WILLIAM & MARY

CHARTERED 1693

PHYS 772 — The Standard Model of Particle Physics
Problem Set 8 — Solution

Due: Tuesday, April 08 at 4:00pm

Term: Spring 2025

Instructor: Andrew W. Jackura

1. Can the following hadrons, in principle, exist within QCD? (a) gq, (b) ¢qq, (c) gqqq, (d) gg, (e) qqg,
(f) qdg, (g) qqqqq. Hint: Consider SU(3). symmetry transformations of observable hadrons. Gluons
transform under the adjoint representation of SU(3)..

Solution: Hadrons within QCD must be color neutral, that is a hadron h must belong to the
1 representation of SU(3).. So, all we need to find is if the given combinations of quarks and
gluons admit a singlet representation. Recall that quarks lie in the 3 of SU(3),., antiquarks lie
in the 3* of SU(3)., and gluons lie in the 8 of SU(3),.

So, for (a)
gqq—3x3=3"+6751,
therefore gq is not a valid hadron.
For (b), we have (recalling that 3 x 3* =1 + 8),
qqq —3x3x3"=3x(1x8)p1,

since the 3 x 8 = 3 + 6* + 15 which was found in Problem Set 7. Therefore, gqq is not a valid
hadron.

For (c), qqqq is
9934 >3 x3x 3" x 3" =(3x3") x(3x3%),
=(1+8)x(1+8) >1.

So, qqqq is a valid hadron. These are tetraquarks, which candidates have been observed in the
heavy quark sector, e.g., the Z.(3900).

For (d), gg, we need the product 8 x 8. From lecture, we worked out this product, and found
it contains a singlet representation. Therefore,

gg—+8x8D1,

and thus is a valid hadron. These are glueballs, bound states of gluons. There is suspicion
that higher mass states in the JP¢ = 074 and 277 sectors contain strong mixing into these
glueball states.
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For (e), qqg, we have 3 x 3 x 8 =3*+3* 4+ 6 + 6 + 15 + 15* + 24 from Problem Set 7. So,
qq9 >3 x3x87p1,

and thus is not a valid hadron.

For (f), ¢gg, we have from Problem Set 7, 3 x 3* x 8 =1+ 8 + 8 + 8 + 10 + 10* + 27. So,
qqg —+3x3*x8D1.

Therefore, qgg is a valid hadron. These are hybrid mesons, which had a substantial component
from excited glue. The 7;(1600) is an observed hybrid candidate.

2. Consider a non-abelian gauge field A, = AZL T;, where T; € su(N) are generators satisfying the Lie
algebra [Ty, Tj;] = icjT) with ;i being structure constants and j, k,l = 1,2,.. .,N? — 1. Under a
local gauge transformation, U = exp(ia’ (z)T;) where () € R for every j, the gauge fields transform
as

Ay = UAU + 2 (0,U0) UL
g
Show that under infinitesimal transformations, a®(z) < 1, the gauge fields transform as

. . 1 .
Al — Al — gauoﬂ () = cjr oAl + O(a?) .

Solution: Taking o/ (z) < 1 for all j =1,2,..., N2 — 1, w can Taylor expand the exponential
U = exp(iad (z)T;) = 1 +ic? (z)T; + O(a?).

So, the gauge transformation is

ATy - UAIT, U + ;(auU)U_l :
= (1+idTj + O(®) AN T(1 — i T; + O(a?))
+ gam +iddTj + O(a?))(1 + ia* T}, + O(a?))
= AT +i0" A(TT = TiT) — éauajTj +0(%),
— AT, 4 iab AL (i T)) — éaﬂoﬂ'Tj +0(a?),
= (Ai — CjkzOékAL - éauaj + O(a2)> 1;.

Therefore, the infinitesimal transformation gives

. . 1 .
Ay = A= O — i Al + O0(a?).
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3. The SU(3). Yang-Mills Lagrange density for interacting gluon fields is given by Lyy = —1 tr (G, G*),
where the field-strength tensor is defined as G, = 9,4, — 0, A, +1igs[A,, A)] with A, = A Aa/2 are
the gluon gauge fields and A\, are the Gell-Mann matrices. Write the Lagrange density as a free part

Egg\ie) and an interacting part Egi/t[) which depends on the strong coupling gs.

