreover, we can rewrite the second term with ∂ν(Aν∂µA

µ) = (∂µA
µ)2 + Aν∂

ν∂µA
µ.

Relabeling the summed indices on the second term, µ ↔ ν, and combining with the first
relation we obtain

∂µ(A
ν∂νAµ −Aµ∂νA

ν) = ∂µAν∂
νAµ − (∂µA

µ)2 .

So, substituting this into L = L′ + 1
2∂µAν∂

νAµ, we have

L = L′ +
1

2
∂µ(A

ν∂νAµ −Aµ∂νA
ν) +

1

2
(∂µA

µ)2 .

So, L differs from L′ by a four-divergence so long as we restrict L to the Lorentz gauge,
∂µA

µ = 0.
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3. Consider the Lagrange density for scalar electrodynamics,

L = (Dµφ)
† (Dµφ)−m2φ†φ− 1

4
FµνF

µν − V (φ†φ) ,

where m is the mass of the scalar field, Dµ = ∂µ + iqAµ where q is the charge of the scalar field,
Fµν = ∂µAν − ∂νAµ, and V (φ∗φ) is a U(1) invariant self-interaction term, e.g., V (φ†φ) = λ(φ†φ)2.
This theory is invariant under local U(1) gauge transformations. Split the Lagrange density as follows:
L = LKG + LEM + Lint., where LKG is the usual free complex Klein-Gordon field theory,

LKG = ∂µφ
† ∂µφ−m2φ†φ ,

and LEM is the Lagrange density for the free electromagnetic field,

LEM = −1

4
FµνF

µν .

Determine the interacting Lagrange density Lint. for scalar electrodynamics.

Solution: The boson’s interaction with the electromagnetic field is due to the covariant deriva-
tives,

(Dµφ)
† (Dµφ) = [(∂µ + iqAµ)φ]

† [(∂µ + iqAµ)φ] ,

= (∂µφ
† − iqAµφ

†)(∂µφ+ iqAµφ) ,

= ∂µφ
† ∂µφ− iqAµφ

† (∂µφ) + iqAµ(∂µφ
†)φ+ q2AµA

µ φ†φ ,

= ∂µφ
† ∂µφ− iqAµ

[
φ†(∂µφ)− (∂µφ

†)φ
]
+ q2AµA

µ φ†φ .

So, the interaction Lagrange density is

Lint. = −V (φ†φ)− iqAµ
[
φ†(∂µφ)− (∂µφ

†)φ
]
+ q2AµA

µ φ†φ .

4. Verify that the field strength tensor Fµν can be computed through the commutator iqFµν = [Dµ, Dν ].

Solution: Evaluating the commutator against some test function φ,

[Dµ, Dν ]φ = [∂µ + iqAµ, ∂ν + iqAν ]φ ,

= [∂µ, ∂ν ]φ+ iq[∂µ, Aν ]φ+ iq[Aµ, ∂ν ]φ− q2[Aµ, Aν ]φ ,

= iq[∂µ, Aν ]φ+ iq[Aµ, ∂ν ]φ ,

= iq (∂µ(Aνφ)−Aν∂µφ+Aµ∂νφ− ∂ν(Aµφ)) ,

where in going to the third line we used that ∂µ∂νφ = ∂ν∂µφ, and [Aµ, Aν ] = 0. Now, ∂µ(Aνφ) =
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(∂µAν)φ+Aν∂µφ and ∂ν(Aµφ) = (∂νAµ)φ+Aµ∂νφ. So,

1

iq
[Dµ, Dν ]φ = ∂µ(Aνφ)−Aν∂µφ+Aµ∂νφ− ∂ν(Aµφ) ,

= (∂µAν)φ+Aν∂µφ−Aν∂µφ+Aµ∂νφ− (∂νAµ)φ−Aµ∂νφ ,

= (∂µAν − ∂νAµ)φ ,

= Fµνφ ,

so we conclude that iqFµν = [Dµ, Dν ].

5. Show that the radiative transition, e− → e− + γ, is forbidden in vacuum.

Solution: Let us defined the following kinematics,

e−(p)→ e−(p′) + γ(k) ,

where p = (E,p), p′ = (E′,p′), and k = (ω,k) are the four-momenta of the incoming electron,
outgoing electron, and outgoing photon, respectively. In vacuum, each of these particles are on
their mass-shell, p2 = p′2 = m2

e, and k
2 = 0. The S matrix element is given by

S(e− → e−γ) = (2π)4δ(4)(p− p′ − k) iM(e− → e−γ) ,

where the delta function enforces conservation of four-momentum, p = p′ + k and M is the
amplitude. The leading order amplitude is non-zero, given by iM = −ieū(p′)/ϵu(p) +O(e2).

Let us examine conservation of four-momentum, which in terms of its components are E = E′+ω
and p = p′+k. Let us choose to evaluate the amplitude in the rest frame of the initial electron, so
p = 0, and E = me. Therefore, by conservation of energy and momentum, we have me = E′+ω
and p′ = −k, respectively. Since the particles are on-shell, we further have E′ =

√
m2

e + p′2

and ω = |k|. Combining these results, conservation of energy imposes the condition

me =
√
m2

e + k2 + |k| ,

This condition is only true if k = 0, that is there is no photon emitted. We conclude that
conservation of momentum forbids this reaction, giving S(e− → e−γ) = 0.

