
PHYS 772 – The Standard Model of Particle Physics

Problem Set 8 – Solution

Due: Tuesday, April 08 at 4:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Can the following hadrons, in principle, exist within QCD? (a) qq, (b) qqq̄, (c) qqq̄q̄, (d) gg, (e) qqg,
(f) qq̄g, (g) qqqqq̄. Hint: Consider SU(3)c symmetry transformations of observable hadrons. Gluons
transform under the adjoint representation of SU(3)c.

Solution: Hadrons within QCD must be color neutral, that is a hadron h must belong to the
1 representation of SU(3)c. So, all we need to find is if the given combinations of quarks and
gluons admit a singlet representation. Recall that quarks lie in the 3 of SU(3)c, antiquarks lie
in the 3∗ of SU(3)c, and gluons lie in the 8 of SU(3)c.

So, for (a)

qq → 3× 3 = 3∗ + 6 ̸⊃ 1 ,

therefore qq is not a valid hadron.

For (b), we have (recalling that 3× 3∗ = 1+ 8),

qqq̄ → 3× 3× 3∗ = 3× (1× 8) ̸⊃ 1 ,

since the 3× 8 = 3+ 6∗ + 15 which was found in Problem Set 7. Therefore, qqq̄ is not a valid
hadron.

For (c), qqq̄q̄ is

qqq̄q̄ → 3× 3× 3∗ × 3∗ = (3× 3∗)× (3× 3∗) ,

= (1+ 8)× (1+ 8) ⊃ 1 .

So, qqq̄q̄ is a valid hadron. These are tetraquarks, which candidates have been observed in the
heavy quark sector, e.g., the Zc(3900).

For (d), gg, we need the product 8 × 8. From lecture, we worked out this product, and found
it contains a singlet representation. Therefore,

gg → 8× 8 ⊃ 1 ,

and thus is a valid hadron. These are glueballs, bound states of gluons. There is suspicion
that higher mass states in the JPC = 0++ and 2++ sectors contain strong mixing into these
glueball states.
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For (e), qqg, we have 3× 3× 8 = 3∗ + 3∗ + 6+ 6+ 15∗ + 15∗ + 24 from Problem Set 7. So,

qqg → 3× 3× 8 ̸⊃ 1 ,

and thus is not a valid hadron.

For (f), qq̄g, we have from Problem Set 7, 3× 3∗ × 8 = 1+ 8+ 8+ 8+ 10+ 10∗ + 27. So,

qq̄g → 3× 3∗ × 8 ⊃ 1 .

Therefore, qq̄g is a valid hadron. These are hybrid mesons, which had a substantial component
from excited glue. The π1(1600) is an observed hybrid candidate.

2. Consider a non-abelian gauge field Aµ ≡ Aj
µ Tj , where Tj ∈ su(N) are generators satisfying the Lie

algebra [Tj , Tk] = icjklTl with cjkl being structure constants and j, k, l = 1, 2, . . . , N2 − 1. Under a
local gauge transformation, U = exp(iαj(x)Tj) where αj(x) ∈ R for every j, the gauge fields transform
as

Aµ → UAµU
−1 +

i

g
(∂µU) U−1 .

Show that under infinitesimal transformations, αa(x) ≪ 1, the gauge fields transform as

Aj
µ → Aj

µ − 1

g
∂µα

j(x)− cjkl α
kAl

µ +O(α2) .

Solution: Taking αj(x) ≪ 1 for all j = 1, 2, . . . , N2 − 1, w can Taylor expand the exponential

U = exp(iαj(x)Tj) = 1 + iαj(x)Tj +O(α2) .