Solution: Contracting the field strength tensors,
GG = (8,4 = 0,4 +ig[Ay, A]) (04 A% — 9 A" 4 ig,[A¥, 4],
= (8,4, — D, A,) (O*A” — 9" AM)
+igs (0, A, — B, A,) [A*, AY] +iga Ay, AL] (9,4, — ,A,)
— g2[Au, AJJ[A", AY].
Now, we use that A, = A% T, where T, = \,/2, so
GwG" = (0,A2L — 8,A%) (9" A”® — 9" AMY) T, T,
+igs (0, A% — 0,A%L) AMP AV T[Ty, T.] + igs AL AL (9, A" © — 9,A"°) [T, )T,
— AL AL AF AV T, T[T, Ta)
Furthermore, [T, Ty] = i fapeTe, SO
GwG" = (0,A%L — 8,A%) (9" A”® — 9" AM") T, T,
+igs (0, A5 — 0, AL) AMP AV T (ifpeaTa) + igs ALAY (9, AV — 8, A ) (ifapaTa)T.
- ngZAzA” A (ifapeTe) (ifear Ty) -

Now, taking the trace, we use tr(T,Ty) = tr(AgAp)/4 = dap/2, so the Yang-Mills Lagrange
density is

Lyn = f% (0,42 — 8,A%) (9 A¥® — 5" A1)

oo (DAL — DALY AFPAT g fupe A AL (0,47 — 5, A1)
b0 Fove Feae AT AL AP AV

= 1 (247~ D,A7) (A7 — 0¥ Ar)
— s Fute (DAL — 0, AL) AFAY 4 L7 fune feae ALALARC A,

__ p(free) (int)
=Ly T L

where we used fpecq = fape from the antisymmetry properties of the structure constants. So, the
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free and interacting Lagrange densities are

free 1 a a va y “
‘C%/M ) = *Z (8/,LAV — 8VAH) (8”A — OV A* ) ,

in 1 @ a Ve 1 . o
[’gfl\}[) - _igsfabc (a‘uAV - 81’Aﬂ) A" bA + Zgg fabefcde A;LA?/AN A d .

4. We can learn about the structure of hadrons through interactions with electromagnetic probes. Con-
sider elastic e”p — e~ p for incident electron energies E. > m,. At leading order in the QED coupling,
the process is dominated by one-photon exchange. The QED vertex for the proton can in general be
written as

)
TL(P', P) = " F1(Q%) + 5—0""q, F2(Q%),
2m,,

where P and P’ are the initial and final momentum of the proton, respectively, and ¢ = P’ — P is the
momentum transfer by the photon with virtuality @? = —¢?. The form-factors F; and F5 encode all
the non-perturbative QCD interactions with the photon.

(a) Show that, in the initial proton rest frame, that the ratio of the final to initial electron energy is
E! 2F, .0\ "
Ze = (14 Zfgin? 2
L. ( + my 2

where E. and E/ are the initial and final electron energies, respectively, and 6 is the scattering
angle defined with respect to the incident electron momentum.

Solution: In the target system for relativistic electrons, p. = (E.,p.), p. = (E.,pl)
where |p.| = E., |p.| = E. and p. - p, = cosf. The kinematics for the initial and final
state protons are P = (m,,0) and P’ = (E},, P’). Conservation of energy yields

E.+my,=E,+E, = (Ec+m,—E,)?=m+P"?,
while conservation of momentum yields
pe =p.+P = P?=(p.—p,)’ = E2+ E’ —2E.E, cos 0,
thus we find
(Ee +my — E)> =m_ + E; + E> — 2E.E, cos b,

— 2m,E, — 2m,E. — 2B.E, = —2E,E/ cos 0,

E.E!
= FE.— E,=—""<(1—-cosf),
mp
E 2F 0
— 76_1: € qin2 2
B! my 2

where we used the trigonometric identity 2sin?6/2 = 1 — cosf. Solving for E'/E,. we
recover the expression desired.
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(b) Show that, in the initial proton rest frame, that the differential cross-section is

do a? E! Q? Q? 50
— == |24y *_F 42 (R +F =
dQ ~ 4E2sin* ¢ E, {(1+4mp g)cos2+4 5 (F1+ y)? sm2 )

where € is the solid angle defined in the initial proton rest frame. Hint: Use the Gordon identity
to rewrite the proton-photon vertex as

(P + P)*

T — A4 (Fy + Fy) —
Y (Fy + Fa) 7

F27

P

for simpler trace relations.