6. Consider the pair production of pions in electron-positron annihilation, e−e+ → π−π+. Assume the
reaction occurs at a center-of-momentum (CM) energy

√
s ≫ me, but is comparable to the mass

of the produced pions,
√
s ∼ mπ. For simplicity, describe the charged pions by quantum scalar

electrodynamics (for the Feynman rules, see the notes on Feynman Rules - SQED).

(a) Show that the unpolarized differential cross-section to leading order in α is given by

dσ

dΩ
=

1

8

α2β3
π

s
(1− cos2 θ) +O(α3) ,

where θ is the CM frame scattering angle and βπ is the speed of the pion (recall that |pπ| = Eπβπ).
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Solution: Let us consider the reaction with the following kinematics

e−(p, s) + e+(k, r)→ π−(p′) + π+(k′) ,

where in the CM frame p = (Ee,p), k = (Ee,−p), p′ = (Eπ,p
′), and k′ = (Eπ,−p′). For

the electron we have Ee =
√
s/2 and |p| =

√
s− 4m2

e/2, while for the pions Eπ =
√
s/2

and |p′| =
√
s− 4m2

π/2. The scattering amplitude at leading order is given by

iM =

p+ k

p

k

p′

k′

+O(α2) ,

= (−iq)(k′ − p′)µ −igµν
(p+ k)2

v̄r(k)(−iqγν)us(p) +O(α2) ,

= −i4πα
s

v̄r(k)(/k
′ − /p′)us(p) +O(α2) ,

= −i4πα
s

v̄r(k)(/k
′
+ /p

′ − 2/p
′)us(p) +O(α2) ,

= −i4πα
s

v̄r(k)(/k + /p− 2/p
′)us(p) +O(α2) ,

= i
8πα

s
v̄r(k)/p

′us(p) +O(α2) ,

where in the third line we added zero in the form of 0 = /p
′ − /p

′, then in the fourth
line used k′ + p′ = k + p, and finally in the fifth line used the on-shell Dirac conditions
(/p−me)us(p) = 0 and v̄r(k)(/p+me) = 0, which subsequently gives v̄r(k)(/k+ /p)us(p) = 0.
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The spin-averaged amplitude is then

⟨|M|2⟩ = 1

4

∑
s,r

|M(e−s e
+
r → π−π+)|2 ,

=
1

4

(
8πα

s

)2∑
s,r

(v̄r(k)/p
′us(p))

∗(v̄r(k)/p
′us(p)) +O(α3) ,

=
1

4

(
8πα

s

)2∑
s,r

tr
[
ūs(p)/p

′vr(k)v̄r(k)/p
′us(p)

]
+O(α3) ,

=
1

4

(
8πα

s

)2

tr
[
/p
′(/k −me)/p

′(/p+me)
]
+O(α3) ,

=
1

4

(
8πα

s

)2 {
tr
[
/p
′/k/p

′
/p
]
−m2

e tr
[
/p
′
/p
′]}+O(α3) ,

=

(
8πα

s

)2 [
2(p′ · k) (p′ · p)− (p′ · p′) (k · p)−m2

e (p
′ · p′)

]
+O(α3) ,

=
1

2

(
8πα

s

)2 [
4(p′ · k) (p′ · p)−m2

πs
]
+O(α3) ,

where in going to the last line we used s = 2m2
e + 2k · p and p′2 = m2

π. Now, we evaluate
the remaining scalar products as (p′ · k) (p′ · p) = (EπEe + p′ · p)(EπEe − p′ · p) =
(EπEe)

2 − (p′ · p)2, where we used p = −k in the CM frame. Since p′ · p = |p′||p| cos θ,
and βπ = |p′|/Eπ and βe = |p|/Ee, then (p′ · k) (p′ · p) = (EπEe)

2(1 − (βπβe)
2 cos2 θ) .

Furthermore, Eπ = Ee =
√
s/2, so (EπEe)

2 = (s/4)2 So, the spin-averaged matrix element
is

⟨|M|2⟩ = 1

2

(
8πα

s

)2
s2

4

[(
1− 4m2

π

s

)
− (βπβe)

2 cos2 θ

]
+O(α3) ,

= 8π2α2β2
π

[
1− β2

e cos
2 θ
]
+O(α3) ,

where βπ = |p′|/Eπ =
√

1− 4m2
π/s. The differential cross-section is

dσ

dΩ
=

1

64π2s

|p′|
|p|
⟨|M|2⟩ ,

=
1

64π2s

√
1− 4m2

π/s

1− 4m2
e/s

8π2α2β2
π

[
1− β2

e cos
2 θ
]
+O(α3) ,

=
α2

8s

β3
π

βe

(
1− β2

e cos
2 θ
)
+O(α3) .

For energies near
√
s ∼ 2mπ, βe = 1 +O(m2

e/s), so

dσ

dΩ
=

1

8

α2β3
π

s
(1− cos2 θ) +O(α3,m2

e/s) ,
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(b) Compute the total cross-section, and compute ratio, σ(e−e+ → π−π+)/σ(e−e+ → µ−µ+) where
σ(e−e+ → µ−µ+) = 4πα2/3s. Compute the theoretical value at

√
s = 0.40GeV and .77GeV, and

compare to the experimental R ratio, R(
√
s = 0.40GeV) = 0.18± 0.02 and R(

√
s = 0.77GeV) =

9.99 ± 0.09. Comment on the comparison. Hint: Examining the plots of the R ratio may be
helpful, see Fig. 53.2 of https://pdg.lbl.gov/2022/reviews/rpp2022-rev-cross-section-plots.pdf.