So, the gauge transformation is

Aj
µTj → UAj

µTjU
−1 +

i

g
(∂µU)U−1 ,

= (1 + iαjTj +O(α2))Ak
µTk(1− iαlTl +O(α2))

+
i

g
∂µ(1 + iαjTj +O(α2))(1 + iαkTk +O(α2)) ,

= Aj
µTj + iαkAl

µ(TkTl − TlTk)−
1

g
∂µα

jTj +O(α2) ,

= Aj
µTj + iαkAl

µ(ickljTj)−
1

g
∂µα

jTj +O(α2) ,

=

(
Aj

µ − cjklα
kAl

µ − 1

g
∂µα

j +O(α2)

)
Tj .

Therefore, the infinitesimal transformation gives

Aj
µ → Aj

µ − 1

g
∂µα

j − cjklα
kAl

µ +O(α2) .

William & Mary Page 2 of 7 Department of Physics



Problem Set 8 – Solution

PHYS 772 - The Standard Model Spring 2025

3. The SU(3)c Yang-Mills Lagrange density for interacting gluon fields is given by LYM = − 1
2 tr (GµνG

µν),
where the field-strength tensor is defined as Gµν = ∂µAν − ∂νAµ + igs[Aµ, Aν ] with Aµ = Aa

µ λa/2 are
the gluon gauge fields and λa are the Gell-Mann matrices. Write the Lagrange density as a free part

L(free)
YM and an interacting part L(int)

YM which depends on the strong coupling gs.

Solution: Contracting the field strength tensors,

GµνG
µν =

(
∂µAν − ∂νAµ + igs[Aµ, Aν ]

)(
∂µAν − ∂νAµ + igs[A

µ, Aν ]
)
,

= (∂µAν − ∂νAµ) (∂
µAν − ∂νAµ)

+ igs (∂µAν − ∂νAµ) [A
µ, Aν ] + igs[Aµ, Aν ] (∂µAν − ∂νAµ)

− g2s [Aµ, Aν ][A
µ, Aν ] .

Now, we use that Aµ = Aa
µ Ta where Ta = λa/2, so

GµνG
µν =

(
∂µA

a
ν − ∂νA

a
µ

) (
∂µAν b − ∂νAµ b

)
TaTb

+ igs
(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c Ta[Tb, Tc] + igsA

a
µA

b
ν (∂µA

ν c − ∂νA
µ c) [Ta, Tb]Tc

− g2sA
a
µA

b
νA

µ cAν d [Ta, Tb][Tc, Td] .

Furthermore, [Ta, Tb] = ifabcTc, so

GµνG
µν =

(
∂µA

a
ν − ∂νA

a
µ

) (
∂µAν b − ∂νAµ b

)
TaTb

+ igs
(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c Ta(ifbcdTd) + igsA

a
µA

b
ν (∂µA

ν c − ∂νA
µ c) (ifabdTd)Tc

− g2sA
a
µA

b
νA

µ cAν d (ifabeTe)(ifcdfTf ) .

Now, taking the trace, we use tr(TaTb) = tr(λaλb)/4 = δab/2, so the Yang-Mills Lagrange
density is

LYM = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAν a − ∂νAµa)

− 1

4
gsfbca

(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c − 1

4
gsfabcA

a
µA

b
ν (∂µA

ν c − ∂νA
µ c)

+
1

4
g2sfabefcde A

a
µA

b
νA

µ cAν d ,

= −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAν a − ∂νAµa)

− 1

2
gsfabc

(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c +

1

4
g2sfabefcde A

a
µA

b
νA

µ cAν d ,

≡ L(free)
YM + L(int)

YM ,

where we used fbca = fabc from the antisymmetry properties of the structure constants. So, the
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free and interacting Lagrange densities are

L(free)
YM = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAν a − ∂νAµa) ,

L(int)
YM = −1

2
gsfabc

(
∂µA

a
ν − ∂νA

a
µ

)
Aµ bAν c +

1

4
g2s fabefcde A

a
µA

b
νA

µ cAν d .

