
PHYS 772 – The Standard Model of Particle Physics

Problem Set 7 – Solution

Due: Tuesday, April 01 at 4:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Classify the following observed reactions into strong, electromagnetic, and weak processes:

(a) π− → π0 + e− + ν̄e,

Solution: The presence of the leptons in the final state indicates a non-strong process.
Looking at isospin I3 conservation,

π− → π0 + e− + ν̄e ,

I3 : −1 → 0 + 0 + 0 ,

we see that since ∆I3 = 0− (−1) ̸= 0, the interaction must be weak process.

(b) γ + p → π+ + n,

Solution: The photo-production of a a pion on a nuclear target is not a pure strong
process. Again, isospin I3 conservation again gives

γ + p → π+ + n ,

I3 : 0 +
1

2
→ 1 +

(
−1

2

)
.

We see that ∆I3 = 0, and we conclude that this is an electromagnetic process.

(c) p+ p̄ → π+ + π− + π0,

Solution: Without the presence of leptons, we suspect that this is a strong processes. As
before, isospin I3 conservation. yields

p+ p̄ → π+ + π− + π0 ,

I3 :
1

2
+

(
−1

2

)
→ 1 + (−1) + 0 ,

and we see that ∆I3 = 0. Moreover, the total I is conserved as p+ p̄ gives either I = 0 or
1, and three pions can have I = 0, 1, 2, 3. Therefore, this reaction can occur through either
I = 0 or 1 modes. We conclude that this reaction is a strong process.

(d) D− → K+ + 2π−,
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Solution: Checking if isospin I3 is conserved,

D−1 → K+ + π− + π− ,

I3 :

(
−1

2

)
→ 1

2
+ (−1) + (−1) ,

we see that ∆I3 = −3/2− 1/2 ̸= 0, therefore this decay must be a weak process. Another
indication that this is a weak process is to look at ∆C and ∆S, which are both non-zero
in this reaction, indicating flavor changing which is mediated by the weak interaction.

(e) Λ0 + p → K− + 2p,

Solution: With no leptons in the reactants or products, and isospin I3 being conserved
∆I3 = 0,

Λ0 + p → K− + p+ p ,

I3 : 0 +
1

2
→

(
−1

2

)
+

1

2
+

1

2
,

as well as strangeness being conserved ∆S = 0, we find that this process is flavor preserving,
and conclude that this reaction is a strong process.

(f) π− + p → n+ e+ + e−.

Solution: Total isospin must be violated due to the production of leptons. Checking if
isospin I3 is conserved,

π− + p → n+ e+ + e− ,

I3 : (−1) + 1/2 → (−1/2) + 0 + 0 ,

we see that indeed ∆I3 = 0, so this reaction is not mediated by the weak interaction.
Therefore this reaction is an electromagnetic process.

2. Both the ρ0 meson and the ω meson are vector mesons, JPC = 1−−. However, the ρ0 is observed to
strongly decay predominately into 2π, while the ω is observed to decay into 3π. Why this is so?

Solution: While both hadrons are vector mesons with JPC = 1−−, note that the ρ0 is an
isovector IG = 1+ while the ω0 is an isoscalar IG = 0−, which can be seen from the Review of
Particle Physics. The G-parity of an n-pion state is Gnπ = (−1)n since Gπ = −. So, if isospin
is exact, ω0 → 3π is only allowed since Gω = −, while ρ0 → 2π is allowed since Gρ = +. Since
isospin is broken, but mildly, this means that these decay modes are dominant.

3. Consider πN scattering at the ∆(1232) resonance, i.e., at center-of-momentum energies
√
s ∼ 1232MeV.

For this reaction, πN → ∆(1232) → πN , focus on the following three processes:

(a) π+p → π+p elastic scattering via the ∆++ resonance,
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(b) π−p → π−p elastic scattering via the ∆0 resonance,

(c) π−p → π0n charge exchange via the ∆0 resonance.

Estimate the relative cross sections σa : σb : σc.

Solution: Since mπ± ≈ mπ0 mp ≈ mn, and m∆++ ≈ m∆0 , the approximate isospin symmetry
can be considered a good symmetry for this reaction. Let us therefore assume mπ as the mass
of the I = 1 pion multiplet, mN as the mass of the I = 1/2 nucleon doublet, and m∆ as the
mass of the I = 3/2 delta multiplet.