Solution: The cross-section is

σ =
π

3

α2β3
π

s
+O(α3,m2

e/s) ,

and the R ratio for this process is defined as

R =
σ(e−e+ → π−π+)

σ(e−e+ → µ−µ+)
,

=
π

3

α2β3
π

s
· 3s

4πα2
,

=
β3
π

4
=

1

4

(
1− 4m2

π

s

)3/2

−−−→
s→∞

1

4

At
√
s = 0.4GeV, the R ratio is R = 0.18 ± 0.02, which our theoretical result, Rth. ≈

0.091, which is within a factor of 2 of the experimental result. The significance of the
deviation is 4.5σ. At

√
s = 0.770GeV, the experimental value is R = 9.99± 0.09, but the

theoretical value is Rth. ≈ 0.202, which is a large discrepancy of nearly a factor of 50, which
corresponds to a ∼ 100σ deviation. So, the low-energy region is in qualitative agreement,
while the larger energy region categorically disagrees with experiment. Examining the plot
of the R ratio, there is a large resonance around

√
s ∼ 0.770GeV. This is the isovector

JPC = 1−− ρ0 resonance with a mass mρ ≈ 0.770GeV, which gives a large dynamical
enhancement in the e−e+ → π−π+ cross-section. Strongly interacting resonances physics
must be captured non-perturbatively, as divergences in amplitudes can only be found by
summing the entire series, and are not found at any given order. So, perturbation theory
(even more sophisticated theories like chiral effective theory) will always fail to capture the
structure of the cross-sections at energies away from threshold.

7. Consider lepton pair production in electron-positron annihilation within QED, e−e+ → ℓ−ℓ+, where
ℓ = µ or τ . Assume the reaction occurs at a center-of-momentum (CM) energy

√
s ≫ me, but is

comparable to the mass of the produced leptons,
√
s ∼ mℓ.

(a) Show that the unpolarized differential cross-section dσ/dΩ, to order α2, is given by

dσ

dΩ
=
α2

4s
βℓ
[
1 + cos2 θ + (1− β2

ℓ ) sin
2 θ
]
+O(α3) ,

where βℓ is the speed of the produced lepton in the CM frame, and θ is the scattering angle.

Solution: Let us consider the reaction with the following kinematics

e−(p, s) + e+(k, r)→ ℓ−(p′, s′) + ℓ+(k′, r′) ,
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where in the CM frame p = (Ee,p), k = (Ee,−p), p′ = (Eℓ,p
′), and k′ = (Eℓ,−p′). Since

the electron mass is negligible, we have Ee = |p| =
√
s/2, while for the leptons Eℓ =

√
s/2

and |p′| =
√
s− 4m2

ℓ/2. The scattering amplitude at leading order is given by

iM =

p+ k

p

k

p′

k′

+O(α2) ,

= ūs′(p
′)(−iqγµ)vr′(k′)

−igµν
(p+ k)2

v̄r(k)(−iqγν)us(p) +O(α2) ,

= −i4πα
s

[ūs′(p
′)γµvr′(k

′)] [v̄r(k)γµus(p)] +O(α2) .

For the unpolarized differential cross section, we require the spin-averaged matrix element,

⟨|M|2⟩ ≡ 1

4

∑
s,r

∑
s′,r′

M†M ,

=
1

4

(
4πα

s

)2∑
s,r

[v̄r(k)γ
µus(p)]

† [v̄r(k)γ
νus(p)]

×
∑
s′,r′

[ūs′(p
′)γµvr′(k

′)]† [ūs′(p
′)γνvr′(k

′)] +O(α3) ,

=
1

4

(
4πα

s

)2∑
s,r

tr [ūs(p)γ
µvr(k)v̄r(k)γ

νus(p)]

×
∑
s′,r′

tr [v̄r′(k
′)γµūs′(p

′)ūs′(p
′)γνvr′(k

′)] +O(α3) ,

=
1

4

(
4πα

s

)2

tr
[
/pγ

µ/kγν
]
tr
[
(/k

′ −mℓ)γµ(/p
′ +mℓ)γν

]
+O(α3) ,

where we used
∑

s us(p)ūs(p) =
∑

r vs(p)v̄s(p) = /p for the electron and positron, and∑
s us(p

′)ūs(p
′) = /p

′ +mℓ and
∑

s vs(p
′)v̄s(p

′) = /p
′ −mℓ for the lepton and anti-lepton,

respectively. Now, tr
[
/pγµ/kγν

]
= 4(pµkν + pνkµ − gµνp · k) = 4(pµkν + pνkµ − gµνs/2)

where we used s = (p+ k)2 = 2p · k since m2
e/s→ 0 in the high-energy limit. Also,

tr
[
(/k

′ −mℓ)γµ(/p
′ +mℓ)γν

]
= tr

[
/k
′
γµ/p

′γν

]
−m2

ℓ tr [γµγν ] ,

= 4[k′µp
′
ν + k′νp

′
µ − gµν(p′ · k′ +m2

ℓ)] ,

= 4[k′µp
′
ν + k′νp

′
µ − gµνs/2] ,

where we used s = (p′ + k′)2 = 2m2
ℓ + 2p′ · k′.
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Contracting the traces, we find

tr
[
/pγ

µ/kγν
]
tr
[
(/k

′ −mℓ)γµ(/p
′ +mℓ)γν

]
= 16(pµkν + pνkµ − gµνs/2)(k′µp′ν + k′νp

′
µ − gµνs/2) ,

= 16
(
2p · k′ k · p′ + 2p · p′ k · k′ − s (p · k + p′ · k′) + s2

)
,

= 32
(
(p · k′)2 + (p · p′)2 + sm2

ℓ/2
)
,

where we used the following relations for the Mandelstam variables, s = (p+k)2 = 2p ·k =
(p′ + k′)2 = 2m2