4. We can learn about the structure of hadrons through interactions with electromagnetic probes. Con-
sider elastic e−p → e−p for incident electron energies Ee ≫ mp. At leading order in the QED coupling,
the process is dominated by one-photon exchange. The QED vertex for the proton can in general be
written as

Γµ
p (P

′, P ) = γµF1(Q
2) +

i

2mp
σµνqνF2(Q

2) ,

where P and P ′ are the initial and final momentum of the proton, respectively, and q = P ′ − P is the
momentum transfer by the photon with virtuality Q2 ≡ −q2. The form-factors F1 and F2 encode all
the non-perturbative QCD interactions with the photon.

(a) Show that, in the initial proton rest frame, that the ratio of the final to initial electron energy is

E′
e

Ee
=

(
1 +

2Ee

mp
sin2

θ

2

)−1

,

where Ee and E′
e are the initial and final electron energies, respectively, and θ is the scattering

angle defined with respect to the incident electron momentum.

Solution: In the target system for relativistic electrons, pe = (Ee,pe), p′e = (E′
e,p

′
e)

where |pe| = Ee, |p′
e| = E′

e and p̂e · p̂′
e = cos θ. The kinematics for the initial and final

state protons are P = (mp,0) and P ′ = (E′
p,P

′). Conservation of energy yields

Ee +mp = E′
e + E′

p =⇒ (Ee +mp − E′
e)

2 = m2
p +P′2 ,

while conservation of momentum yields

pe = p′
e +P′ =⇒ P′2 = (pe − p′

e)
2 = E2

e + E′2
e − 2EeE

′
e cos θ ,

thus we find

(Ee +mp − E′
e)

2 = m2
p + E2

e + E′2
e − 2EeE

′
e cos θ ,

=⇒ 2mpEe − 2mpE
′
e − 2EeE

′
e = −2EeE

′
e cos θ ,

=⇒ Ee − E′
e =

EeE
′
e

mp
(1− cos θ) ,

=⇒ Ee

E′
e

− 1 =
2Ee

mp
sin2

θ

2
,

where we used the trigonometric identity 2 sin2 θ/2 = 1 − cos θ. Solving for E′
e/Ee we

recover the expression desired.
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(b) Show that, in the initial proton rest frame, that the differential cross-section is

dσ

dΩ
=

α2

4E2
e sin

4 θ
2

E′
e

Ee

[(
F 2
1 +

Q2

4m2
p

F 2
2

)
cos2

θ

2
+

Q2

4m2
p

(F1 + F2)
2
sin2

θ

2

]
,

where Ω is the solid angle defined in the initial proton rest frame. Hint: Use the Gordon identity
to rewrite the proton-photon vertex as

Γµ = γµ (F1 + F2)−
(P ′ + P )µ

2mp
F2 ,

for simpler trace relations.

Solution: The scattering amplitude at leading order in the QED coupling is

iM = −(−ie)2ū(p′
e, r

′)γµu(pe, r)
i

Q2
ū(P′, s′)Γµ

pu(P, s) ,

so that the spin-averaged matrix element is

⟨|M|2⟩ = 1

4

∑
s,s′

∑
r,r′

|M|2 ,

=
(4πα)2

4Q4
LµνH

µν ,

where the lepton tensor Lµν is

Lµν = tr
[
γµ/peγν/p

′
e

]
,

and the hadron tensor Hµν is

Hµν = tr
[
Γµ
p (/P +mp)Γ

ν
p(/P

′
+mp)

]
.

Using the trace theorems, the lepton tensor evaluates to

Lµν = 4(pµe p
′ν
e + pνep

′µ
e − gµνpe · p′e) ,

with pe · p′e = −(pe − p′e)
2/2 = Q2/2. Using the Gordon identity, the Hadronic tensor can

be written as

Hµν = tr
[
Γµ
p (/P +mp)Γ

ν
p(/P

′
+mp)

]
,

= tr

[(
γµ(F1 + F2)−

(P ′ + P )µ

2mp
F2

)
(/P +mp)

(
γν(F1 + F2)−

(P ′ + P )ν

2mp
F2

)
(/P

′
+mp)

]
.