The cross-section in the ∆-region has the structure

σ∆ ∝ |⟨f |T∆ |i⟩|2 × (kinematic factors) ,

where T∆ is the T matrix with ∆ quantum numbers, and |i⟩ and |f⟩ are the initial and final
states of the processes of interest. Since a particular state can be expressed in terms of the
isospin states |II3⟩, where I = I3 = 3/2 for the ∆++ channel and I = 3/2, I3 = −1/2 for the
∆0 channel, then the ratio of the cross sections will involve only ratios of the isospin Clebsch-
Gordan coefficients associated with overlaps of either |∆(3/2, 3/2)⟩ or |∆(3/2,−1/2)⟩. In terms
of πN isospin states, the processes are given by

|π+p⟩ = |π(1,+1)⟩ ⊗ |N(1/2,+1/2)⟩ = |πN(3/2,+3/2)⟩ ,

|π−p⟩ = |π(1,−1)⟩ ⊗ |N(1/2,+1/2)⟩ =
√

1

3
|πN(3/2,−1/2)⟩ −

√
2

3
|πN(1/2,−1/2)⟩ ,

|π0n⟩ = |π(1, 0)⟩ ⊗ |N(1/2,−1/2)⟩ =
√

2

3
|πN(3/2,−1/2)⟩+

√
1

3
|πN(1/2,−1/2)⟩ .

Therefore, the ratios of the cross-sections are

σa : σb : σc =
∣∣∣1 · 1∣∣∣2 :

∣∣∣∣∣
√

1

3
·
√

1

3

∣∣∣∣∣
2

:

∣∣∣∣∣
√

1

3
·
√

2

3

∣∣∣∣∣
2

,

= 1 :
1

9
:
2

9
,

= 9 : 1 : 2 ,

in qualitative agreement with experiment.

4. Consider a qq̄ meson within an exact flavor SU(3) quark model, i.e., q = u, d, s. Assume the meson is
flavor neutral. A generic wave function for this meson is given by

|n 2S+1LJ ,mJ⟩qq̄ =
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs(p)q̄s̄(−p)⟩ ,
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where n is the radial quantum number, S is the total intrinsic spin, L is the orbital angular momentum,
J is the total angular momentum, mJ is the total angular momentum projection on some fixed z-axis,
mL is the orbital angular momentum projection, mS is the total intrinsic spin projection, φn,L is
the momentum-space radial wave function, and YLmL

are spherical harmonics. The quarks are spin-
1/2 fermions with spin s and s̄ for the q and q̄, respectively. The two-quark state is defined in the
center-of-momentum frame as the usual direct product |qs(p)q̄s̄(−p)⟩ ≡ |qs(p)⟩ ⊗ |q̄s̄(−p)⟩.

(a) Determine the allowed values of S.

Solution: Since we have two spin-1/2 objects, the total spin is either S = 0 or 1. This can
be seen from the Clebsch-Gordan decomposition. If 2 is the fundamental representation of
su(2), then 2× 2 = 1+ 3. Therefore, we have either a singlet (S = 0) or a triplet (S = 1)
state.

(b) Show that under parity P, the qq̄ meson has an eigenvalue

P |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+1 |n 2S+1LJ ,mJ⟩qq̄ .

Hint: Recall that P |qs(p)⟩ = ηq |qs(−p)⟩ and ηq̄ ≡ −ηq.

Solution: By direct evaluation,

P |n 2S+1LJ ,mJ⟩qq̄ =
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂)P |qs(p)q̄s̄(−p)⟩ ,

=
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂)ηqηq̄ |qs(−p)q̄s̄(p)⟩ ,

= ηqηq̄
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(−p̂) |qs(p)q̄s̄(−p)⟩ ,

= ηqηq̄(−1)L
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×

∫
d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs(p)q̄s̄(−p)⟩ ,

= ηqηq̄(−1)L |n 2S+1LJ ,mJ⟩qq̄ ,

where in the third line we let p → −p in the integrand, and then in the fourth line we used
YLmL

(−p̂) = (−1)LYLmL
(p̂). Therefore, since ηq̄ = −ηq, the parity of the quark model
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hadron is

P |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+1 |n 2S+1LJ ,mJ⟩qq̄ ,

since η2q = 1.

(c) Show that under charge conjugation C, the qq̄ meson has an eigenvalue

C |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+S |n 2S+1LJ ,mJ⟩qq̄ .

Hint: Recall that C |qs(p)⟩ = |q̄s(p)⟩, and under interchange P12 |q1q2⟩ = − |q2q1⟩.