ℓ + 2p′ · k′, t = (p − p′)2 = m2
ℓ − 2p′ · p = (k − k′)2 = m2

ℓ − 2k · k′,
u = (p − k′)2 = m2

ℓ − 2p · k′ = (k − p′)2 = m2
ℓ − 2k · p′. Therefore, the spin-averaged

amplitude is

⟨|M|2⟩ = 8

(
4πα

s

)2(
(p · k′)2 + (p · p′)2 + sm2

ℓ

2

)
+O(α3) ,

= 8

(
4πα

s

)2(
E2

eE
2
ℓ (1 + βℓ cos θ)

2 + E2
eE

2
ℓ (1− βℓ cos θ)2 +

sm2
ℓ

2

)
+O(α3) ,

= (4πα)
2

(
1 + β2

ℓ cos
2 θ +

4m2
ℓ

s

)
+O(α3)

where in the second line we used (p · k′) = EeEℓ + |p||p′| cos θ = EeEℓ(1 + βℓ cos θ) and
(p · p′) = EeEℓ − |p||p′| cos θ = EeEℓ(1− βℓ cos θ), with Ee = |p| and |p′| = Eℓβℓ. Further
in the third line, we used Eℓ = Ee =

√
s/2. Recall that βℓ = |p′|/Eℓ = 1 − 4m2

ℓ/s, so we
simplify the spin-averaged amplitude as

⟨|M|2⟩ = (4πα)
2 (

1 + β2
ℓ cos

2 θ + 1− β2
ℓ

)
+O(α3) ,

= (4πα)2(cos2 θ + sin2 θ + β2
ℓ (1− sin2 θ) + 1− β2

ℓ ) +O(α3) ,

= (4πα)2(1 + cos2 θ + (1− β2
ℓ ) sin

2 θ) +O(α3) .

Finally, the unpolarized differential cross section is

dσ

dΩ
=

1

64π2s

|p′|
|p|
⟨|M|2⟩ ,

=
1

64π2s
βℓ(4πα)

2[1 + cos2 θ + (1− β2
ℓ ) sin

2 θ] +O(α3) ,

=
α2

4s
βℓ [1 + cos2 θ + (1− β2

ℓ ) sin
2 θ] +O(α3) .

(b) Show that the total e−e+ → ℓ−ℓ+ cross-section at leading order is

σ =
4πα2

3s

√
1−

4m2
ℓ

s

(
1 +

2m2
ℓ

s

)
+O(α3) .
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Solution: Directly integrating the unpolarized differential cross-section,

σ =

∫
dΩ

dσ

dΩ
= 2π

∫ 1

−1

d cos θ
dσ

dΩ
,

where we integrated over φ since the system has an azimuthal symmetry. Therefore, we
have

σ =
πα2

2s
βℓ

∫ 1

−1

d cos θ
[
1 + cos2 θ + (1− β2

ℓ ) sin
2 θ
]
+O(α3) ,

=
πα2

2s
βℓ

[∫ 1

−1

d cos θ (1 + cos2 θ) + (1− β2
ℓ )

∫ 1

−1

d cos θ (1− cos2 θ)

]
+O(α3) ,

=
πα2

2s
βℓ

[(
cos θ +

cos3 θ

3

)1

−1

+ (1− β2
ℓ )

(
cos θ − cos3 θ

3

)1

−1

]
+O(α3) ,

=
πα2

2s
βℓ

[(
2 +

2

3

)
+ (1− β2

ℓ )

(
2− 2

3

)]
+O(α3) ,

=
4πα2

3s
βℓ

[
1 +

1

2
(1− β2

ℓ )

]
+O(α3) .

Since β2
ℓ = 1− 4m2

ℓ/s, we find 1− β2
ℓ = +4m2

ℓ/s. So, we conclude

σ =
4πα2

3s

√
1−

4m2
ℓ

s

(
1 +

2m2
ℓ

s

)
+O(α3) .

(c) Take the ultrarelativistic limit of the results of (a) and (b), that is m2
ℓ/s → 0, to recover the

following high-energy results,

dσ

dΩ
=
α2

4s
(1 + cos2 θ) +O(α3) , and σ =

4πα2

3s
+O(α3) .

Solution: Trivially, as m2
ℓ/s → ∞, then βℓ = 1 + O(m2

ℓ/s). So, for the differential
cross-section,

dσ

dΩ
=
α2

4s
βℓ
[
1 + cos2 θ + (1− β2

ℓ ) sin
2 θ
]
+O(α3) ,

=
α2

4s

(
1 + cos2 θ

)
+O(α3,m2

ℓ/s) ,

while for the total cross-section

σ =
4πα2

3s

√
1−

4m2
ℓ

s

(
1 +

2m2
ℓ

s

)
+O(α3) ,

=
4πα2

3s
+O(α3,m2

ℓ/s) .
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(d) Plot the O(α2) theoretical s · dσ/dΩ vs. cos θ ∈ [−1, 1] at a CM energy
√
s = 35GeV for both

e−e+ → µ−µ+ and e−e+ → τ−τ+ (make a separate plot for each reaction). Plot the y-axis in
nb · GeV2, restricted to (s ·dσ/dΩ)/ (nb · GeV2) ∈ [0.0, 12.0]. Plot the experimental data for each
reaction, measured from the JADE experiment at PETRA, over the theoretical curves. Compare
and comment on the quality of the theoretical description of the experimental data. Note: The
data file presents the cross-section as s · dσ/dΩ. The data files were obtained from the article by
the JADE collaboration, https://link.springer.com/article/10.1007/BF01560255.