To perform the trace, we use Feyncalc and subsequently contract with the leptonic tensor
to find

⟨|M|2⟩ =
4(4πα)2m2

p

Q4

[
− Q2

2m2
p

(F1 + F2)
2 + 4

(
F 2
1 +

Q2

4m2
p

F 2
2

)
EeE

′
e cos

2 θ

2

]
,
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where we have additionally used Q2 = −q2 = −(pe − p′e)
2 = −2EeE

′
e(1 − cos θ) =

−4EeE
′
e sin

2 θ/2. Some additional manipulations lead to the form

⟨|M|2⟩ =
(16πα)2m2

p

Q4
EeE

′
e

[(
F 2
1 +

Q2

4m2
p

F 2
2

)
cos2

θ

2
+

Q2

4m2
p

(F1 + F2)
2
sin2

θ

2

]
.

Now, the differential cross section in the lab frame is given by

dσ

dΩ
=

1

(8π)2mpEe

E′2
e

E′
e(Ee +mp)− EeE′

e cos θ
⟨|M|2⟩ ,

=
1

(8π)2mpEe

E′2
e

mpEe
⟨|M|2⟩ .

where we used mp(Ee −E′
e) = EeE

′
e(1− cos θ). Therefore, substituting the spin-averaged

matrix element and using Q2 = −4EeE
′
e sin

2 θ/2, we find

dσ

dΩ
=

α2

4E2
e sin

4 θ
2

(
E′

e

Ee

) [(
F 2
1 +

Q2

4m2
p

F 2
2

)
cos2

θ

2
+

Q2

4m2
p

(F1 + F2)
2
sin2

θ

2

]
,

as desired.

(c) Simplify the differential cross section for following limits: (i) the static source limit mp → ∞, and
the (ii) structureless proton limit.

Solution: In the static source limit, mp → ∞, we find that Ee = E′
e and Q2/mp → 0,

thus

dσ

dΩ
=

α2

4E2
e sin

4 θ
2

cos2
θ

2
,

which is the Mott cross section with F1 = 1 when Q2 = 0 since Ee = E′
e. For a structureless

proton, we have identically F1 = 1 and F2 = 0, thus

dσ

dΩ
=

α2

4E2
e sin

4 θ
2

(
E′

e

Ee

) [
cos2

θ

2
+

Q2

4m2
p

sin2
θ

2

]
.

(d) The Mott cross section (modified for proton recoil) is that of an electron on a spinless target,(
dσ

dΩ

)
Mott

=
α2

4E2
e sin

4 θ
2

(
E′

e

Ee

)
cos2

θ

2
.

Show that the electron-proton scattering cross section can bet written in the Rosenbluth form as

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2
θ

2

]
,

where τ = Q2/4m2
p and we have introduced the Sachs electric and magnetic form factors,

GE = F1 − τF2 , GM = F1 + F2 .
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The Sachs form factors are often easier to measure, and offer interpretations for Fourier transforms
of electromagnetic charge distributions. Show that GE(0) = 1 (unit proton charge) and GM (0) =
µp (proton magnetic moment).

Solution: Given the definition of the Sachs’ form-factors, we can solve for F1 and F2,

F1 =
GE + τGM

1 + τ
, F2 =

GM −GE

1 + τ
.

Squaring each and summing them,

F 2
1 =

1

(1 + τ)2
(G2

E + τ2G2
M + 2τGEGM ) , F 2

2 =
1

(1 + τ)2
(G2

E +G2
M − 2GEGM ) ,

=⇒ F 2
1 + τF 2

2 =
1

(1 + τ)2
(
(1 + τ)G2

E + τ(1 + τ)G2
M

)
=

G2
E + τG2

M

1 + τ
.

So, the differential cross section is given by

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2
θ

2

]
,

as desired.

Recall that F1(0) = 1 and F2(0) = µp − 1. Thus, we have GE(0) = 1 and GM (0) = µp

identically.
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