Solution: The scattering amplitude at leading order in the QED coupling is

iM = = (=ie)u(pl, Y yuu(pe, ) o 8P, Thu(P,s)

so that the spin-averaged matrix element is
(MP) = 1 3 S
s,s" r,r!
(4ma)?

- 4Q4 Ly H"

where the lepton tensor L, is
L;u/ =tr [’Y;L]ﬁe"/u}/f;} ;
and the hadron tensor H*" is
/
H = tx [Ta(P + my)Ty (P +my)|
Using the trace theorems, the lepton tensor evaluates to
Ly = 4(pEp + peplt — 9" pe - pL)

with pe - pl = —(pe — p.)?/2 = Q?/2. Using the Gordon identity, the Hadronic tensor can
be written as

HM — tr [F;(P + mp)FZ(P/ + mp)} ,

(P + P~
2m,,

(P/ _|_ P)l/

Mp

— tr [(’y“(Fl +F) - F2) (P +m,) (ﬂy”(Fl +F) — Fg) (P +m,

To perform the trace, we use Feyncalc and subsequently contract with the leptonic tensor

to find
4(4ma)?m? Q? Q? 6
2 2 2 2
(IM[7) = ot L [—2mg(F1+F2) +4<F1 yhe 2F2>E6Egcos 2] ,
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where we have additionally used Q? = —¢?> = —(p. — p.)? = —2E.E'(1 — cosf) =
—4E.E’ sin?0/2. Some additional manipulations lead to the form

16 2 2 0
(ngpE E! KF1 +QF2)COS 7+Q—(F1 + Fy)?sin? 3
iz

4dm?2 2 4m?
Now, the differential cross section in the lab frame is given by

(IMJ?) =

do 1 E’?
dQ  (87)2m,E, E.(E.+m,) — E.E cosf

(M),

1 E/2
(87r)2mpE Iy

(M]?).

where we used m,(E. — E.) = E.E/(1 — cos ). Therefore, substituting the spin-averaged

matrix element and using Q? = —4E.E! sin2 6/2, we find
do a’ E; Q? ,0 Q7 , 0
a0 4Ezsint? \E. Ff+ 5 F} = F + F Z
dQ  4F2 Sin4g <E€) {( LT 4m12, 3 ) cos? 5 +— 4mp (F1 + 2) sin? 5

as desired.

(c) Simplify the differential cross section for following limits: (i) the static source limit m, — oo, and
the (i1) structureless proton limit.

Solution: In the static source limit, m, — oo, we find that F. = E. and Q*/m, — 0,
thus

2
do o 9

dQ 4E?sin* §

which is the Mott cross section with F; = 1 when Q2 = 0 since E, = E’. For a structureless
proton, we have identically F; = 1 and F5 = 0, thus

o (EN[LL0, @0
Q@ 4B2sin* § \ E. 2 4m?2 2]

(d) The Mott cross section (modified for proton recoil) is that of an electron on a spinless target,

do a? E! 50
— =—— [ =2 ) cos” =.
dQ /) oy 4E2sin® & \ B, 2

Show that the electron-proton scattering cross section can bet written in the Rosenbluth form as

do do G+ 7G5, 2 50
e el TETTIYM 49 Z
= (a0, [ i)

where 7 = Q?/ 4mf, and we have introduced the Sachs electric and magnetic form factors,

GE:F1_7F27 GM:F1+F2.
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The Sachs form factors are often easier to measure, and offer interpretations for Fourier transforms
of electromagnetic charge distributions. Show that Gg(0) = 1 (unit proton charge) and G;(0) =

tp (proton magnetic moment).

So, the differential cross section is given by

(30),0 .

Recall that F;(0) = 1 and F»(0)
identically.

do _
dQ

do

do GzE + TG?\/[
dQ

0
T +27G%, tan2§ ,

as desired.

pp — 1. Thus, we have Gg(0) =1

Solution: Given the definition of the Sachs’ form-factors, we can solve for F; and F5,

(G% +G2%, —2GG ),

G G Gy -G
poEt™om  p GuM—Gp
147 1471
Squaring each and summing them,
FP= L (G2 4 72G3, + 2rGpGu) o J—
LT 2R M FEME T T 12
1 G%L +7G3
2 2 _ 2 2 _ TE M
= F +’7'F2—(1+7_)2 (1+7)GL+7(1+7)Gy) = i

and G (0) = pp
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