Solution: Plotting the cross-sections, remembering to multiply by (ℏc)2 = 1 and
1 b/100fm2 = 1, we find the following results in 1. Noticeably, there is a discrepancy
in between the theoretical and experimental values. The theoretical cross-section is sym-
metric in cos θ, however the data is clearly asymmetric. In the next part, we examine
the ratio of the experimental value to QED theory to show more clearly how large the
asymmetry is.
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Figure 1: Plots of s · dσ/dΩ vs. cos θ for
√
s = 35GeV compared with the JADE data

for the reactions e−e+ → µ−µ+ (left) and e−e+ → τ−τ+ (right).

(e) Make a plot of the ratio of the experimentally measured differential cross-section to the leading
order QED prediction for each reaction as a function of cos θ ∈ [−1, .1] for the CM energy

√
s =

35GeV. Restrict the y axis between 0.5 and 1.5. Compare and comment on the quality of the
theoretical description of the experimental data.

Solution: Figure 2 shows the plots of the ratios of the experimental differential cross-
section for both e−e+ → µ−µ+ and e−e+ → τ−τ+. The asymmetry is clearly visible,
which has a max of about ∼ 4σ discrepancy near |cos θ| = 1.
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Figure 2: Plots of ratio of JADE experimental s · dσ/dΩ to the QED theory result at
O(α2) vs. cos θ at

√
s = 35GeV for the reactions e−e+ → µ−µ+ (left) and e−e+ →

τ−τ+ (right).

This clearly indicates that the leading QED form is not sufficient to describe the data.
Since α ≪ 1, we do not naively expect that radiative corrections will drastically change
the result. Further, since QED is parity invariant, and this is a direct annihilation reaction
(meaning no t-channel contributions), this asymmetry in cos θ is an indication that there is
some parity violating contribution coming from some other interactions (here it is the weak
interactions). We can gain some understanding of the magnitudes of other virtual particle
contributions by adding an additional term, linear in cos θ, to the differential cross-section,

dσ

dΩ
=
α2

4s

(
1 + cos2 θ +

8

3
A cos θ

)
+O(α2) ,

where A is the forward-backward asymmetry. In general A can depend on the energy,
A = A(s). The factor of 8/3 arises from the general definition

A =

∫ 1

0

d cos θ
dσ

dΩ
−
∫ 0

−1

d cos θ
dσ

dΩ∫ 1

−1

d cos θ
dσ

dΩ

.

The linear term vanishes when integrating over the entire domain of θ, but is the only
contribution to the different of the forward and backward distributions.

A simple fit with this new model against the JADE data for e−e+ → µ−µ+ (with
nd.o.f. = 10 − 1 = 9 gives A(

√
s = 35GeV) = −0.11 ± 0.01 with a χ2/nd.o.f. = 0.07. See

the fit output below.

iter chisq delta/lim lambda A

0 5.5031142187e+02 0.00e+00 6.69e+00 1.000000e+00

1 5.2027323982e+00 -1.05e+07 6.69e-01 -6.970939e-03

2 6.6016451945e-01 -6.88e+05 6.69e-02 -1.075674e-01

3 6.6015998595e-01 -6.87e-01 6.69e-03 -1.076680e-01
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iter chisq delta/lim lambda A

After 3 iterations the fit converged.

final sum of squares of residuals : 0.66016

rel. change during last iteration : -6.86728e-06

degrees of freedom (FIT_NDF) : 9

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.270834

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0733511

Final set of parameters Asymptotic Standard Error

======================= ==========================

A = -0.107668 +/- 0.0128 (11.88%)

Similarly, for e−e+ → τ−τ+ (nd.o.f. = 8 − 1 = 7), we find A = −0.08 ± 0.02 with a
χ2/nd.o.f. = 0.07. See the fit output below.

iter chisq delta/lim lambda A

0 3.3441186905e+02 0.00e+00 5.96e+00 1.000000e+00

1 4.6561732670e+00 -7.08e+06 5.96e-01 3.663427e-02

2 5.3423349422e-01 -7.72e+05 5.96e-02 -8.363611e-02

3 5.3422706976e-01 -1.20e+00 5.96e-03 -8.378645e-02

4 5.3422706976e-01 -2.08e-10 5.96e-04 -8.378645e-02

iter chisq delta/lim lambda A

After 4 iterations the fit converged.

final sum of squares of residuals : 0.534227

rel. change during last iteration : -2.07819e-15

degrees of freedom (FIT_NDF) : 7

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.276257

variance of residuals (reduced chisquare) = WSSR/ndf : 0.0763182

Final set of parameters Asymptotic Standard Error

======================= ==========================

A = -0.0837865 +/- 0.01639 (19.56%)

The two asymmetries are consistent with each other, indicating that the dominant contri-
bution is independent of the lepton mass. Figure 3 shows the QED result, JADE data,
and the fit result. Later in the course, we will see that the cause of this asymmetry is due
to annihilation into a Z0 boson.
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Figure 3: Plots of s · dσ/dΩ vs. cos θ for
√
s = 35GeV for the model cross-section

including the asymmetry term A cos θ, compared with the JADE data for the reactions
e−e+ → µ−µ+ (left) and e−e+ → τ−τ+ (right).