Solution: By direct evaluation,

C |n 2S+1LJ ,mJ⟩qq̄ =
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂)C |qs(p)q̄s̄(−p)⟩ ,

=
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂) |q̄s(p)qs̄(−p)⟩ ,

= −
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs̄(−p)q̄s(p)⟩ ,

= −
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

(−1)S+1
〈1
2
s̄;

1

2
s|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(−p̂) |qs̄(p)q̄s(−p)⟩ ,

= −(−1)S+1(−1)L
∑

mL,mS

⟨LmL;SmS |JmJ⟩
∑
s,s̄

〈1
2
s;

1

2
s̄|SmS

〉
×
∫

d3p

(2π)3
φn,L(p)YLmL

(p̂) |qs(p)q̄s̄(−p)⟩ ,

= (−1)L+S |n 2S+1LJ ,mJ⟩qq̄ ,

where in the third line we used the antisymmetry properties of fermions, in the fourth line
used ⟨j1m1; j2m2|jm⟩ = (−1)j1+j2−s⟨j2m2; j1m1|jm⟩ and the fact that j is integer, and in
the fifth line we let p → −p in the integrand, and then used YLmL

(−p̂) = (−1)LYLmL
(p̂).
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Therefore, the C-parity of the quark model hadron is

C |n 2S+1LJ ,mJ⟩qq̄ = (−1)L+S |n 2S+1LJ ,mJ⟩qq̄ .

(d) Determine all allowed JPC quantum numbers for of the meson for L ≤ 3. List all JPC that are
forbidden for J ≤ 3 (observed mesons with these quantum numbers are called exotic, as they are
not allowed in the quark model).

Solution: The angular momentum quantum numbers of the qq̄ state are S = 0 or 1,
L = 0, 1, 2, 3, . . ., and |L − S| ≤ J ≤ L + S. The parity of a given state is P = (−1)L+1,
and the C-parity is C = (−1)L+S . So, we can make a table of the allowed JPC for all
L ≤ 3.

Orbital Angular
Momentum

Spin JPC

L = 0 (S)
S = 0 0−+

S = 1 1−−

L = 1 (P )
S = 0 1+−

S = 1 (0, 1, 2)++

L = 2 (D)
S = 0 2−+

S = 1 (1, 2, 3)−−

L = 3 (F )
S = 0 3+−

S = 1 (2, 3, 4)++

So, the allowed quantum numbers for a qq̄ state in the quark model are

JPC = (0, 2, . . .)−+, (1, 3, . . .)+−, (1, 2, 3, . . .)−−, (0, 1, 2, . . .)++ .

Notice that there is a set of states not allowed within this model, called exotic, are

JPC
exotic = 0−−, (1, 3, . . .)−+, (0, 2, . . .)+− .

(e) List one example (if one exist) of an observed unflavored meson for each JPC supermultiplet by
searching the Particle Data Group database (https://pdglive.lbl.gov) for light unflavored mesons.
Are there any examples of observed mesons with exotic quantum numbers?

Solution: The following hadrons correspond to the multiplets found in the previous part,

JPC hadron

(0, 2)−+ (π0, π2(1880))

(1, 3)+− (b1(1235), ???)

(1, 2, 3)−− (ρ(770), ???, ρ3(1690))

(0, 1, 2, 3, 4)++ (f0(500), a1(1260), f2(1270), ???, a4(1970))

where the “???” indicate that no unflavored neutral hadron has been observed with these
quantum numbers.
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There has been some observations of exotic quantum numbers, one example being the
π1(1600) which has JPC = 1−+.

5. Given the plot of the πN total cross-sections shown in Fig. 1, identify potential resonances and estimate
their mass and decay widths, as well as their charge, strange, and baryon quantum numbers. Further,
identity their potential spin and isospin quantum numbers. Referring to the Review of Particle Physics,
can you identify candidates for these unstable states?

Solution:
From the total cross-section alone, it is difficult to rigorously identify resonances, one needs to
do a partial wave analysis on differential cross sections and other angular observables to get
a more complete spectroscopic picture. Indeed, in this energy region, for this system, there
are about 14 observed resonances in the πN spectrum between threshold and

√
s ∼ 1.8MeV,

about 5 excited ∆ states and 9 N states.