8. In supersymmetry (SUSY), each fermion has a scalar partner, and each gauge boson has a fermionic
partner. For example, the supersymmetric partner of the muon is the spin-0 smuon (µ̃), and the partner
of the photon is the spin-1/2 photino (γ̃). These particles have yet to be discovered in nature, yet we
can place bounds on some of their properties by performing precision experiments such as measuring
the anomalous magnetic moment of the muon, aµ ≡ (gµ − 2)/2. In this problem, we will estimate
bounds on the masses of these hypothetical particles.

Let us consider a simple supersymmetric extension of the Standard Model which includes the smuon
and the photino. The Lagrange density for this model is given by

LSUSY = LSM +
i

2
χ̄/∂χ+ h.c.−mγ̃χ̄χ

+ (Dνφ)
†(Dνφ)−m2

µ̃φ
†φ− qφψ̄χ+ h.c. ,

where Dν = ∂ν + iqAν , Aν is the photon field, ψ is the muon field, φ is the smuon field with mass term
mµ̃, and χ is the photino field with mass term mγ̃ . The coupling q is the electric charge of the fields,
e.g., q = −e for the muon where e is the fundamental charge which is related to the fine-structure
constant via α = e2/4π ∼ 1/137. The smuon has the same electric charge as its Standard Model
counterpart.

(a) Determine the Feynman rules for the SUSY model. That is, draw a diagram an associated factor
for the smuon propagator, the photino propagator, and any interaction vertices with these two
particles. Hint: You do not need to derive these using generating functionals, use your knowledge
of other well-known field theories to determine the various quantities.

Solution: Using the Feynman rules for QED, Scalar QED, and Yukawa theory, we find
the following rules. For the smuon propagator,

p =
i

p2 −m2
µ̃ + iϵ

;

William & Mary Page 15 of 22 Department of Physics



Problem Set 5 – Solution

PHYS 772 - The Standard Model Spring 2025

for the photino propagator

pp =
i(/p+mγ̃)

p2 −m2
γ̃ + iϵ

;

the µ̃µ̃γ vertex

µ

p

p′

= −iq(p+ p′) ;

and for the γ̃µ̃µ̃ vertex is

β

α

= −iq δαβ ;

(b) Draw the leading order contribution of this SUSY model to the µµγ vertex function, −iqΓµ,
and write down the mathematical expression using the Feynman rules derived in part (a). Do
Not evaluate any integrals. Label all momenta and Lorentz indices. For the momenta, let p be
the initial muon momentum, p′ the final muon momentum, and q be the momentum transfer by
the EM field, q = p′ − p. The muon is on-mass shell, p2 = p′2. Hint: There is only a single
contributing diagram.

Solution: Here we want the contribution to Γµ from the SUSY theory, which we define
as δΓµ. From the Feynman rules, we have

−iq ū(p′) δΓµ(p′, p)u(p) =

q = p′ − p

p′p

p′ − kp− k

k

,
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where at leading order in α, the amplitude is

δΓµ(p′, p) = (−iq)2
∫

d4k

(2π)4
i(/k +mγ̃)

k2 −m2
γ̃

i

(p′ − k)2 −m2
µ̃

i

(p− k)2 −m2
µ̃

(p′ + p− 2k)µ ,

=
iq2

(2π)4

∫
d4k

(p′ + p− 2k)µ(/k +mγ̃)

[k2 −m2
γ̃ ][(p

′ − k)2 −m2
µ̃][(p− k)2 −m2

µ̃]
,

where we assume an implicit +iϵ prescription in the denominators.

(c) Let’s assume that mµ̃ ∼ mγ̃ ∼ ΛSUSY, where ΛSUSY is a typical scale of SUSY interactions. One
can show, assuming that mµ ≪ ΛSUSY, that the SUSY contribution to the muon anomaly aµ is
given by

δaSUSY
µ = C α

4π

mµ

ΛSUSY
,

where C is a constant of O(1). Constrain the SUSY scale ΛSUSY using the experimental and
theoretical values of aµ. Currently, the best experimental estimate for aµ was recently measured

to be a
(ex.)
µ = 116 592 059(22) × 10−11 by The Muon g − 2 Collaboration (see D. P. Aguillard et

al., Phys. Rev. Lett. 131, 161802). Within the Standard Model, the best theoretical estimate

for the anomaly is a
(th.)
µ = 116 591 810(43) × 10−11 from The Muon g − 2 Theory Initiative (see

Physics Reports 887 (2020) 1-166). Comment on why is the assumption mµ ≪ ΛSUSY justifiable,
and whether or not SUSY particles (within this model) can be detectable at the Large Hadron
Collider.

Solution: To bound the SUSY scale, we note that the difference between the experimental
and theoretical values is

δaµ = a(ex.)µ − a(th.)µ ,

= 2.49(48)× 10−9 .

We assume that C = 1, and estimate ΛSUSY be requiring that δaSUSY
µ ≤ δaµ,

δaµ ≥
α

4π

mµ

ΛSUSY
=⇒ ΛSUSY ≥

α

4π

mµ

δaµ
.

Since α ≈ 1/137, and mµ ≈ 105.7MeV, we find

ΛSUSY ≥
α

4π

mµ

δaµ
,

≥ 2.47× 107 MeV .

so, ΛSUSY ≥ 25TeV.

Since mµ ≈ 100MeV, and we have not discovered SUSY particles up through scales 14TeV
(LHC energies), then the assumption that mµ ≪ ΛSUSY is valid since we expect ΛSUSY >
14TeV≫ mµ. Finding ΛSUSY ≥ 25TeV, the LHC today does not have the capabilities to
discover particles within this SUSY theory.
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(d) Challenge (Optional): Determine the constant C in δaSUSY
µ by evaluating the Feynman ampli-

tude. To do this, perform the following steps

• Let P be the total momentum, P = p+ p′, such that P · q = 0. In the q → 0 limit P 2 = 4m2
µ.

Substitute p = (P − q)/2 and p′ = (P + q)/2 in the Feynman integral. The vertex can then
be written as a function Γµ(p′, p) = Γµ(P, q).

• Use the projection formula

δaµ =
1

12m2
µ

tr

[(
m2

µγν − Pν /P −
3

2
mµPν

)
V ν +

mµ

4

(
/P

2
+mµ

)
[γν , γρ]

(
/P

2
+mµ

)
δV ρ,ν

]
,

where V ν = V ν(P ) = Γν(P, 0) and

δV ρ,ν = δV ρ,ν(P ) =
∂Γν

∂qρ

∣∣∣∣∣
q=0

.

Show that δV ρ,ν = 0 for this amplitude, and evaluate the remaining trace.

• Use the Feynman parameterization to combine the denominators of the Feynman integral.
The relevant formula is

1

A2B
= 2

∫ 1

0

dx
x

[x(A−B) +B]3
.

• Perform the convergent Feynman integrals using the following formulae∫
d4k

1

[k2 + 2P · k −M2]3
= − iπ

2

2

1

P 2 +M2
,

∫
d4k

kµ

[k2 + 2P · k −M2]3
=
iπ2

2

Pµ

P 2 +M2
,

∫
d4k

k2 − (k · p)2/m2

[k2 + 2P · k −M2]3
=

6iπ2m2α2

P 2 +M2
,

where P = αp with α being some factor independent of k.

• Simplify the expression by setting mγ̃ = mµ̃ ≡ ΛSUSY, and assuming mµ ≪ ΛSUSY. The
remaining Feynman parameter integral over x can then be analytically evaluated.

Below I outline my approach. Recall the matrix element is

δΓµ(p′, p) =
iq2

(2π)4

∫
d4k

(p′ + p− 2k)µ(/k +mγ̃)

[k2 −m2
γ̃ ][(p

′ − k)2 −m2
µ̃][(p− k)2 −m2

µ̃]
.

Now, P = p′ + p, q = p′ − p, so that p = (P − q)/2 and p′ = (P + q)/2, so

δΓµ(P, q) =
iq2

(2π)4

∫
d4k

(P − 2k)µ(/k +mγ̃)

[k2 −m2
γ̃ ][((P + q)/2− k)2 −m2

µ̃][(P − q)/2− k)2 −m2
µ̃]
.
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Now, V µ is

V µ(P ) = δΓµ(P, 0) ,

=
iq2

(2π)4

∫
d4k

(P − 2k)µ(/k +mγ̃)

[k2 −m2
γ̃ ][(P/2− k)2 −m2

µ̃]
2
,

and the δV ν , µ term is

δV ν , µ(P ) =
∂Γµ(P, q)

∂qν

∣∣∣∣∣
q=0

,

=
iq2

(2π)4

∫
d4k

(P − 2k)µ(/k +mγ̃)

[k2 −m2
γ̃ ]

× ∂

∂qν

1

[((P + q)/2− k)2 −m2
µ̃][(P − q)/2− k)2 −m2

µ̃]

∣∣∣∣∣
q=0

,

= 0 ,

which can be seen by using the product rule on the denominator, and recognizing that
the second term is equivalent to the first except for and overall sign, thus they cancel.

Given this, we find that the muon anomaly is

δaSUSY
µ =

iq2

(2π)4 12m2
µ

∫
d4k

(P − 2k)ν

[k2 −m2
γ̃ ][(P/2− k)2 −m2

µ̃]
2

× tr

[(
m2

µγν − Pν /P −
3

2
mµPν

)
(/k +mγ̃)

]
.

We evaluate the trace,

tr

[(
m2

µγν − Pν /P −
3

2
mµPν

)
(/k +mγ̃)

]
= m2

µ tr(γν/k)− Pν tr(/P /k)−
3

2
mµmγ̃Pν tr(I4) ,

= 4m2
µkν − 4PνP · k − 6mµmγ̃Pν ,

and then contract with (P − 2k)ν ,

(P − 2k)ν tr

[(
m2

µγν − Pν /P −
3

2
mµPν

)
(/k +mγ̃)

]
= (P − 2k)ν

[
4m2

µkν − 4PνP · k − 6mµmγ̃Pν

]
,

=
[
4m2

µ(k · P − 2k2)− 4(P 2 − 2k · P )P · k − 6mµmγ̃(P
2 − 2k · P )

]
,

=
[
4m2

µ(k · P − 2k2)− 4(4m2
µ − 2k · P )P · k − 6mµmγ̃(4m

2
µ − 2k · P )

]
,

= −8m2
µk

2 + 8(P · k)2 − 12(P · k)(m2
µ −mµmγ̃)− 24m3

µmγ̃ ,

= −12m2
µ

[
2

3

(
k2 − (P · k)2

m2
µ

)
+

(
1− mγ̃

mµ

)
(P · k) + 2mµmγ̃

]
.
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So, we have for δaSUSY
µ

δaSUSY
µ = − iq2

(2π)4

∫
d4k

1

[k2 −m2
γ̃ ][(P/2− k)2 −m2

µ̃]
2

×
[
2

3

(
k2 − (P · k)2

m2
µ

)
+

(
1− mγ̃

mµ

)
(P · k) + 2mµmγ̃

]
.