However, a rough estimate may get us some idea of the what the spectral content is of some
reaction. Here, we identify four ‘strong’ bumps, one in π+p, and three in π−p. The bump in
π+p peaks around

√
s ∼ 1.23GeV, and the bumps in π−p peak at

√
s ∼ 1.23GeV, 1.52GeV, and

1.68GeV. It is reasonable to assume that the two bumps at
√
s ∼ 1.23MeV are different isospin

states of the same resonance. Therefore, we can “easily” identify three resonances, which we call
R1 (m1 ∼ 1.23GeV), R2 (m2 ∼ 1.52GeV), and R3 (m3 ∼ 1.68GeV). Assuming a Breit-Wigner
form for each resonance,

σR ∝ 1

(s−m2
R)

2 +m2
RΓ

2
R

,

where mR is the mass of the resonance and ΓR is the width of the resonance, we that the full-
width at half-maximum for the first peak is ΓR1

∼ (1.28−1.18)GeV = 0.10GeV, the second peak
is ΓR2

∼ (1.55−1.47)GeV = 0.08GeV, and the third peak is ΓR3
∼ (1.72−1.64)GeV = 0.08GeV.

For the higher resonance, we measure with respect to the background cross-section.

Since these states are resonances in Nπ, the strangeness for every resonance is S = 0 and
the baryon number is Bn = 1. Since the N is an isospinor, and π is an isovector, the Nπ
state can be either I = 1/2 or 3/2. Moreover, since the N is a spin-1/2 object, and the π is
spinless, the total spin of the Nπ system is s = 1/2. So, the total angular moment J must be
|ℓ−1/2| ≤ J ≤ ℓ+1/2, where ℓ = 0, 1, 2, . . . is the orbital angular momentum of the Nπ system.

The isospin quantum numbers for π+p must be I = I3 = 3/2. Since the first resonance
in π+p must have charge Q = +2, we identify this as the ∆++, R1 → ∆++, which has a
mass m∆++ ≈ 1.21GeV and width Γ∆++ ≈ 0.1GeV, which agrees with are rough estimate.
Since JP = 3/2+, and the total spin of Nπ is s = 1/2, we conclude that the orbital angular
momentum of the state is ℓ = 1, or a P -wave resonance, since the parity of the Nπ state is
always P = (−1)ℓ+1.

For the π−p cross-section, we can have either I = 1/2 or I = 3/2, which means R2 and R3 are
either an excited N or ∆ state. The charge of R2 and R3 is Q = 0. Looking at the RPP, we find
the following candidates for R2: ∆(1600) (with JP = 3/2+, m = 1.52GeV, and Γ = 0.28GeV),
N(1520) (with JP = 3/2−, m = 1.51GeV, and Γ = 0.11GeV), and N(1535) (with JP = 1/2−,
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m = 1.51GeV, and Γ = 0.11GeV). Given the estimated width is ΓR2
≈ 0.08GeV, we postulate

that R2 is either N(1520) with JP = 3/2− or the N(1535) with JP = 1/2−. This means that
the isospin of R2 is I = 1/2. Since ℓ = J ± 1/2, and P = −1 = (−1)ℓ+1, then for the J = 1/2
case we have an S wave state (ℓ = 0), while for the J = 3/2 state it is a D wave reaction (ℓ = 2).

For the R3 resonance, the possible states are N(1650) (with JP = 1/2−, m = 1.67GeV, and
Γ = 0.14GeV), N(1675) (with JP = 5/2−, m = 1.66GeV, and Γ = 0.14GeV), N(1680) (with
JP = 5/2+, m = 1.67GeV, and Γ = 0.12GeV), and ∆(1700) (with JP = 3/2−, m = 1.66GeV,
and Γ = 0.25GeV). Since the estimated width is ΓR3 ∼ 0.08GeV, we postulate that R3 is
either N(1650) with JP = 1/2−, N(1675) with JP = 5/2−, or N(1680) with JP = 5/2+.
Again, the isospin of R3 is I = 1/2. For the JP = 1/2− state, the partial wave is ℓ = 0, for the
JP = 5/2− state it is ℓ = 2, and for JP = 5/2+ it is ℓ = 3.

To distinguish these states further, one needs to do an angular analysis to determine the spin-
parity quantum numbers.

0

50

100

150

200

250

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

π+p

π−p

σ
/
m
b

√
s / GeV

Figure 1: Total πN cross-sections as a function of center-of-momentum frame energy
√
s. Data taken

from the Review of Particle Physics by the Particle Data Group.
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