Next, we combine the denominators via the Feynman parameterization,

1

A2B
= 2

∫ 1

0

dx
x

[x(A−B) +B]3
,

where A = (P/2 − k)2 − m2
µ̃ = k2 − P · k + m2

µ − m2
µ̃ and B = k2 − m2

γ̃ . So,

A−B = −P · k +m2
µ +m2

γ̃ −m2
µ̃. Then,

1

[(P/2− k)2 −m2
µ̃]

2[k2 −m2
γ̃ ]

= 2

∫ 1

0

dx
x

[x(−P · k +m2
µ +m2

γ̃ −m2
µ̃) + k2 −m2

γ̃ ]
3
,

≡ 2

∫ 1

0

dx
x

[k2 + 2P̂ · k − M̂2]3
,

where we have defined P̂ ≡ −xP/2 and M̂2 ≡ m2
γ̃ − x(m2

µ +m2
γ̃ −m2

µ̃) = m2
γ̃(1− x)−

x(m2
µ −m2

µ̃). So, the muon anomaly becomes

δaSUSY
µ = − 2iq2

(2π)4

∫ 1

0

dxx

∫
d4k

1

[k2 + 2P̂ · k − M̂2]3

×
[
2

3

(
k2 − (P · k)2

m2
µ

)
+

(
1− mγ̃

mµ

)
(P · k) + 2mµmγ̃

]
,

≡ − 2iq2

(2π)4

∫ 1

0

dxx

[
2

3
Î(P̂ , M̂2;P,mµ)

+

(
1− mγ̃

mµ

)
P νIµ(P̂ , M̂2) + 2mµmγ̃I(P̂ , M̂2)

]
,

where we have defined

I(P̂ , M̂2) ≡
∫
d4k

1

[k2 + 2P̂ · k − M̂2]3
= − iπ

2

2

1

P̂ 2 + M̂2
,

Iµ(P̂ , M̂2) ≡
∫
d4k

kµ

[k2 + 2P̂ · k − M̂2]3
= − iπ

2x

4

Pµ

P̂ 2 + M̂2
,

Î(P̂ , M̂2, P,mµ) ≡
∫
d4k

(k2 − (k · P )2/m2
µ)

[k2 + 2P̂ · k − M̂2]3
=

6iπ2m2
µα

2

P̂ 2 + M̂2
=

3

2

iπ2m2
µx

2

P̂ 2 + M̂2
,
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where in the second equalities we used the formulae given in the prompt and P̂ =
αP = −(x/2)P . Substituting these evaluations in δaSUSY

µ , we find

δaSUSY
µ = −2iq2(iπ2)

(2π)4

∫ 1

0

dx

[
m2

µx
2 −

(
1− mγ̃

mµ

)
x

4
P 2 −mµmγ̃

]
x

P̂ 2 + M̂2
,

=
q2

8π2
m2

µ

∫ 1

0

dx

[
x2 −

(
1− mγ̃

mµ

)
x− mγ̃

mµ

]
x

P̂ 2 + M̂2
,

where we used P 2 = 4m2
µ. The denominator is written as

P̂ 2 + M̂2 = x2P 2/4 +mγ̃2(1− x)− x(m2
µ −mµ̃2) ,

= m2
µ

[
x2 +

(
mγ̃

mµ

)2

(1− x)− x

(
1−

(
mµ̃

mµ

)2
)]

,

≡ m2
µ(x

2 + ϵ2γ̃(1− x)− x(1− ϵ2µ̃)) ,

where we have defined the mass ratios ϵµ̃ ≡ mµ̃/mµ and ϵγ̃ ≡ mγ̃/mµ. Thus, the
contribution to aµ is

δa(SUSY)
µ =

α

2π

∫ 1

0

dx
x3 − (1− ϵγ̃)x2 − ϵγ̃x

x2 + ϵ2γ̃(1− x)− x(1− ϵ2µ̃)

where we used q2 = e2 and α = e2/4π.

We assume that mµ̃ = mγ̃ = ΛSUSY, so that ϵµ̃ = ϵµ̃ ≡ ϵΛ = ΛSUSY/mµ. So,

δa(SUSY)
µ =

α

2π

∫ 1

0

dx
x3 − (1− ϵΛ)x2 − ϵΛx

x2 + ϵ2Λ(1− x)− x(1− ϵ2Λ)
.

Next, it is reasonable to assume that ΛSUSY/mµ = ϵΛ ≫ 1. Therefore, since x is
bounded in the integrand 0 ≤ x ≤ 1, we approximate the integral as

δa(SUSY)
µ =

α

2π

1

ϵΛ

∫ 1

0

dxx(x− 1) ,

=
α

2π

1

ϵΛ

(
x3

3
− x2

2

) ∣∣∣∣∣
1

0

,

=
α

2π

1

ϵΛ

(
1

3
− 1

2

)
,

= − α

12π

mµ

ΛSUSY
.
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So, we conclude that the constant C = −1/3. Let us revisit the bound on ΛSUSY,

ΛSUSY ≥
α

12π

mµ

δaµ
,

≥ 8.22× 106 MeV,

or ΛSUSY ≥ 8TeV. Since the LHC operates at energies ∼ 14TeV, these particles should
in principle be detectable. However, to date no SUSY particles have been discovered,
pushing the bound to ΛSUSY ≥ 14TeV.
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